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Abstract: Aggregatibacter actinomycetemcomitans is an oral pathogen and etiologic agent 

of localized aggressive periodontitis. The bacterium is also a cardiovascular pathogen 

causing infective endocarditis. A. actinomycetemcomitans produces leukotoxin (LtxA), an 

important virulence factor that targets white blood cells (WBCs) and plays a role in 

immune evasion during disease. The functional receptor for LtxA on WBCs is leukocyte 

function antigen-1 (LFA-1), a -2 integrin that is modified with N-linked carbohydrates. 

Interaction between toxin and receptor leads to cell death. We recently discovered that 

LtxA can also lyse red blood cells (RBCs) and hemolysis may be important for 

pathogenesis of A. actinomycetemcomitans. In this study, we further investigated how LtxA 

might recognize and lyse RBCs. We found that, in contrast to a related toxin, E. coli  

-hemolysin, LtxA does not recognize glycophorin on RBCs. However, gangliosides were 

able to completely block LtxA-mediated hemolysis. Furthermore, LtxA did not show a 

preference for any individual ganglioside. LtxA also bound to ganglioside-rich C6 rat 

glioma cells, but did not kill them. Interaction between LtxA and C6 cells could be blocked 

by gangliosides with no apparent specificity. Gangliosides were only partially effective at 

preventing LtxA-mediated cytotoxicity of WBCs, and the effect was only observed when a 

high ratio of ganglioside:LtxA was used over a short incubation period. Based on  
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the results presented here, we suggest that because of the similarity between  

N-linked sugars on LFA-1 and the structures of gangliosides, LtxA may have acquired the 

ability to lyse RBCs. 

Keywords: erythrocytes; toxin; periodontal disease; endocarditis; RTX toxin 

 

1. Introduction  

Aggregatibacter actinomycetemcomitans is a gram negative oral bacterium that can cause localized 

aggressive periodontitis in adolescents (LAP) [1–3]. The bacterium is also part of the normal oral flora 

in many healthy individuals [4,5]. The disease occurs predominantly in African Americans and 

approximately 70,000 adolescents develop the disease in the U.S. per year [6]. LAP is a destructive 

form of periodontitis that affects the central incisors and first molars, and LAP results in the rapid loss 

of bone and periodontal ligament surrounding the teeth. When untreated, patients who suffer from  

LAP often lose their affected teeth. In addition to being an important oral pathogen,  

A. actinomycetemcomitans is part of the HACEK group of bacteria (Haemophilus spp.,  

A. actinomycetemcomitans, Cardiobacterium hominis, Eikenella corrodens, and Kingella kingae) 

implicated in infective endocarditis (IE) [7,8] and A. actinomycetemcomitans is reported to be the 

HACEK organism involved most often in IE [9]. 

A. actinomycetemcomitans produces numerous virulence factors including leukotoxin (LtxA), which 

targets human and Old World primate white blood cells (WBC; reviewed recently in [10]). LtxA is an 

~114 kDa secreted protein [11] and is a member of the repeats in toxin (RTX) family of bacterial 

toxins. Other RTX toxins include Escherichia coli HlyA, Bordetella pertussis CyaA, Mannheimia 

haemolytica LktA, Actinobacillus pleuropneumoniae Apx toxins, and Vibrio cholerae RtxA [12]. Like 

HlyA and CyaA, LtxA has been shown to be modified with fatty acids linked to internal lysine residues 

and this modification is required for activity [13]. LtxA is believed to play an important role in immune 

evasion by selectively depleting host WBCs that target the bacterium.  

The WBC receptor for LtxA is leukocyte function antigen-1 (LFA-1) [14]. LFA-1 is a 2-integrin 

composed of the subunits CD11a and CD18. These molecules are modified with N-linked 

oligosaccharides [15] and can exist in at least two different functional states [16,17]. After binding to 

LFA-1, LtxA causes a signaling cascade that results in apoptosis when used at low concentrations. 

While the mechanism has not been completely deciphered, LtxA appears to intoxicate cells via an 

apoptotic pathway that involves the mitochondria [18]. However, at high concentrations (greater than  

5 g/mL), LtxA kills cells very rapidly by necrosis. We recently reported that LtxA preferentially kills 

cells with activated LFA-1 [19]. Thus, rather than killing all WBCs non-specifically,  

A. actinomycetemcomitans LtxA targets immune cells that are most immunocompetent and effective at 

eliminating microbial pathogens.  

Several years ago, we discovered that LtxA could also lyse red blood cells (RBCs) from a variety of 

species including human, sheep, and horse [20]. RBCs do not express LFA-1, and so it is not known 

how LtxA interacts with these cells. The concentration of LtxA required for hemolysis of RBCs was 

higher than that needed for killing of WBCs, signifying a higher affinity receptor on WBCs or a greater 
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number of receptors [20]. We also found that free iron repressed the secretion of LtxA from bacteria, 

which suggested a role for hemolysis in iron acquisition [21]. Because there is no available free iron in 

the host, pathogens have evolved numerous mechanisms of releasing and sequestering iron often in the 

form of heme. Coupling LtxA-mediated hemolysis to other iron acquisition mechanisms may be 

important for survival and persistence of A. actinomycetemcomitans in the host.  

Other RTX leukotoxins have also been shown to possess hemolytic activity, including 

M. haemolytica LktA [22]. Cortajarena et al. [23] previously reported that another RTX toxin, E. coli  

-hemolysin, recognizes glycophorin on the surface of RBCs, which results in hemolysis. Because of 

our recent observation that LtxA has hemolytic properties, we further investigated a potential RBC 

surface component that is recognized by the toxin. We report here that LtxA does not use glycophorin 

as a receptor, but instead is blocked by and possibly interacts with gangliosides, which are lipid-sugar 

molecules expressed on the surfaces of cells. 

2. Materials and Methods 

2.1. Cells 

HL-60 (CCL-240), THP-1 (TIB-202), K562 (CCL-243) (human leukemia cell lines) and C6 rat glioma 

cells (CCL-107) were obtained from ATCC (Manassas, VA). HL-60, THP-1, and K562 cells were 

maintained in RPMI 1640 medium with 10% fetal bovine serum (Life Technologies, Carlsbad, CA) at  

37 °C, 5% CO2. Cells were grown for several days until cell concentration reached approximately  

1.0 × 10
6
 cells/mL. Rat glioma C6 cells were grown in Hams Nutrient Mixture F-12 (Fisher Scientific, 

Pittsburgh, PA) with 15% horse serum, 2.5% fetal bovine serum. A. actinomycetemcomitans strain 

NJ4500 was used for LtxA purification and was grown as described [24]. 

2.2. Isolation of Human RBCs 

Human blood from a healthy volunteer was collected into a Vacutainer tube containing heparin 

sulfate (Becton-Dickinson, Franklin Lakes, NJ). Whole blood was centrifuged at 250 × g at 4 °C for  

5 minutes to collect RBCs. The RBCs were washed 3–4 times in PBS until the supernatant was clear. 

One hundred microliters of washed RBCs was added to 3.9 mL PBS to yield a 2.5% RBC suspension. 

This mixture was used for all RBC studies described here. Experiments involving fresh blood from 

human subjects were approved by the UMDNJ Institutional Review Board (IRB). All human subjects 

gave informed consent to participate. 

2.3. Preparation of LtxA and LtxA-FITC  

Leukotoxin (LtxA) was purified from culture supernatants of A. actinomycetemcomitans strain 

NJ4500 as previously described [24,25]. Briefly, culture supernatants were filtered and then 

ammonium sulfate precipitated to isolate protein. The ammonium sulfate pellet was then resuspended 

in LtxA buffer (20 mM Tris-HCl, pH 6.8, 250 mM NaCl, and 0.2 mM CaCl2) and passed over a 

Sephadex G-100 size exclusion column. Individual fractions were assayed for total protein content and 

purified LtxA. All toxin preparations were filtered through a 0.22 μm membrane prior to use.  



Toxins 2010, 2              

 

 

2827 

LtxA-FITC was prepared using the FITC (fluorescein 5-isothiocyanate) labeling kit (Thermo Scientific, 

Rockford, IL) as described by the manufacturer. 

2.4. Ganglioside Blocking Assays 

Purified bovine gangliosides (Sigma-Aldrich, St. Louis, MO) were diluted to the indicated 

concentrations in water and then filtered prior to use. Ganglioside (6 μL) was mixed with LtxA  

(15 μL; 0.2 mg/mL unless otherwise indicated) and incubated at room temperature for 20 minutes prior 

to adding to cells. The ganglioside-LtxA mixture was then added to cells (400 μL) and incubated at  

37 °C for 24 hours unless otherwise indicated.  

2.5. Flow Cytometry  

RBCs were stained with phycoerythrin (PE)-labeled anti-glycophorin (clone HIR2) antibody 

(CD235ab; Biolegend, San Diego, CA) by mixing 100 μL RBCs with 20 μL of a 1:10 dilution of the 

antibody. Cells were washed three times in PBS and then resuspended in 600 μl PBS. To assess  

LtxA-FITC binding to C6 glioma cells, LtxA-FITC (15 μL; 0.2 mg/mL) was pre-incubated with 

ganglioside (6 μL) for 15 minutes on ice and then the mixture was added to 0.1 mL C6 cells  

(10
6
 cells/mL), incubated for 30 minutes on ice, and then washed three times in PBS. Samples (at least 

10,000 cells/run) were analyzed with a FACSCalibur instrument (BD Biosciences, Franklin Lakes, NJ) 

and data was analyzed using FlowJo software (Ashland, OR). 

2.6. Cytotoxicity Assays 

To determine the cytotoxic effect of LtxA on non-RBCs, 0.1 mL cells (~10
6
 cells/mL) were mixed 

with purified LtxA at various concentrations. The mixture was incubated at 37 °C, 5% CO2 for  

24 hours unless otherwise noted. Cellular viability (ATP production) was then determined using the 

CellTiter-Glo luminescent cell viability assay (Promega, Madison, WI) according to the manufacturer’s 

instructions. Plates were read in a Synergy HT plate reader in the luminescence mode (Bio-Tek, 

Winooski, VT). For toxicity of RBCs, 0.1 mL cells were mixed with LtxA (8 μg/mL) and lysis was 

measured by detection of released hemoglobin. After 24-hour incubation, RBCs were removed by 

centrifugation and the absorbance of the supernatant at 450 nm was assayed on a Synergy HT plate 

reader. One hundred percent cell lysis was determined by resuspending RBCs in distilled water.  

2.7. Statistical Analysis 

Data was analyzed using a Student’s t-test to test for no differences between ganglioside-treated and 

ganglioside-untreated samples. P values of <0.05 were considered significant. 

3. Results  

3.1. LtxA Does Not Use Glycophorin as a Receptor  

It was previously reported that E. coli -hemolysin can use glycophorin, a sialoglycoprotein, on the 

surface of RBCs, as a receptor [23]. We asked if LtxA could also use glycophorin to cause lysis of 
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RBCs. We first tested if anti-glycophorin antibody that reacts with both glycophorin A and B could 

block LtxA-mediated hemolysis. RBCs were pre-incubated in anti-glycophorin antibody for 30 minutes 

on ice, washed, and then mixed with LtxA. We found that anti-glycophorin antibody did not block 

hemolysis by LtxA (Figure 1A). Two different monoclonal antibody clones were tested in these studies 

yielding identical results (clones HIR2 and E3). In contrast, anti-LFA-1 antibody does block  

LtxA-mediated killing of WBCs [13,14]. We next asked if LtxA could block anti-glycophorin antibody 

from binding to RBCs. We performed flow cytometry to assay antibody binding to the surface of 

RBCs. Pre-incubation of RBCs with LtxA at 4 °C (a temperature that prevents LtxA from lysing cells) 

for 30 minutes reproducibly had no effect on anti-glycophorin antibody binding to RBCs (Figure 1B). 

Thus, these results suggest that LtxA does not use glycophorin as a RBC receptor. 

Figure 1. Effect of glycophorin and LtxA on RBCs. (a) RBCs were treated with water 

(100% lysis), LtxA buffer (background lysis), LtxA, or first pre-treated with  

anti-glycophorin antibody (ab) and then LtxA. Lysis was measured by detecting released 

hemoglobin in the supernatant at 450 nm. The data shown is representative of  

three independent experiments. (b) Flow cytometry of RBCs stained with anti-glycophorin 

antibody alone or after pre-treatment with LtxA. The shift in signal to the right represents 

cells that are stained with anti-glycophorin antibody. The data shown is representative of  

three independent experiments. 

 

3.2. Gangliosides Block LtxA-Mediated Hemolysis 

We screened a panel of carbohydrates and carbohydrate-containing molecules to identify 

compounds that might block LtxA-mediated hemolysis. We found that only two of the compounds, 

gangliosides GM1 and GD1b, were able to block hemolysis nearly completely (Table 1). The screen 

was performed three independent times to confirm these results. Other bacterial toxins, including 

cholera toxin, E. coli heat-labile toxins, tetanus toxin, botulinum toxin, pertussis toxin, and shiga toxin, 

have been shown to use gangliosides as cellular receptors [26–29]. Gangliosides are glycosphingolipids 

found on the surfaces of many vertebrate cell types, especially RBCs and brain cells, and play a role in 

signaling and membrane protein regulation [30]. They consist of a lipid ceramide moiety attached to an 

oligosaccharide chain that contains at least one sialic acid residue (Figure 2). We next tested several 

purified gangliosides for their ability to block LtxA-mediated hemolysis. LtxA was pre-incubated in 

individual gangliosides for 20 minutes and then mixed with RBCs and incubated for 24 hours at 37 °C 
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to allow hemolysis to occur. Figure 3A shows that five different gangliosides (GM3, GM1, GD1a, 

GD1b, and GT1b) were able to completely prevent LtxA-mediated hemolysis. The blocking effect was 

dose-dependent as shown in Figure 3B. In contrast, asialo GM1, lacking the sialic acid side group, was 

unable to fully block hemolysis. This result suggests that sialic acid is required for LtxA to interact 

with RBCs. Therefore, we also tested if sialic acid alone was sufficient to block hemolysis (Figure 3A). 

We found that sialic acid, even at high concentrations (15 μg/mL), was unable to completely prevent 

LtxA from lysing RBCs (Figure 3A). These results show that collectively, for LtxA recognition of 

RBCs, sialic acid is a necessary component of gangliosides, but alone is not sufficient to block lysis. 

To confirm that the gangliosides were binding to LtxA and not something on the surfaces of RBCs, we 

first pre-incubated RBCs with the gangliosides (GM3, GM1, GD1a, and GD1b). The RBCs were then 

washed, mixed with LtxA and incubated at 37 °C for 24 hours. We found that pre-incubation of RBCs 

with gangliosides did not block LtxA from lysing RBCs, indicating that the gangliosides are acting on 

LtxA (data not shown). 

Figure 2. Structures of gangliosides and protein-linked carbohydrates. GD3, GM1, GD1a, 

GD1b, GT1b, and asialoGM1 are gangliosides. Cer, ceramide; R, complex-type sugar chain 

as described in [15]. 
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Figure 3. Gangliosides block LtxA-mediated lysis of RBCs. (A) LtxA (7.5 μg/mL) was 

pre-incubated with sugars (15 μg/mL or 1.5 μg/mL) noted on the x-axis for 20 minutes and 

then added to RBCs. RBCs were also treated with LtxA buffer to represent background 

lysis. Experiment was performed in triplicate and standard deviation error bars are shown. 

GM3, GM1, GD1a, GD1b, and GT1b all caused significant inhibition of LtxA-mediated 

lysis (P < 0.05). (B) Gangliosides block hemolysis by LtxA in a dose-dependent manner. 

Results are the average from three independent experiments. LtxA buffer caused relative 

background lysis of approximately 0.1. All values are relative to LtxA alone (set to 1.0). 

 

Table 1. Compounds that were screened for their ability to block LtxA-mediated 

hemolysis. + represents greater than 90% blocking of LtxA- mediated hemolysis;  

- represents less than 10% blocking of LtxA- mediated hemolysis. 

Compound Blocking 

-lactose - 

D (-) fructose - 

D (+) galactose - 

D-glucose - 

D-maltose - 

D-arabinose - 

D-ribose - 

Sucrose - 

D (+) mannose - 

D (+) xylose - 

N-acetylmuramic acid - 

Ganglioside GM1 + 

Ganglioside GD1b + 

3.3. LtxA Binds to Gangliosides on Glioma Cells  

Studies with other bacterial toxins that bind gangliosides have employed glioma cell lines, such as 

rat glioma C6 cells, because they are enriched in gangliosides on their surfaces [27]. Because glioma 

cells should not be killed by LtxA, we could study binding of LtxA without the complications of 

downstream events such as apoptosis. We first confirmed that LtxA did not kill C6 glioma cells. After 
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a 24-hour incubation with LtxA, the viability of C6 cells was not affected by any concentration of toxin 

tested in contrast to HL-60 cells (Figure 4A). To assay binding of LtxA to cells, we generated 

fluorescently-tagged LtxA (see Materials and Methods). Similar studies have been carried out using a 

FITC-labeled version of cholera toxin [31,32]. Modified LtxA (designated LtxA-FITC) was still active 

against HL-60 cells, indicating that covalent modification did not adversely affect activity of the toxin 

(data not shown). We next measured binding of the toxin to cells using flow cytometry (Figure 4B). 

LtxA-FITC stained C6 cells strongly (Figure 4B), but not K562 cells (data not shown), which lack 

LFA-1expression [14,19]. More than 90% of the cells stained with LtxA-FITC. However,  

pre-incubation of LtxA-FITC with gangliosides GM3, GM1, GD3, and GD1a decreased staining of C6 

cells (Figures 4B and 4C). Pre-incubation resulted in an approximately 80% decrease in staining per 

cell. These results were highly reproducible. 

Figure 4. Interaction between LtxA-FITC and C6 glioma cells. (A) C6 or HL-60 cells were 

mixed with varying amounts of LtxA and then incubated for 24 hours. Viability was 

measured using the CellTiter-Glo viability assay. The experiment was performed in 

triplicate and standard deviation error bars are shown (P < 0.05). (B) Detection of  

LtxA-FITC binding to C6 cells using flow cytometry. Cells were stained with LtxA-FITC 

alone or LtxA-FITC that was pre-incubated (20 minutes) with the ganglioside noted. The 

left-most bar displays the percent of cells that are negative and the right-most bar represents 

percent of cells positive for staining with LtxA-FITC. The values on the x-axis represent 

fluorescence intensity. Results are representative of three experiments. (C) Histogram of 

the data shown in (B) from three experiments. * represents P < 0.05. 
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3.4. Gangliosides Inefficiently Block LtxA-Mediated Killing of WBCs  

LtxA is highly specific for human and Old World primate WBCs. We thus determined if 

gangliosides could also block LtxA-mediated killing of THP-1 WBCs. We found that, in contrast to 

lysis of RBCs, gangliosides GM1 and GM3 were not highly effective at blocking WBC cytotoxicity 

even though the ratio of GM1 molecules to LtxA molecules was 150:1 (Figure 5). Partial blocking was 

observed at lower doses of LtxA (~100 ng/mL; GM1 molecules to LtxA molecules ~7000:1); however, 

at higher concentrations of toxin, the gangliosides were largely ineffective at inhibiting LtxA-mediated 

toxicity. In addition, these experiments with THP-1 cells had to be reduced to three hours (RBC assays 

were performed for 24 hours); otherwise, LtxA overcame the inhibitory effects of the gangliosides after 

longer incubation times (data not shown). Thus, gangliosides can partially block killing of WBCs by 

LtxA only when the ratio of ganglioside to LtxA is high. 

Figure 5. Gangliosides inefficiently block LtxA-mediated toxicity of WBCs. THP-1 cells 

were treated for three hours with LtxA alone or LtxA pre-incubated with ganglioside GM1 

or GM3. The experiment was performed three times and the averages and standard 

deviations are shown. * represents P < 0.05. 

 

4. Discussion  

We show here that RBC lysis by A. actinomycetemcomitans LtxA is efficiently blocked by soluble 

gangliosides. Gangliosides also abrogate binding of LtxA-FITC to ganglioside-rich glioma cells. 

Numerous bacterial toxins utilize gangliosides as cellular receptors on various cell types. These toxins 

are highly selective for specific gangliosides. For example, cholera toxin and E. coli heat-labile toxin 

bind to GM1, botulinum toxin to GT1b and GQ1b, and pertussis toxin to GD1a [26]. In contrast, based 

on the work presented here, LtxA does not show a preference for any specific ganglioside. To our 

knowledge, only one other bacterial toxin, Clostridium perfringens  toxin, has been shown to interact 

with a ganglioside on RBCs, namely GM2 [33]. 

While gangliosides effectively prevented LtxA-mediated lysis of RBCs, they were much less 

effective at protecting WBCs from LtxA. LFA-1, the WBC receptor for LtxA, is a heavily glycosylated 

membrane protein [15]. Asada et al. [15] reported that ~60% of the oligosaccharide moieties that 

modify LFA-1 have the terminal structure: sialic acidgalactoseN-acetylglucosamine (Figure 2). 

Interestingly, this terminal sugar structure found on LFA-1 is strikingly similar to the gangliosides that 

block LtxA (Figure 2). In addition, Morova et al. [34] recently reported that RTX toxins can recognize 
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2 integrin receptors through their N-linked oligosaccharide chains and suggest that interaction 

between toxin and oligosaccharide represents the initial binding step. They showed that treatment of 

Jurkat T-cells with glycosidases rendered these cells more resistant to killing by RTX toxins, including 

LtxA. However, LtxA was still able to kill glycosidase-treated cells, but less efficiently than untreated 

cells. This result suggests that the deglycosylation was not complete or that LtxA can still interact with 

deglycosylated LFA-1, albeit less efficiently. WBCs have been reported to also express gangliosides on 

their surfaces [35,36]. However, cell lines that do not express LFA-1 (CD11a, CD18, or both) are 

completely resistant to LtxA-mediated toxicity [14,19], indicating that LtxA does not function through 

gangliosides on WBCs. This result is similar to the effect of LtxA on C6 glioma cells, which are 

recognized by LtxA but not killed. Thus, it appears that gangliosides do not act as potential functional 

receptors on cells except RBCs. 

Based on several lines of evidence, we hypothesize that LtxA originally evolved as a toxin to target 

the immune system by interacting with LFA-1, but because of the similarities between the N-linked 

oligosaccharides of LFA-1 and gangliosides on the surface of RBCs, the toxin “gained” the ability to 

recognize and lyse RBCs. First, all of the sialidated gangliosides we tested were able to block  

LtxA-mediated hemolysis equally well with no apparent preference. All other bacterial toxins that 

interact with ganglioside receptors show strong preference for one or two gangliosides [26]. Second, 

gangliosides were only partially effective at blocking LtxA-mediated killing of WBCs (THP-1 cells) at 

low doses of LtxA and short incubation times. At high LtxA doses, blocking was not apparent. Third, 

when LtxA bound to C6 glioma cells via gangliosides, there was no subsequent toxicity or cellular 

changes, even at high doses after 24 hours. Interaction between other toxins and gangliosides always 

leads to noticeable downstream effects, especially, cell death.  

Interaction between RTX toxins and cellular receptors, such as LFA-1, leads to membrane 

disruption [37–39] and cellular signaling that ultimately results in cell death [40–43]. However, 

because RBCs lack LFA-1 and there is unlikely to be an intracellular signaling cascade activated by 

LtxA in RBCs, we suggest that interaction between LtxA and RBC gangliosides results in disruption of 

the membrane, which leads to cell lysis. Following interaction with LFA-1 on WBCs, LtxA is 

proposed to undergo significant conformational changes that result in membrane insertion of the  

toxin [39]. Thus, contact between LtxA and gangliosides may result in a similar change in 

conformation that allows LtxA to insert into and disrupt RBC membranes. Further biochemical studies 

will be required to test our hypothesis. 

In conclusion, we demonstrate that gangliosides can block hemolysis by a toxin from an important 

oral pathogen. Our data and knowledge of other bacterial toxins suggest that gangliosides may act as a 

RBC receptor for LtxA. For individuals with HACEK-causing IE, the most common route of infection 

is through the oral cavity since the HACEK bacteria are part of the normal oro-pharyngeal flora.  

A. actinomycetemcomitans can be found on infected heart tissue where it exists as vegetative  

growths [9]. This indicates that A. actinomycetemcomitans has the ability to enter the blood stream, 

evade host immune defenses, colonize heart tissue, and persist in this environment. Furthermore, one 

of the clinical symptoms of IE is marked anemia, and hemolysis is considered to be an important 

mechanism leading to this anemia [44,45]. Thus, targeting of host RBCs by A. actinomycetemcomitans 
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may be a crucial step in the pathogenic process and understanding this interaction could lead to novel 

therapeutic modalities.  
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