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ABSTRACT Young breeding programs in developing countries, like the Chibas sorghum breeding
program in Haiti, face the challenge of increasing genetic gain with limited resources. Implementing
genomic selection (GS) could increase genetic gain, but optimization of GS is needed to account for these
programs’ unique challenges and advantages. Here, we used simulations to identify conditions under which
genomic-assisted recurrent selection (GARS) would be more effective than phenotypic recurrent selection
(PRS) in small new breeding programs. We compared genetic gain, cost per unit gain, genetic variance, and
prediction accuracy of GARS (two or three cycles per year) vs. PRS (one cycle per year) assuming various
breeding population sizes and trait genetic architectures. For oligogenic architecture, the maximum relative
genetic gain advantage of GARS over PRS was 12–88%, which was observed only during the first few cycles.
For the polygenic architecture, GARS provided maximum relative genetic gain advantage of 26–165%, and
was always superior to PRS. Average prediction accuracy declines substantially after several cycles of
selection, suggesting the prediction models should be updated regularly. Updating prediction models
every year increased the genetic gain by up to 33–39% compared to no-update scenarios. For small
populations and oligogenic traits, cost per unit gain was lower in PRS than GARS. However, with larger
populations and polygenic traits cost per unit gain was up to 67% lower in GARS than PRS. Collectively, the
simulations suggest that GARS could increase the genetic gain in small young breeding programs by
accelerating the breeding cycles and enabling evaluation of larger populations.
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High-yielding and climate-resilient crop varieties are needed to meet in-
creasing demand for food and feed in the developing world (Tester and
Langridge 2010; Crossa et al. 2014; Varshney et al. 2014; Bhat et al. 2016;
Mausch et al. 2017). Young small breeding programs in developing coun-
tries face many constraints in genetic improvement of crop varieties, which
include limited resources, multipurpose yield targets, and highly heteroge-
neous production environments. Due to slow breeding cycles, phenotypic

selection approaches may not provide adequate genetic gain (Fischer et al.
2014; Bhat et al. 2016). This limitation is especially true for polygenic
quantitative traits, which are controlled by large numbers of small effect loci
and generally show low heritability (Varshney et al. 2014; Bhat et al. 2016).

Genomic selection (GS) has been evaluated in many crop improve-
ment programs as an alternative to phenotypic selection (Habier et al.,
2009; Heffner et al., 2009, 2010; Crossa et al., 2010; Jannink et al., 2010;
Lorenz et al., 2011; Hayes et al., 2013; Lorenz 2013). In GS approaches,
genome-wide prediction models are developed using markers that are
in linkage disequilibrium (LD) with quantitative trait loci (QTL); the
models of marker effects are used to calculate genomic-estimated
breeding values (GEBVs) for genotyped lines and the GEBVs are used
for selection (Meuwissen et al. 2001). Once trained with field pheno-
types, GS allows selection without field evaluation, so genetic gain can
be increased through increased population size and selection intensity.
GS can accelerate population improvement and lower the cost of iden-
tifying genotypes with improved breeding or varietal value (Bernardo
and Yu 2007; Crossa et al. 2014, 2017; Bassi et al. 2016; Bhat et al. 2016;
Zhang et al. 2017).
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GS is generally applied to facilitate recurrent selection (RS) schemes
(Bernardo and Yu 2007; Grenier et al. 2015; Hickey et al. 2017; Müller
et al. 2017; Morais Júnior et al. 2018). RS is a cyclical breeding approach
for improvement of quantitative traits in breeding populations. RS
produces novel gene combinations and increases the frequency of
favorable alleles (Windhausen et al., 2012; Müller et al., 2017). Pheno-
typic recurrent selection (PRS) involves three steps conducted in a
cyclical manner: (i) development of progeny (S0) by crossing selected
parents, (ii) evaluation of progeny (S1 or S2) to select new parents, and
(iii) recombination of superior progeny to create the next cycle
(Weyhrich et al. 1998). Accurate evaluation of progeny performance
is limited by lack of seed for replicated trials. Genomic-assisted recur-
rent selection (GARS) would allow prediction of S0 breeding values
without evaluation of S1 or S2 families in replicated trials.

There is great interest and potential to apply GS in developing
country breeding programs (Varshney et al. 2014; Bhat et al. 2016;
Crossa et al. 2017; Xu et al. 2017). However, most studies intended
to guide GS implementation were not parameterized to reflect small
developing country breeding programs (Bernardo and Yu 2007; Lorenz
2013; Müller et al. 2017). GS implementation should take into account
these programs’ unique challenges/advantages and selection histories.
For instance, the Fisher-Orrmodel of adaptive walks would predict that
young breeding programs have more large effect variants segregating,
while established breeding programs (which have fixed large effect
variants) should approach an infinitesimal model (Orr 2009). Simula-
tion studies can been used to investigate genetic gain, prediction accu-
racy, cost-effectiveness of GS under various scenarios (Bernardo and
Yu 2007; Habier et al. 2007; Heffner et al. 2009; Solberg et al. 2009;
Jannink 2010; Bastiaansen et al. 2012; Müller et al. 2017). However, to
our knowledge, no simulation study has evaluated GS vs. phenotypic
selection considering breeding population size, genetic architecture and
costs of small breeding programs in developing countries.

Inmost developing countries of the semi-arid tropics, includingHaiti
and countries in sub-Saharan Africa, sorghum is grown primarily under
low-input rain-fed conditions with heterogeneous climate and soil
conditions (Kumar et al., 2011). Here, our goal was to evaluate GS
strategies for the Chibas sorghum breeding program inHaiti and similar
breeding programs. The Chibas sorghum program develops pure line
varieties for low-input smallholder agriculture in Haiti using RS with a
ms3 genetic male sterility (Brocke et al. 2008). The program was
launched in 2011with two rounds of intermating of founders (selections
from global tropical germplasm) to establish a base population (Cycle 0).
PRS based on evaluation of S1 and S2 families began in 2013. The PRS
program proceeded to cycle 3 by 2016 when population improvement
was paused to develop sugarcane aphid (Melanaphis sacchari) tolerant
varieties. A shift to GARS would allow the prediction of breeding value
on S0 progenies, potentially shortening the breeding cycle to one gen-
eration. Further, GARS could take advantage of the tropical environ-
ment to rapidly cycle two to three times per year. The objective of this
simulation study was to compare genetic gain, prediction accuracy,
genetic variance, and cost under GARS vs. PRS across various genetic
architectures, breeding population sizes, and model updating scenarios.
We found that by accelerating the breeding cycle and enabling evalua-
tion of larger populations GARS could increase genetic gain and lower
cost per unit gain in developing country breeding programs.

MATERIALS AND METHODS

Overview of breeding program simulation
The Chibas sorghum breeding program’s RS scheme is based on the
evaluation of S1 progenies, which involves the selection of best parents

followed by randomly intermating the selected parents to generate the
next selection cycle. Each cycles of RS followed by multiple generations
of selfing to generate inbred line. The inbred families will be evaluated
in replicated trials in multiple locations toward variety release. The
Chibas sorghum breeding program was simulated using AlphaSimR
package (https://cran.r-project.org/web/packages/AlphaSimR/index.html)
(Faux et al. 2016) (Figure 1). All results are based on 100 simulated
breeding programs, each from an independently simulated founder
population. Haplotype sequences of founder populations were simu-
lated with the coalescent simulation program MaCS (Chen et al.,
2009) implemented in AlphaSimR. The population parameters used
to simulate the founders include effective population size (Ne) of
20 (the approximate number of founders of the Chibas program),
number of base pairs = 2x108, and mutation rate = 2x1028 (Figure
1A). Genomes were defined with 10 chromosomes, as in sorghum
(Paterson et al. 2009), and 1,000 segregating sites per chromosome.
Segregating sites in the founder population were assigned randomly
to become either markers (n = 9,000) or QTL (n = 1,000). The actual
number of QTL with effect size greater than zero varied according
the genetic architecture of the trait simulated.

Defining trait genetic architectures
Traits were simulated with (i) oligogenic or (ii) polygenic architec-
ture by varying the number and effect size of QTL (Figure 1B). The
oligogenic and polygenic traits were assumed to have high and low
heritability, respectively, to represent contrasting extremes of genetic
architecture. Oligogenic architecture was simulated by randomly
sampling 50 QTL (five per chromosome) with effects sizes drawn
from a gamma distribution with scale and shape parameter of 0.5
and 1.8, respectively. Components of phenotypic variance (additive
genetic variance, environmental variance, genotype by environment
interaction [GxE] variance, and residual variance) were chosen to
make heritability h2 = 0.7. For the oligogenic trait, we are referring
to a quantitative trait that is controlled by relatively small number of
genes, in which most of the trait variation is attributed to the top few
genes. In this case, only five loci are responsible for 45% of the trait
variation.

Polygenic architecture was simulated by sampling 500 QTL (50 per
chromosome) with effect sizes drawn from a gamma distribution with
scale and shape parameter of 1.0 and 0.5, respectively. Variance com-
ponents were chosen tomake heritability h2 = 0.3. Intra- and inter-locus
interactions (dominance and epistasis effects) were not modeled. For
each of the two genetic architectures, various population sizes and
selection schemes were compared for genetic gain, genetic variance,
and prediction accuracies. True breeding value for each individual
was calculated by summing effects across all QTL. Genetic gain (as-
suming true breeding value of zero at t = 0) was defined and plotted as
the true breeding value expressed in standard deviation units of the
phenotypic values of cycle 0 (C0) generation.

Defining base/training populations
For each simulation, a base population (C0 generation) of 400 inbred
lines was simulated by randomly mating the founder population,
followed by five generations of selfing to create inbred lines. Phenotypic
values for each inbred line in the base population was simulated by
adding normally-distributed random deviates to each line’s true breed-
ing value. The base population was used as a source of parental lines
that were used to create the initial recurrent selection population. The
base population is also used as the training population for estimation of
markers effects for the genome-wide prediction model.
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Conducting phenotypic recurrent selection
PRS was performed by selecting the top 5, 20, 100, or 200 parental lines
from the base population based on their phenotypic values. Selected
parents were randomly intermated to generate S0 individuals. The S0
individuals were then selfed to generate S1 families. Following the
Chibas breeding program’s current PRS method, the S1 families were
phenotyped and S1 families with the top phenotypic values were
randomly intermated to generate the next cycle. Intermating of 5, 20,
100, or 200 parents generated 50, 200, 1000, or 2000 S0 individuals,

respectively (designated par5_pop50, par20_pop200, par100_pop1000 and
par200_pop2000, respectively) (File S1A). In all of these scenarios, the top
10% of S1 families were retained each cycle. Since developing countries
breeding programs generally have limited field phenotyping capacity,
scenarios were also simulated where the number of phenotyped
S1 families was capped at 500. In these scenarios (designated as
par100_pop500, par200_pop500), populations were generated by ran-
domly intermating 100 or 200 selected parents to generate 500 S0 in-
dividuals, whichmeant the top 20% or 40% of S1 families were retained,

Figure 1 Breeding program simulation. (A) Schematic representation of the simulated breeding programs. In the population establishment
phase, the base population was created by randomly intercrossing the founder population for several generations, which was then phenotyped
and genotyped to be used as a training population. For the breeding cycles, the training population was used as a cycle 0 generation from where
best parents were selected to initiate PRS and GARS. GARS was conducted three cycles per year (GARS3, shown) or two cycles per year (GARS2,
not shown), compared to a single cycle of PRS per year. (B) The density plot of the distribution of allelic substitution effects of the quantitative trait
loci (QTL) simulated in two trait genetic architectures (oligogenic and polygenic architectures).
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respectively. Assuming that the first selfing generation (S0/S1) was
performed during an off-season nursery, a single cycle of PRS was per-
formed each year, for a total of ten cycles of PRS in ten years. For each cycle
of PRS, genetic gain, genetic variance, and prediction accuracy were calcu-
lated. Prediction accuracy in PRS was calculated as the Pearson correlation
between the phenotypic value and true breeding value of the S1 families.

Conducting genomic-assisted recurrent selection
Similarly, GARS was initiated by selecting the top 5, 20, 100, or
200 parental lines from the base population based on their phenotypic
values and randomly intermating to generate 50, 200, 1000, or 2000 S0
populations, respectively. Ridge regression best linear unbiased predic-
tion (RR-BLUP) (Endelman 2011) was used to estimate genome-wide
marker effects (using the phenotypic and genotypic data from the
training population) and calculate GEBVs of the S0 individuals accord-
ing to the following model:

yi ¼ mþ
 Xp

k¼1

Xikbk

!
þ ei

where yi is the phenotype for individual i; m is the overall mean; Xik is
the genotype of individual i at marker k; bk is the additive effect of
marker k; p is the number of markers; and ei is the residual effect.
GEBVs were estimated using the following formula: yv = Mb, where
yv is an n·1 vector of GEBVs for the accessions in the training
population, M is an n·m matrix of genotype indicators for the train-
ing population, b is an m·1 vector of marker effects, n is the number
of individuals, and m is the number of markers.

The GEBVs were used to select the top S0 individuals of C1
population. The selected S0 individuals were randomly intermated to
generate thenext cycle (C2) recurrent selectionpopulation, andsoon for
30 cycles. To assess the effect of number of breeding cycle per year, two
or three cycles of GARS per year (designated GARS2 and GARS3,
respectively) were compared to PRS. Note, the results for GARS2 and
GARS3 represent the same simulation runs, plotted differently to
represent the given number of GARS cycles per year. Therefore, given
a 10-year time horizon, there were 20 cycles of GARS2 and 30 cycles of
GARS3. To align with the 10-year selection cycles of the PRS, only the
first 28 and 19 cycles were plotted. During each cycle, the number of
parents and populations generated by random intermating of the
parents remained constant. Genetic gain, genetic variance, and predic-
tion accuracy were calculated for the different selection schemes,
population sizes, and trait genetic architectures. Prediction accuracies
inGARSwas calculated using a Pearson correlation between theGEBVs
and true breeding values of S1 families.

Updating training populations and prediction models
We examined the impact of updating the training populations and
prediction models on the genetic gain, genetic variance, and predic-
tion accuracy. Given that cropping-season phenotyping can only be
conducted once per year, updating of the training population and
prediction model was performed every two and three cycles for GARS2
and GARS3, respectively. The updated training population for the a
given cycle (Nind = 400) consisted of (i) the 200 top lines from the
previous training population based on phenotype values and (ii) the
200 top lines from the previous cycle based on GEBVs. Updating of
the training population was performed based on the population size of
par100_pop1000, which represents an optimum breeding population size
at which genetic gain has plateaued. Changes in genetic gain, genetic
variance, and prediction accuracy due to updating were compared to
no-update GARS scenarios and PRS.

Comparing costs of GARS vs. PRS
Wecompared the efficiencyof the two selectionmethods in termsof cost
perunit gain.One cycle ofPRS in theChibas sorghumbreedingprogram
involves the intercrossing of best parents to generate S0 individuals;
planting and selfing of the S0 individuals to generate S1 families; and
evaluation of the S1 families in replicated trials. The following costs (in
US dollars per line calculated from 2017/18 budget estimates from
Chibas sorghum breeding program) were assumed: $38 in the crossing
phase, $14 inmanaging theS0phase, and$33 replication-1 for evaluating
the S1 families (File S1B). Costs in PRSwere calculated for the following
activities; planting and field management, pollination, perform repli-
cated yield trial for grain yield, disease resistance/tolerance, stay-green,
stem biomass, stem sugar content and other traits. GARS does not
require phenotypic evaluation of the S1 population, but estimates
breeding values of the S0 individuals. The costs involved in the different
activities GARS includes genotyping and phenotyping of the training
population, crossing of the parents and genotyping of the S0 individ-
uals. Different genotyping cost, which include US $5, $15, $25, and $35
were used to estimate cost per gain for GARS and compared to that of
PRS. Cost per unit genetic gain for the different scenarios were calcu-
lated by dividing the cumulative cost per cycle with the corresponding
genetic gain.

Data availability
All relevantdataarewithin thepaperand its supplementalfiles. FigureS1
shows the effects of updating the trainingpopulationunder anpolygenic
architecture. Figure S2 and S3 describe cumulative cost per unit gain in
GARS2 andGARS3, respectively, compared toPRS. Figure S4 shows the
costs per unit gain for updating the trainingpopulation. Figure S5 shows
the shift in the trait genetic architecture due to selection. File S1
summarizes the different populations sizes and cost estimates of activ-
ities in GARS and PRS. File S2 presents the t-tests for comparing the
genetic gain between GARS and PRS across the different trait genetic
architectures and population size. File S3 contains the script used to
simulate the breeding program, while File S4 contains the script used
to run the cost analysis and the output from the breeding program
simulation (genetic gains) that was used to run the cost analysis.
Supplemental material available at Figshare: https://doi.org/10.25387/
g3.7396781.

RESULTS

Genetic gain differences among scenarios
We first compared the genetic gain across population sizes, genetic
architectures, and selection schemes. The genetic gain per unit time
resulting fromGARS andPRS differed significantly and depended on
population size and genetic architecture (Figure 2; t-tests in File S2).
For the oligogenic architecture, GARS3 yielded significantly higher
(P , 0.01) short-term genetic gain (year , 5) than PRS for all
population size (Figure 2A-D). Across the years, the maximum
relative short-term genetic gain from GARS3 compared to PRS
ranged from 12–88% over different population sizes. By contrast,
GARS2 yielded short-term genetic gain comparable to that of PRS.
Long-term genetic gain (year$ 5–6) for the oligogenic architecture
was significantly higher (P , 0.01) for PRS compared to either
GARS2 or GARS3. For the polygenic architecture, GARS3 resulted
in higher genetic gain (P , 0.01) over PRS for all population sizes
across all selection cycles, except the first year (Figure 2E-H). Across
years, maximum relative advantage of GARS3 over PRS was
26–165% depending on population size. Similarly, GARS2 provided
higher genetic gain (P , 0.01) than PRS across all population sizes
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for the polygenic architecture, with maximum relative advantage of
12–99%.

For both genetic architectures, increasing population size resulted in
increased genetic gain with GARS and PRS. Given GARS3 and oligo-
genic architecture, final genetic gain (year 10) increased by 22% and 3%
when population size was increased (from par5_pop50 to par20_pop200
and from par20_pop200 to par100_pop1000, respectively; Figure 2A-C).
Given PRS and oligogenic architecture, final genetic gain increased by
25% and 2%, respectively, for the same population size increases. Fur-
ther increase in population size (to par200_pop2000) did not result in
significant increase in genetic gain (Figure 2C vs. 2D). For polygenic
architecture, final genetic gain from GARS3 increased by 36% and 7%,
for the same population size increases. (Figure 2E-G). With the excep-
tion of the smallest population size, GARS3 genetic gain (under poly-
genic architecture) continued to increase through the final year.

Genetic variance differences among scenarios
Total genetic variance was reduced over generations with both GARS
and PRS (Figure 3). The decline in genetic variance differed highly
significantly based on population sizes and genetic architecture (P ,
0.001). For the oligogenic architecture, genetic variance during early
selection years (year , 5) were higher for PRS compared to GARS
(Figure 3A-D). In the later years (year $ 5), differences in genetic
variance between the selection schemes became (i) non-significant
(P . 0.05) at the smallest population size or (ii) significantly higher
(P, 0.01) for GARS than PRS at the largest population size, notably for
GARS2. Under the assumptions of limited phenotyping capacity in
PRS (maximum population size capped at 500), genetic variance was
higher than GARS at the maximum population size (P , 0.01; Figure
3D). Genetic variance declined to zero in PRS for all population sizes
(Figure 3A-D) and at the smallest population size with GARS2 and
GARS3 (Figure 3A).

The decline in genetic variance over years was minimal for the
polygenic architecture, particularly for the larger population sizes
(Figure 3E-H). Genetic variance was higher for PRS than GARS2 and
GARS3 across all population sizes and selection years (P, 0.01). This
difference was greater during the early years, but declined in later years.
Similarly, the difference in genetic variance between GARS2 and

GARS3 was minimal during the early years, but GARS3 lost more
variance than GARS2 in later years (P , 0.01). For the polygenic
architecture, genetic variance declined to zero only for GARS3 at the
smallest population size (Figure 3E).

Prediction accuracies differences among scenarios
Prediction accuracy of GARS declined over generations, at rates that
varied by trait genetic architecture and population size (Figure 4). In
early years, average GARS prediction accuracy was higher for the
oligogenic architecture (0.64–0.76) compared to that of polygenic ar-
chitecture (0.62–0.68) (Figure 4A-D). However, the decline in predic-
tion accuracy given oligogenic architecture was more rapid than
that given polygenic architecture, notably after the second year of
RS. Accordingly, prediction accuracies were significantly higher (P ,
0.01) given polygenic architecture vs. oligogenic architecture in the later
years (Figure 4B-D). PRS prediction accuracy for the oligogenic archi-
tecture was initially high but declined over years, most notably for the
smallest population size (Figure 4A-D). For the polygenic architecture,
PRS prediction accuracy showed strong decline only for the smallest
population size (Figure 4E-H).

Impact of updating the training population and
prediction model
Given the decline of prediction accuracy with GARS, we considered the
effects of updating the training population and prediction models to
account for new LD generated over breeding cycles. We simulated
scenarios with updates each year (every two or three cycles for GARS2
and GARS3, respectively) and compared these scenarios to no-update
GARS and PRS (Figure 5 and Figure S1). Updating strategies provided
large increases in genetic gain in later years of GARS under both oligo-
genic (Figure 5) and polygenic architectures (Figure S1). For the oligo-
genic architecture, final genetic gain increased by 39% and 7% for
updated GARS2, compared to no-update GARS2 and PRS, respectively
(Figure 5A). For updated GARS3, genetic gain increased by 33% and
10% over no-update GARS3 and PRS, respectively (Figure 5B).

Given polygenic architecture, final genetic gain (year 10) was in-
creased by 29% and 13% for updated GARS2 compared to no-update
GARS2 and PRS, respectively (Figure S1A). For updated GARS3, the

Figure 2 Genetic gains from genomic assisted re-
current selection (GARS) vs. phenotypic recurrent
selection (PRS). The two selection schemes were
compared across five population sizes and two
types of traits genetic architecture (oligogenic
and high heritability vs. polygenic and low heritabil-
ity). The five population sizes were designated as
par5_pop50, par20_pop200, par100_pop1000,
par200_pop2000, which represent selection of
5, 20, 100, or 200 best parents and randomly intermated
to create 50, 200, 1000, or 2000 individuals, respec-
tively. par100_pop500 and par200_pop500 represent the
selection of 100 and 200 best parents and randomly
intermated to create 500 individuals, respectively.
Changes in genetic gain (Y-axis) was ploted against
selection cycles in years (X-axis). The plotted values
are means (+/2 95% confidence interval) from
100 simulations.
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increase in final genetic gain was 30% and 40% compared to no-update
GARS3 and PRS, respectively (Figure S1B). Updating resulted in a
greaterdeclineofgeneticvariancecomparedtono-updateGARS(Figure
5C-D). Prediction accuracy remained largely above 0.2 with updated
GARS2 and GARS3 (Figure 5E-F).

Cost per unit gain differences among scenarios
Cost per unit genetic gain was compared for GARS vs. PRS across
population sizes, genetic architectures, and updating scenarios. For
small population size, cost per unit gain was lower than GARS regard-
less of trait genetic architecture and genotyping costs considered. Cost
per unit gain was lower by up to 67% in GARS than PRS when larger
population size was evaluated, notably at the genotyping cost of $15 or
under (Figure 6; Figure S2; Figure S3). When updating the training
population, the additional cost of evaluating the training population

was offset by the extra genetic gain achieved by model retraining (Fig-
ure S4B, C, D, G, and H). The exception was at the early selection years
of updating GARS2 in which cost per unit gain in no-update GARS2
was slightly lower than that of updated GARS2. Given genotyping cost
of $15 or lower, cost per unit gain in updated GARS2 was lower than
PRS Hence, cost per unit gain in updated GARS2 and GARS3 was
either comparable to or lower than no-update scenarios, except at early
years of the selection cycles.

DISCUSSION

Maximization of genetic gain
Increasing genetic gain is a top consideration for breeding program
design in the Chibas sorghumprogram andmany similar programs (Xu
et al. 2017). Simulation and empirical studies have reported that GS

Figure 3 Changes in genetic variance during the
recurrent selection process. Genomic assisted recur-
rent selection (GARS) was compared to the pheno-
typic recurrent selection (PRS) across five population
sizes and two types of traits genetic architecture
(oligogenic and high heritability vs. polygenic and
low heritability). The five population sizes were des-
ignated as par5_pop50, par20_pop200, par100_pop1000,
par200_pop2000, which represent selection of 5, 20,
100, or 200 best parents and randomly intermated
to create 50, 200, 1000, or 2000 individuals, respec-
tively. par100_pop500 and par200_pop500 represent the
selection of 100 and 200 best parents and randomly
intermated to create 500 individuals, respectively.
Changes in total genetic variance (Y-axis) was ploted
against selection years (X-axis). GARS2 and GARS3,
with two and three cycles of genomic selection per
year, respectively, were compared to one cycle PRS
per year. Plotted values are means (+/2 95% confi-
dence interval) from 100 simulations.

Figure 4 Effects of genetic architecture on pre-
diction accuracy. Average prediction accuracy of
genomic estimated breeding values (GEBV) under
genomic-assisted recurrent selection and pheno-
typic estimated values (PEV) under phenotypic re-
current selection across years of selection for
different breeding population sizes and trait genetic
architectures, for an oligogenic and high heritability
trait or polygenic and low heritability trait. The Y-axis
represent accuracy of predicting GEBVs (estimated
as the correlation between the GEBVs and true
breeding values) and PEV (estimated as a correlation
between the phenotypic-estimated values and true
breeding values), while the X-axis represent selection
years. The plotted values are means (+/2 95% confi-
dence interval) from 100 simulations.
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increases genetic gain, but have not been specifically parameterized to
reflect small breeding programs in developing countries (Bernardo and
Yu 2007; Lorenzana and Bernardo 2009; Heffner et al. 2010). Our
simulation of genetic gain in GARS vs. PRS was designed to represent
the genetic architecture and breeding schemes of the Chibas sorghum
program in Haiti, but may be relevant to programs with similar genetic
properties. The simulations show that GARS should, in most cases,
increase genetic gain compared to PRS when at least two cycles of
GARS are performed. Given oligogenic architecture and no updates
of GARS models, however, the long-term genetic gain from PRS is
expected to be greater than GARS. This result is likely due to new
variation released by recombination that can be selected with PRS
but not with no-update GARS. When the GARS prediction model is
updated regularly, GARS outperforms PRS under either genetic archi-
tecture. Together, these findings highlight the likely advantage of GARS
and the value of GARS model updating.

Larger population sizes provide the opportunity to increase selec-
tion intensity while maintaining genetic variance (Guzman 1998;
Jannink 2010; Lorenz 2013; Gorjanc et al. 2017; Xu et al. 2017). In
our simulation, genetic gain was significantly greater in larger breeding
populations (P , 0.01, as described in previous simulations (Lorenz
2013; Slater et al. 2016; Xu et al. 2017). In practice however, population
size is limited by capacity tomanage field experiments.When a realistic
limit on phenotyping capacity for Chibas was imposed, the advantage

of GARS over PRS increased by more than fourfold. The effect of in-
creased populations size may also be dictated by the genetic architec-
ture of the trait. Increasing population size increased long-term gain
given polygenic architecture, but provided little benefit given oligogenic
architecture.

TheadvantageofGARSoverPRSmayvaryaccording to the selection
history of the breeding program and concomitant changes in genetic
architecture (Roff and Mousseau 1999; Kumar et al. 2008). Breeding
programs that have had few selection cycles (as in the case of Chibas
sorghum breeding program) are expected to segregate large effect var-
iants, while breeding programs that have had many selection cycles
should segregate small effect loci (Orr 2009). Given oligogenic archi-
tecture in a young breeding program, GARS may provide only a short-
term increase in genetic gain. However, as large-effect variants are fixed
genetic architecture may become more polygenic (Figure S5), so GARS
may provide both short- and long-term increase in genetic gains. That
is, benefits of implementing GARS may increase as the selection cycles
advance the program toward the infinitesimal model.

Maximization of cost effectiveness
Cost-efficiencyof evaluatingandmaintaining thebreedingpopulation is
also a critical aspect of implementing genomic-assisted recurrent selec-
tion (Bernardo and Yu 2007;Wong and Bernardo 2008; Varshney et al.
2014; Bassi et al. 2016; Bhat et al. 2016; Crossa et al. 2017). We

Figure 5 Effects of updating the training population
on genetic gain, genetic variance and prediction
accuracy. Genetic gain (panels A and B), genetic
variance (panels C and D), and prediction accuracy
(panels E and F) for GARS on oligogenic and high
heritability trait when the training population was
updated and the model retrained every two cycle
(GARS2) (left panels) or three cycles (GARS3) (right
panels) and compared to no update scenario.
Updating was performed by mixing 200 best
performing individuals from the recurrent selection
cycle with 200 best performing individuals from the
training population. The recurrent selection was
performed by selecting 100 best performing
individuals and intermated to create 1000 recurrent
selection population, which was carried out for
30 cycles.
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compared cost per unit gain inGARS vs. PRS across various population
size and trait genetic architecture. The relative cost effectiveness of
GARS vs. PRS was sensitive to many aspects of the breeding scheme.
For instance, GARS wasmore cost efficient than PRS given current cost
of field phenotyping for Chibas, moderate breeding population size
(par20_pop200 or larger), and genotyping cost ,$15 per sample. With
higher genotyping costs, the greater cost efficiency of GARS will be due
to larger breeding population (par100_pop1000 and par200_pop2000). The
result implied that it would be economically feasible to implement
GARS to Chibas breeding program even with relatively expensive
genotyping costs (US $15/sample) and moderate breeding population
size. When genotyping costs are driven down to $5/sample, GARS is
expected to be cost competitive even when traits are oligogenic and
highly heritable.

Despite recent genotyping advances, existing platforms may not be
appropriate for GARS. For instance, genotyping-by-sequencing (GBS)
has been used to rapidly generate 100,000-500,000 SNP markers for
diverse sorghum germplasm (Bekele et al. 2013), but the cost (�$20–40
USD), turn-around time (�6–8 weeks), and bioinformatics require-
ments may be prohibitive for GARS. One option would be to use
GBS and resequencing data to develop an out-sourced SNP assay with
2,000–10,000 informative markers. If a turn-around of ,4 weeks and
cost of $5–10/sample was achieved, our simulations suggest that GARS
would be effective in developing country breeding programs. Given the
volume of data production and turn-around times, it would be critical
to provide user-friendly bioinformatics and decision-support tools as a
part of a breedingmanagement system (Delannay et al. 2012; Varshney

et al. 2015). Finally, training of developing country breeders in genetic
and genomics will be essential for implementation.

Maintenance of genetic variance and
prediction accuracy
Long-term recurrent selectionmay reduce genetic variance to the point
where genetic gains are limited (Jannink 2010). Indeed, genetic variance
showed substantial decline over breeding cycles. The greatest decline
was observed in the smallest breeding population given oligogenic
architecture and high heritability. These results corroborate previous
findings that showed decline of genetic variance during long-term se-
lection is pronouncedwith smaller population sizes (Heffner et al. 2010;
Müller et al. 2017). GARS resulted in greater loss of genetic diversity
per unit time compared to PRS. This observation may account for
plateauing genetic gain in GARS compared to PRS in final years. The
greater loss of genetic variance in GARS vs. PRS can be attributed to
greater selection intensity in GARS due to more selection cycles per
year (Lorenz et al. 2011; De Beukelaer et al. 2017; Neyhart et al. 2017).
Greater loss of genetic variance per unit time in GS compared to phe-
notypic selection has been attributed to selection and drift of alleles that
are not tagged by markers in the training population, which cannot be
targeted by GARS (Rutkoski et al. 2015). The accelerated loss of genetic
variance in rapid cycle GARS highlights the need for long-term selec-
tion strategies that balance genetic gain with maintenance of diversity
(De Beukelaer et al. 2017).

Maintenance of prediction accuracy across selection cycles is critical
for long-term genetic gain (Müller et al. 2017). Prediction accuracies for

Figure 6 Cumulative cost (in thousands of US
dollars) per unit gain in GARS3 compared to PRS:
Four different genotyping costs (turquoise color)
were compared to that of PRS (red color) for
oligogenic architecture and polygenic architecture
for population sizes of par5_pop50 (panels A and B),
and par20_pop200 (panels C and D). The four realistic
genotyping costs include $5, $15, $25, and $35 per
sample; were compared to phenotyping costs for
PRS, which was calculated based the current Chibas
expenses for managing field experiments.
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GARS were initially high, likely due to the within-family prediction
scheme, high genetic variance and similarity between the selection
population and training population (Lorenz and Nice 2017). Average
prediction accuracy after the first year of GARS showed substantial
decline. This finding may be explained by the breakdown of LD be-
tween markers and QTL due to recombination (Jannink 2010; Müller
et al. 2017). Phenotypic accuracy showed substantial decline only for
the smallest population size, notably for the oligogenic architecture. For
the polygenic architecture with low heritability, phenotypic accuracy
was less affected by selection and remained proportional to the square
root of narrow sense heritability (Muranty et al. 2015).To maintain
GARS prediction accuracy over cycles, we considered a strategy in
which the training population was updated and reevaluated to gener-
ate new prediction models. We found that updating the training
population with the highest performing lines resulted in substantially
higher genetic gain and prediction accuracy. Updating the training
population has been previously shown to increase short-term predic-
tion accuracy and genetic gain (Neyhart et al., 2017). Our study
indicated that updating the training population also increased long-
term genetic gain. This observation can be explained by more pro-
nounced decay in LD amongQTL in long-term selection and increased
genetic distance between the training population and the selection
candidates, which is addressed by model updating (Jannink 2010;
Lorenz et al. 2011).

Next steps for implementation and optimization
of GARS
Currently, the Chibas breeding program is developing multipurpose
midheight (�2 m) sorghum varieties that are simultaneously selected
for a high grain yield (white hard to semihard grains primarily for
human consumption) and forage quality after grain maturity. Our
simulations provide guidance on several key decisions regarding re-
source allocation and capacity building to maximize genetic gain: (1)
achieving three cycles of GARS per year (two off-season nurseries per
year) will be critical to provide a higher rate of genetic gain; (2) rapid
cycling GARS can provide increased genetic gain even at a modest
population size (though a strategy to maintain genetic diversity will
be needed if population sizes are small); (3) GARS can be cost-effective
for developing countries breeding programs even at modest population
size if genotyping cost under US $15; or at higher genotyping costs if
larger population can be evaluated; and (4) updating the training
population and prediction models using lines that capture new LD will
be valuable to maintain high prediction accuracy and genetic gain. It
should be noted that the simulation carried out in present study as-
sumes that all selected parents are fertile. In an actual breeding program
that employ male sterility system, however, the population segre-
gates for male sterility. Therefore, the crossing pattern of randomly
intercrossing the selected parents may differ from the breeding
population in which male sterility system segregates in the population.

Future studies will need to address other aspects of genetic archi-
tecture and resource allocation that could affect implementation of
GARS in small youngbreedingprograms in developing countries. These
breeding programs, which often evaluate and cross diverse germplasm,
may encounter more epistasis than established breeding programs that
have fixed favorable genetic interactions (Wright 1932; Cooper et al.
2009). In addition, changes in environment (new pests, new diseases,
climate change, etc.) may shift the adaptive landscape for the breeding
program and force them to restart their adaptive walk. Genome-wide
prediction models with more flexible parameterization (BayesA,
BayesB, random forest, etc.) (Heslot et al. 2012) may capture
genetic architecture of small young breeding programs better than

the RR-BLUP method used in this study. Another challenge is to
achieve dualpurpose crop improvements targets when favorable traits
are negatively-correlated due to trade-offs from source-sink relation-
ships (Tovignan et al. 2016). Since the use of GS across heterogeneous
target environments is poorly understood, further studies are also re-
quired to account for the effect of GxE (Heslot et al. 2014; Lopez-Cruz
et al. 2015).

GS can also be applied to prioritize line advancement (e.g., S0/S5)
for varietal development. Genomic assisted selection on S1 and subse-
quent families would reduce the number of inbred families that needs
to be phenotyped in replicated plots at multiple locations. It could also
lower the cost of inbred line development and allow prediction for a
greater number of environments and traits. While the results of the
current simulation experiment can be applicable to the varietal devel-
opment cycle of the recurrent selection in terms of the population size
and associated costs, additional analysis may be required to test if
complete phenotypic evaluation across multiple location should be
done at the S2 and subsequent generations. Rigorous theoretical and
empirical evaluation of genomic breeding approaches will be critical for
translating technology investments into genetic gains for smallholder
farmers.
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