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Figure S1. Effect of grid resolutions on the pressure evolution at the bottom center of the 
petri dish at H = 5 mm and U = 10 m/s. The differences between △ = 0.5 and 1.0 were smaller 
than those between △ = 1.0 and 2.0, suggesting the convergence of the mesh. 
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(a)                                                                  (b) 

Figure S2. (a) Schematic diagram of a vibrating circular piston set in a large baffle. The 
piston vibrates with a velocity of Uz. The pressure contour shows the wave pressure at the 
downstream of the piston at a frequency of 90,909 Hz (the period of vibration is about 11 μs). 
(b) Three-dimensional representation of the pressure field  (pressure amplitude P0 = 1 MPa). 
The radiation of the rESWT in Figure 2 was similar to that in (b). 
 

 

(a)                                                    (b) 

Figure S3. Finite element meshes before (a) and after (b) the preload step. Before the preload 
step, there was a distance between the head-end of the applicator and the skin surface. A 
displacement was applied to the casing gradually until the front surface of the applicator 
contacted the skin completely. The casing thus stayed still to provide compression of the soft 
tissues. 
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(a)                                                 (b)                                                (c) 

Figure S4. Experimental apparatus for measuring of pressure either at the bottom of a petri 
dish or inside porcine tissues. (a) A supporting frame holding the handpiece of the ESWT 
device vertically; (b) Setup for measuring pressure at the bottom of a petri dish; (c) Setup for 
measuring the pressure inside porcine tissues. 
 
 
Table S1. Depths H of measured locations and the corresponding tissue thicknesses. 

 H (mm) 
Position Skin Adipose Muscle Total 

1 2.82 0 0 2.82 
2 2.82 8.18 0 11.00 
3 2.82 13.96 0 16.78 
4 2.82 26.50 7.14 36.46 
5 2.82 26.50 23.54 52.86 

 
 
Table S2. Fitting parameters of P+ and P- along the axial direction for different Pin. 
Pin P+ P- 

bar a (MPa·mm) b (mm) c (MPa) a (MPa·mm) b (mm) c (MPa) 

1 11.11 1.815 0.07 -36.34 10.52 0.29 

2 28.08 3.33 -0.15 -76.50 14.93 0.68 

3 41.72 3.82 -0.21 -108.75 15.62 0.96 

4 55.30 4.04 -0.31 -133.37 15.12 1.12 

 
 

Table S3 lists the material properties used for numerical simulations. The projectile and 

applicator were made of steel and modeled by the linear elastic model with Young’s modulus 

E and Poisson’s ratio ν. The casing was modeled as a rigid body only for the supporting and 

preload purposes. A hyperelastic rubber model (three constant ν, C10 and, C01) was used for 

the o-rings.[1] Water was modeled by a shock equation of state (EOS) Gruneisen model (two 

constant C and, S1).[2] A previous study emphasized that the correct simulation of the 
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behavior of biological tissues requires accurate material models considering viscoelasticity.[3] 

The soft tissues were treated using the single-term Ogden rubber model with quasi-linear 

viscoelastic Prony series for viscoelasticity.[4] Note that predictive and patient specific 

biomechanical models can be evaluated using inverse finite element analysis (FEA) of in-vivo 

indentation experiments.[5] The other components were modelled as linear elastic materials. 

 
 
Table S3. Material properties of device components, water, and biological tissues. 

 Model Parameters 

Projectile 
Linear elastic ρ = 7800 kg/m3, E = 2.0 × 1011Pa, ν = 0.3 

Applicator 

Casing Rigid ρ = 7800 kg/m3 

O-ring 
Hyperelastic 

rubber 
ρ = 1150 kg/m3, ν = 0.4988, C10= 1.933×106 Pa, C01= 0.483×106 Pa [1] 

Water 
Shock EOS 

Gruneisen 
ρ = 998 kg/m3, C = 1647 m/s, S1 = 1.921 [2] 

Skin 

Single-term 

Ogden with 
Prony series 

ρ = 1110 kg/m3, μ = 2.20×106 Pa, α= 12, g(1) = 5.01×101 Pa, τ(1) = 5.73×10-1 s, g(2) = 

4.44×10-1 Pa, τ(2) = 9.47 s [4] 

Adipose 

ρ = 1100 kg/m3, μ = 1.70×103 Pa, α = 23, g(1) = 1.59×10-2 Pa, τ(1) = 7.83×10-5 s, g(2) = -

7.97×10-2 Pa, τ(2) = 1.17×10-3 s, g(3) = -5.89×10-1 Pa, τ(3) = 1.61 s, g(4) = 1.25×10-1 Pa, τ(4) 
= 7.29×101 s [4] 

Muscle 
ρ = 920 kg/m3, μ = 3.63×104 Pa, α = 45, g(1) = 3.30×10-1 Pa, τ(1) = 2.37 s, g(2) = 2.56×10-1 

Pa, τ(2) = 7.02×101 s [4] 

Cortical 

bone 
Linear elastic ρ = 1850 kg/m3, E = 1.2 × 1010Pa, ν = 0.3 

Cancellous 

bone 
Linear elastic ρ = 250 kg/m3, E = 1.06 × 108Pa, ν = 0.2 

Nucleus 

pulposus 
Linear elastic ρ = 1000 kg/m3, E = 1.0 × 106Pa, ν = 0.499 

Fibrous 

rings 
Linear elastic ρ = 1000 kg/m3, E = 2.95 × 108Pa, ν = 0.35 

Endplates Linear elastic ρ = 1000 kg/m3, E = 2.4 × 107Pa, ν = 0.4 

where, ρ is density; E is Young’s modulus; ν is Poisson’s ratio. C10 and C01 are constants in 
hyperelastic rubber model; C and, S1 are constants in shock equation of state (EOS) 
Gruneisen model; μ and α are constants in Ogden rubber model; g(i) and τ(i) are quasi-linear 
viscoelastic Prony series for viscoelasticity. 
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