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A B S T R A C T

The localization and quantification of endothelial progenitor cells (EPCs) are controversial. Circulating CD34 þ
cells in blood have been identified as EPCs and as biomarkers of cardiovascular disease. We discuss in this paper
the current data describing differential phenotype and behavior in vitro of CD34 positive cells from the circulation
and adipose tissue (AT). We also describe in brief our own findings from CD34 þ cells isolated from leukopheresis
cones derived from healthy platelet donors and from patients undergoing bariatric surgery. We conclude that
CD34 þ cells in blood and in AT are different in antigenic profile and behavior in culture. The findings described
assert that CD34 þ cells detected in blood previously identified as biomarkers of cardiovascular disease are
predominantly HPCs rather than EPCs, and that true CD34 þ EPCs can be readily identified and extracted from
AT, supportive of the current evidence which suggests EPCs are resident in the tissue vasculature.
1. Introduction

The discovery of the endothelial progenitor cell (EPC) was a landmark
in cardiovascular and regenerative medicine and is credited to Asahara
et al. [1] Since that time several publications have described endothelial
progenitor cells detectable in the peripheral circulation which are bio-
markers of cardiovascular disease [2, 3, 4, 5, 6, 7], but controversy has
existed regarding their exact phenotype [8, 9, 10]. The consensus on the
identity of the true EPC has included expression of the CD34 antigen, a
hematopoeitic progenitor cell (HPC) antigen which is also expressed on
human vascular endothelial cells (HUVECs) and putative endothelial
progenitor cells [11, 12, 13, 14, 15].

In recent years, great interest has developed in adipose tissue (AT) as
a source of stem and progenitor cells [16], and there is substantial evi-
dence for the stromal vascular fraction (SVF) from AT to yield cells
capable of endothelial differentiation, and to promote angiogenesis in a
hindlimb ischemia model [17, 18, 19, 20]. These findings are supportive
of the hypothesis that adipose tissue may be a source of true endothelial
progenitor cells.

In that regard, CD34 þ cells can be isolated from adipose tissue as
well as from peripheral blood, but these cells have a different phenotype,
and different behavior in culture. These findings are consistent with their
identity as HPCs and EPCs respectively, and the literature supporting this
oilson).
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assertion is reviewed in detail in this paper. We also briefly describe our
own experience where CD34 þ cells from peripheral blood, and from
adipose tissue were isolated by magnetic activated cell sorting (MACS),
analyzed by flow cytometry, and cultured in endothelial and hemato-
poietic stem cell media. Their differential antigenic expression, and
behavior in culture are described, and interpreted in the context of the
current literature.

2. Literature review

Since the end of the last millennium, the existence of progenitor cells
in tissues previously considered virtually devoid of any capacity for self-
renewal has become apparent. The close relationship and possible com-
mon lineage of bone marrow derived progenitor cells and microvascular
endothelial cells in bone marrow.is exemplified by the shared expression
of a cell adhesion molecule, CD34 [21]. Further characterization of the
expression of antigens on the surface of endothelial cells such as KDR
(VEGFR2) and Pecam-1 (CD31) established the concept of a circulating
endothelial progenitor cell that is CD34þ and shares the VEGFR2
expression of mature endothelial cells [1, 22]

Adipose tissue has been found to be an abundant source of progenitor
cells [18, 20]. Pham et al suggested the existence of a distinct EPC
phenotype within adipose tissue [17, 19]. Where the stromal vascular
ugust 2021
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Figure 1. CD34þ cell isolation, culture and flow cytometry from human peripheral blood and adipose tissue. Top panels: Human omental adipose tissue was treated
with collagenase solution and the liquid cell suspension phase (stromal vascular fraction/SVF) obtained. Buffy coat was obtained from leukopheresis cones. The cell
suspensions were incubated with anti-CD34 monoclonal antibodies tagged with magnetic microbeads and the CD34 þ fractions isolated by magnetic activated cell
sorting. Left lower panel: CD34 þ cells obtained from blood (leukopheresis cones) were analyzed by flow cytometry at baseline, and after 3 and 7 days in culture. Cells
did not survive in endothelial growth medium and proliferated in hematopoietic medium only. Flow cytometry demonstrated persistent CD45 expression at isolation
and at 3 and 7 days in culture, but negative for VEGFR2 expression throughout those time periods. At 7 days, CD34 expression is absent but CD45 expression persists,
consistent with a more mature hematopoietic phenotype. A photomicrograph of these cells is shown (200x). Right lower panel: CD34 þ cells obtained from adipose
tissue were analyzed by flow cytometry at baseline, and after 7 days in culture. Cells proliferated in endothelial growth medium and when analyzed by flow cytometry
were VEGFR2 positive but CD45 negative, similar to human vascular endothelial cells as shown. At 7 days in culture, CD34 þ cells isolated from adipose tissue
demonstrated persistent VEGFR2 expression and also expression of CD31, but no longer expressed CD34. They remained CD45 negative. A photomicrograph is shown
of these AT derived cells in culture (200x magnification), demonstrating a cobblestone appearance of spindle shaped cells after 7 days. Confocal microscopy was also
performed on these cells after 7 days in culture, demonstrating eNOS expression and confirming expression of VEGFR2 demonstrated by flow cytometry. Isotype
control staining is in the panels immediately above and eNOS and VEGFR2 expression in the panels below.
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fraction is isolated from adipose tissue and placed in culture, rapid early
appearance of endothelial cells has been noted by our group and by
others [20, 23, 24, 25].

CD34 þ positive cells have been described in adipose tissue. Eto et al
described an adipose tissue derived CD34 þ population which are CD31-
and have a macrophage lineage and mesenchymal differentiation po-
tential [26]. In the presence of VEGF, these cells do have the potential to
differentiate into endothelial cells and form tube-like structures [27].
Elegant work by Tratuev et al identified that these CD34 þ CD31-cells
2

have a pericyte location and interact with resident endothelial cells in
adipose tissue [28]. The paracrine effects of these cells has been
described and the CD34 positive subfraction of ADSCs identified from the
SVF express and secrete VEGF among other growth factors [29, 30]. It is
noteworthy that adipose derived CD34 þ cells do not express CD45 [31],
consistent with a non-hematopoietic lineage.

As regards CD34 þ progenitor cells in the circulation, an impressive
body of evidence already exists, in particular identifying their status as a
biomarker of cardiovascular disease severity [2, 3, 4, 5, 6]. In these
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papers, circulating CD34þ cells were described as endothelial progenitor
cells (EPCs), but the CD45 expression on these cells was not described. It
is possible that the cells that were enumerated by these groups were in
fact a combination of EPCs and hematopoetic progenitor cells (HPCs). We
demonstrated similar observations to other groups in patients with early
and advanced coronary artery disease [32, 33], and a canine model of
heart failure [34], but application of stringent criteria regarding CD45
expression identified two distinct groups of CD34 þ positive cells - a
predominant CD34 þ CD45dim VEGFR2-fraction (HPCs) and very rare
CD34 þ CD45- VEGFR2þ population (EPCs) [32, 34]. Only the HPCs
were demonstrated to be altered in number in the setting of cardiovas-
cular disease. Further supportive evidence for these rare cells has
demonstrated that a CD45-fraction may exist in the circulation which has
endothelial differentiation potential [35]. Indeed, current opinion sug-
gests that both of these CD34 þ cell groups may be considered EPCs,
hematopoietic and non-hematopoetic [8] although the former require
the existence of the CD45-fraction to form endothelial cells in vitro [36].
This is supportive of the likelihood of a paracrine effect from one or more
of these cell populations [37, 38].

As such, it can be interpreted from the totality of these data that
circulating HPCs have a relationship with cardiovascular disease states. It
has been shown that co-culture of endothelial cells with CD34 positive
selected cells is superior to culture of endothelial cells in VEGF [39].
Furthermore, a CD11b/CD133 positive subset of CD34 positive cells has
been demonstrated to secrete and bind angiopoietins, growth factors
which regulate the differentiation of progenitor cells into endothelial
cells [40]. This strongly suggests that the role of hematopoeitic stem cells
in vascular biology is probably not to differentiate into endothelial cells,
but to stimulate the proliferation of existing endothelial cells in the
vasculature. True endothelial progenitors may reside within the endo-
thelium itself, and the CD34 þ cells isolated from adipose tissue are
probably reflective of this population [38, 41, 42].

3. Our experience

To further explore these concepts, we directly compared the pheno-
type of blood-derived CD34 þ cells with that of adipose-derived cells.
Full details of the methods and results are supplied in a supplemental
document. Ethical approval was obtained from the Mayo Clinic Institu-
tional Review Board, and informed consent was obtained from all par-
ticipants. Leukopheresis cones were obtained from three healthy platelet
donors, and omental adipose tissue was obtained from three human
subjects undergoing bariatric surgery. Our findings were that a pure
isolate of CD34 þ cells from unmobilized peripheral blood is exclusively
CD45 dim-positive. This is in accordance with the definition of HPCs set
forth in 1996 by the ISHAGE working group [12]. These cells were also
negative for expression of VEGFR2. Culture of these cells in EGM did not
demonstrate attachment or formation of spindle-shaped colonies. How-
ever, when these cells were cultured in HPC growth medium, they
proliferated rapidly and also demonstrated some attachment. Flow
cytometric analysis of these cultured cells at 3 and 7 days revealed
persistently positive CD45 expression and absent VEGFR2 expression,
consistent with a hematopoietic phenotype (Figure 1, bottom left).

When we performed magnetic bead extraction of CD34 þ cells from
adipose tissue, an abundance of CD34 þ cells was identified but these
were uniformly CD45 negative and positive for VEGFR2, the reverse
pattern identified in CD34þ cells characterized from blood. Unlike CD34
þ cell isolated from blood, these AT derived CD34 þ cells demonstrated
rapid attachment and spindle-shaped and cobblestone colony formation
in endothelial growth medium. For comparison, human vascular endo-
thelial cells were also analyzed by flow cytometry and demonstrated
similar antigenic expression. At 7 days in culture, cells no longer
expressed CD34, but were persistently VEGFR2 positive, expressed CD31,
and were also positive for eNOS expression on confocal microscopy
(Figure 1, bottom right). These cells did not express CD45, consistent
with a non-hematopoeitic phenotype, and consistent the findings of
3

others [31]. We concluded therefore that CD34 þ cells from adipose
tissue were phenotypically different to those that circulate in blood and
unlike those from blood, proliferate in endothelial cell culture medium,
and demonstrate some features of an endothelial cell phenotype.

4. Summary and conclusions

To conclude and summarize, CD34 þ cells exist in both circulating
blood and adipose tissue but they have different antigenic expression and
behavior in culture. CD34 þ cells from peripheral blood express CD45
which is testimony to their predominantly hematopoeitic origin and
differentiation potential. Indeed, these data and others demonstrate that
the majority do not express VEGFR2, an endothelial surface marker or
have endothelial differentiation potential in culture. In contrast, CD34 þ
cells from adipose tissue express VEGFR2 consistent with an endothelial
phenotype, but not the hematopoeitic marker CD45. These cells differ-
entiate into endothelial-like cells in culture. This work, interpreted in the
light of other evidence to date, suggests that CD34 þ cells with endo-
thelial proliferation potential in culture are predominantly resident in the
tissue vasculature and represent the minority of detectable CD34 þ cells
in circulating blood. HPCs, which circulate in blood and represent the
majority of detectable CD34 þ cells, do not differentiate into endothelial
cells but very likely have an important supporting role.
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