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Abstract: Atopic Dermatitis (AD), the most common chronic inflammatory skin disease, is 

characterized by an overactive immune response to a host of environmental allergens and 

dry, itchy skin. Over the past decade important discoveries have demonstrated that AD 

develops in part from genetic and/or acquired defects in the skin barrier. Histamine is an 

aminergic neurotransmitter involved in physiologic and pathologic processes such as pruritus, 

inflammation, and vascular leak. Enhanced histamine release has been observed in the skin 

of patients with AD and antihistamines are often prescribed for their sedating and anti-itch 

properties. Recent evidence suggests that histamine also inhibits the terminal differentiation 

of keratinocytes and impairs the skin barrier, raising the question whether histamine might 

play a role in AD barrier impairment. This, coupled with the notion that histamine’s effects 

mediated through the recently identified histamine receptor H4R, may be important in 

allergic inflammation, has renewed interest in this mediator in allergic diseases. In this paper 

we summarize the current knowledge on histamine and histamine receptor antagonists in AD 

and skin barrier function. 
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1. Atopic Dermatitis (AD) and the Skin Barrier 

AD is the most common inflammatory skin disease, affecting up to 15 million Americans (about 17% 

of children and 6% of adults) [1]. Based on important discoveries over the last decade, it is thought that 

AD develops as a consequence of an acquired or genetic defect in the skin’s barrier [2,3].  

The hypothesis is that these defects promote a more robust immune response to microbes, allergens, 

antigens, and irritants, and in the case of an atopic subject this response will lead to a largely T helper 

type 2 (Th2) cell infiltrate characterized by the release of interleukin (IL)-4 and IL-13. The 

interdependence of the immune and physical barrier systems is now a very active area of investigation 

and likely to lead to novel approaches to disease prevention and treatment. 

It is widely accepted that the stratum corneum (SC) is dysfunctional in AD as a result of abnormal 

lipids (e.g., reduced ceramides and free fatty acids, an increase in unsaturated chain length) [4], altered 

expression of epidermal differentiation genes (e.g., loricrin, small proline-rich region proteins (SPRR)), 

filaggrin null-mutations, imbalance of proteases and protease inhibitors, and trauma from a chronic  

itch-scratch cycle (reviewed in [5]). We have focused most of our studies on a barrier structure found 

just below the SC, namely tight junction (TJ). In epithelial cells, TJs function as the “gate” for 

paracellular (i.e., space between adjacent cells) passage of ions and solutes, which indirectly affects 

water transport (review in [6]). We have observed a TJ defect in the epidermis of AD subjects, as well 

as reduced expression of key TJ components, including claudin (cldn)-1 and -23 [7]. More recently, 

other studies have confirmed and expanded these findings by demonstrating reduced expression of other 

claudins (e.g., cldn-4 and 8) in the skin of subjects with AD [8,9]. 

The notion that an impaired skin barrier is a critical feature in the pathogenesis of AD presents an 

opportunity to develop new therapeutics aimed at repairing the skin barrier as an alternative or 

complementary approach to the more traditional anti-inflammatory therapies. Importantly, AD often 

precedes the development of other allergic diseases such as asthma and allergic rhinitis and this pattern 

of disease progression is often referred to as the Atopic March. This has led many to speculate that 

effective treatments for AD may diminish the risk for or severity of asthma. In 2002, annual US health 

care costs for AD were estimated to be as high as $3.8 billion, similar to emphysema and epilepsy [1]. More 

recently, a US population-based study showed that adult AD subjects have a significantly larger health 

burden with substantial out-of pocket costs, greater indirect costs (e.g., lost work days) and increased 

access to the health care system [10]. Despite its high prevalence, effects on quality-of-life and economic 

burden, there are still few effective treatments for AD and most have focused on inhibiting inflammation. 

Not surprisingly, this has resulted in high patient (and physician) dissatisfaction with AD management. 

To date, AD treatments have exclusively targeted inflammation with the widespread use of topical 

corticosteroids and frequent use of systemic immunosuppressive drug (reviewed in [11]). As a potentially 

safer alternative to topical steroids, topical calcineurin antagonists (i.e., tacroliums and pimecrolimus) 

were developed and received FDA approval in 2000 and 2001, respectively. In the USA, there are no 

systemic therapies approved by the FDA for treatment of AD. There are very few well-designed trials 

to support the off-label use of systemic immunosuppressives, with the possible exception of cyclosporine 

(reviewed in [12]). Cyclosporine is the only systemic treatment approved in some European countries 

for patients with severe AD [13]. Systemic steroids are often used in clinical practice to control flares. 

However, clinical studies to support their use in AD are surprisingly absent [14]. 
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Recently a fully human monoclonal antibody directed against the IL-4 receptor α subunit (shared by 

the Type 1 and Type 2 IL-4 and IL-13 receptors, resulting in the blockage of both IL-4 and IL-13 

signaling), called dupilumab (Regeneron Pharmaceuticals), has been shown to be highly effective for 

the treatment of moderate to severe adult AD subjects [15]. Dupilumab is currently poised to be the first 

systemic therapy to receive FDA approval for the treatment of adults with moderate to severe AD. 

On the other hand, emollient therapy has been recognized for a long time as a critical component of 

AD patients’ management (reviewed in [11]). Recently it was shown that high-risk neonates who had 

emollient applied to the entire body on a daily basis since birth halved their risk for AD development [16]. 

Similarly, a study performed in Japan showed that daily use of emulsion-type moisturizer for the first 32 

weeks of life significantly reduced the risk of developing AD [17]. 

Although the overall hypothesis is that emollients help restore the skin barrier function, mechanistic 

studies need to be done to test this theory. 

Historically, histamine has been recognized as a potent inducer of pruritus. This, coupled with the 

increased histamine release observed in the skin of patients with AD [18], fostered the widespread use 

of Histamine Receptor 1 (H1R) antagonists in this disease. However, their clinical efficacy remains 

controversial. Several authors and clinicians have argued that antihistamines have a role in AD management 

largely for their soporific effects, essentially as a sleep aid (reviewed in [12]). A recent systematic review 

reported no high-level evidence to support or refute the efficacy of oral H1 antihistamines as monotherapy 

in AD patients [19]. Topical antihistamines have also been tried as treatment for AD. Studies evaluating 

the efficacy of topical doxepin (H1R/H2R and possibly H4R antagonist [20]) in the treatment of AD are 

conflicting [21,22]. Currently, topical antihistamines are not recommended because of their risk of 

absorption and contact dermatitis [11]. As we will discuss later in this review, the limited clinical 

efficacy of antihistamines might reflect their minimal effects on H4R-mediated actions. In addition, it 

should be highlighted that the vast majority of clinical trials were powered based on itch reduction as 

the primary endpoint. If one considers that a number of other mediators such as substance P, nerve growth 

factor, and IL-31 may also be mediating some (or all) of the pruritus observed in AD patients (reviewed 

in [23]) then it is not surprising that antihistamines have shown limited efficacy in mitigating itch. 

In this review we will summarize what is known about histamine’s effects and the role of individual 

histamine receptors on epidermal skin barrier function. We will discuss how this information helps us 

better understand AD pathogenesis and the development of new therapeutic strategies. 

2. Histamine Overview 

Histamine (2-[4-imidazolyl]-ethylamine) is an aminergic neurotransmitter involved in numerous 

physiologic and pathologic processes, including pruritus, inflammation, and vascular leak. More than a 

century ago in 1910, Drs. Dale (recipient of the Nobel Prize for Medicine in 1936) and Laidlaw recognized 

that histamine has biological effects that mimic what is seen in an anaphylactic reaction [24]. A few years 

later histamine was isolated from lung and liver tissues and named histamine after the Greek word histos 

(tissue). In 1937, Drs. Bovet (recipient of the Nobel Prize in Physiology and Medicine in 1957) and Staub 

identified the first compounds capable of blocking histamine-mediated anaphylactic reactions [25]. Ever 

since, this has been an active and productive field of investigation, with a number of H1R and H2R 

blockers reaching the lofty blockbuster status defined as annual sales of ≥$1 billion. In fact, cimetidine 
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(H2R-blocker; Tagamet®, GlaxoSmithKline, London, UK) was the first ever blockbuster drug  

(1985) [26]. 

Mast cells, basophils, and enterochromaffin cells (found in the gastric mucosa) are widely recognized 

cellular sources of histamine. However, other cells, including T cells and even keratinocytes, have been 

shown to produce histamine in response to stimulation [27,28]. The enzyme histidine decarboxylase 

(HDC) is responsible for histamine synthesis from the amino acid L-histidine. Of note, histamine can be 

also produced (from L-histidine via HDC) by some fermentative bacteria, including Lactobacilli in the  

gut [29,30]. This, coupled with recent knowledge about the potential role played by the skin microbiome 

in AD (reviewed in [31–33]), suggests a fascinating mechanism by which cutaneous bacteria might 

influence skin homeostasis. 

In mast cells and basophils, histamine is stored in large quantities and quickly released upon 

stimulation. In other cell types, such as T cells and dendritic cells, histamine is newly synthesized and 

released after stimulation. HDC protein expression has recently been reported in cultured human 

keratinocytes and in the epithelial compartment of skin sections (by immunohistochemistry) [34]. 

Interestingly, in vitro studies using a human keratinocyte cell line (HaCat) demonstrated that HDC 

expression could be enhanced by stimulation with mediators present in AD skin lesions (i.e., TNFα, 

thymic stromal lymphopoietin [TSLP], and house dust mite extract) and it was associated with greater 

histamine release [34]. These authors also reported greater HDC intensity staining in the epidermis of 

AD subjects [34]. 

Histamine concentrations measured in various tissues range from 10−5 to 10−3 M [35]. Unfortunately, 

the methods for measuring histamine in plasma/serum or tissue samples are not very reliable or reproducible. 

Gutzmer et al. recently summarized published studies reporting histamine concentrations in different 

inflammatory skin diseases, including AD (see Table 1 in [36]). Authors highlighted the different 

methods of detection used and the variability in histamine concentrations measured in healthy and 

disease states and concluded that there was a need for new detection methods. A new method using 

liquid chromatography tandem mass spectrometry to measure histamine in plasma and tissues has 

recently been reported [37]. 

Histamine can bind to four receptors belonging to the large family of rhodopsin-like  

G-protein-couples receptors (GPCRs), named in chronological order based on their discovery as H1R, 

H2R, H3R, and H4R, only described in 2000 [38–41]. The biological effects of histamine stimulation 

are determined by the activation of one (or more) of the histamine receptors [42]. Several cell types, 

including epithelial and endothelial cells, dendritic cells, and neutrophils as well as T and B lymphocytes 

express both H1R and H2R [36,43]. H3R expression is localized primarily in the central nervous system. 

H4R is expressed by bone-marrow-derived cells, including T lymphocytes, dendritic cells, mast cells, 

and eosinophils as well as epithelial cells [44–48]. Interestingly, it has been shown that Langerhans cells, 

which are a subset of professional antigen-presenting cells that reside in the epidermis, selectively 

express H4R but not H1R or H2R [49,50]. Human keratinocytes express H1R, H2R, and H4R [51]. This 

is in contrast with murine keratinocytes where H1R, but not H4R, is expressed constitutively. However, 

it was shown that H4R expression could be induced upon innate immune stimulation with LPS and 

peptidoglycan [51]. This difference in H4R expression between human and mouse keratinocytes should 

be taken into consideration when performing studies investigating histamine biology in murine models of 

human disease. 
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The histamine-induced signaling cascade is quite complex. We will superficially summarize this topic 

and refer readers to expert reviews on this topic for greater details [42,52–54]. It is a widely held belief 

that most of the allergic and inflammatory actions of histamine are mediated by the H1R, a Gαq/11 

receptor. Activation of the cellular process after histamine binding to H1R occurs via phospholipase  

C-mediated calcium mobilization, protein kinase C activation, and nuclear factor-κB-mediated signaling 

pathways (reviewed in [54]). A hallmark of the H2R signaling pathway is the formation of cAMP [55], 

while H4R signals through Gi/o receptors, resulting in inhibition of forskolin-induced cAMP production, 

intracellular calcium mobilization, and actin polymerization [40,55,56]. In addition, H4R has been 

reported to activate mitogen-activated protein kinases [57] and the JAK/STAT signaling pathway [58,59]. 

Importantly, histamine receptors can form dimers and oligomers, which allow interaction among 

histamine receptors as well as other G protein-coupled receptors, and this further increases the 

complexities of downstream signaling events in response to histamine stimulation. 

Several commercially available antihistamines block either H1R or H2R or both, while H3R and H4R 

are currently being tested in clinical trials [60,61]. Based on their good safety profile, these drugs have 

been largely used for symptomatic treatment of allergic diseases, pruritic conditions, and gastroesophageal 

reflux disease (GERD) [62,63]. Antihistamines are recognized for a number of anti-inflammatory effects 

including inhibitory effects on mast cell and basophil degranulation, inhibition of adhesion molecules 

and eosinophil or neutrophil chemotaxis, enhancing apoptosis of inflammatory cells, reducing 

neuroinflammation, and cytokine/chemokine expression [64]. More recently it has become clear that 

some of the FDA-approved antihistamines are not as selective as we once thought and some have binding 

affinities for other HR receptors, albeit typically at doses not achieved with standard clinical dosing [64]. 

Importantly, none of the FDA-approved antihistamines antagonize H3R or H4R at standard dosing 

regimens. In an epicutaneous allergen challenge murine AD model, treatment with the selective H1R 

antihistamine, olopatadine, not only suppressed inflammation and scratching by inhibiting 

cytokine/chemokine production (e.g., IL-31, TSLP, TARC) but also improved the skin barrier  

function [65–69]. Olopatadine has inhibitory effects on the release of inflammatory mediators (e.g., 

histamine, leukotriene, thromboxane, and tachykinins), which could explain these broad anti-allergic 

properties [70]. Olopatadine was approved in 2000 in Japan for the treatment of several conditions 

including AD, chronic urticaria, and allergic rhinitis. However, in the USA and the European Union it 

is only available as a topical preparation for ophthalmic or nasal administration. 

Relatively selective H3R and H4R blockers are currently in various stages of development by many 

pharma/biotech companies. Since H4R was identified at the beginning of this century, there have been 

a tremendous number of publications and patent applications. Preclinical data have highlighted the 

immunomodulatory properties of H4R, including effects on the chemotaxis of eosinophils [48] and mast 

cells [71], accumulation of FoxP3+ T cells [72] as well as modulation of inflammatory mediators (e.g., 

downregulation of IL-12 and CCL2) produced by monocytes [73,74]. This has increased enthusiasm that 

H4R (alone or in association with H1R antagonist) may be an effective new drug class for the treatment 

of allergic diseases [75,76]. High-throughput drug screening has led to the identification of new selective 

non-imidazole H4R ligands. As a result, several compounds are currently in preclinical and early  

clinical development. In Japan, a Phase 2a randomized, double-blind, placebo-controlled, multicenter,  

parallel-group clinical trial has tested the novel H4R antagonist, JNJ-39758979, in adult subjects with 

moderate AD. The study was terminated in response to two cases of neutropenia in the treatment group. 
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Although the safety profile of this H4R antagonist remains a real concern, some beneficial effects were 

observed on disease severity and itch scores [77]. More studies are definitely needed to clarify the safety 

and efficacy of this compound or other H4R antagonists in the clinical setting. 

3. Histamine and the Skin Barrier 

In addition to its pro-inflammatory and itch effects, there is a growing body of evidence demonstrating 

that histamine also plays a role in epidermal terminal differentiation and skin barrier function. 

Gschwandtner et al. [78] recently demonstrated that histamine dose-dependently suppressed epidermal 

differentiation as indicated by significant reductions in filaggrin, loricrin, and keratin10 expression using 

both cultured primary human keratinocytes and an epidermal skin model (e.g., raft culture). In the raft 

culture system they observed that treatment with histamine induced thinning of the epidermis (50%), 

which was especially notable for the stratum granulosum, and that these effects were mediated by  

H1R [78]. These observations are consistent with previous studies showing that treatment with histamine 

or receptor (H1R and H2R) agonists or antagonists modulates epidermal barrier recovery in murine 

models [79–81]. Topical application of histamine or dimaprit (H2R agonist) delayed skin barrier 

recovery after tape stripping, as measured by transepidermal water loss (TEWL) in hairless mice [80]. 

In contrast, treatment with histamine receptor antagonists (e.g., olopatadine/H1R, diphenhydramine/H1R, 

and cimetidine/H2R) improved epidermal barrier recovery [79–81]. 

It has been known for some time that histamine, as well other amines such as thrombin, disrupt tight 

junction (TJ) in endothelial as well as epithelial cells [82,83]. In airway epithelial cells, histamine 

reduced the expression of a key TJ molecule, ZO-1, and this effect was at least partially abrogated by 

pretreatment with mepyriamine (an H1R antagonist), but not by ranitidine (an H2R antagonist) [84]. In 

the human skin equivalent model, Gschwandtner et al. demonstrated a strong suppression of intercellular 

junction proteins, including TJ components (e.g., cldn-1, -4 and occludin) and desmosomal components 

(e.g., corneodesmosin and desmoglein-1) after treatment with histamine [78]. These abnormalities were 

also associated with enhanced penetration of biotin in their skin equivalent model [78]. In our laboratory, 

we have started to investigate the effect of histamine and selected histamine receptor (H1R, H2R, and 

H4R) antagonists on epidermal TJ function and composition. We have employed two complementary 

epidermal models: an in vitro system utilizing cultured primary human keratinocytes (PHK) and an ex 

vivo system with full-thickness epidermal explants isolated from discarded skin samples from elective 

surgeries. TJ integrity was quantified by measuring transepithelial electric resistance (TEER) and 

paracellular flux, as we have previously described [85]. Briefly, TEER was measured using an EVOMX 

voltohmmeter (World Precision Instruments, Sarasota, FL, USA). To evaluate the paracellular flux of 

PHK, 0.02% Fluorescein Sodium (Fluka, St. Louis, MO, USA) in PBS (Invitrogen/Gibco, Grand Island, 

NY, USA) was added to the upper chamber (apical side) and samples were collected from the lower 

chamber (basal side) after 30 min incubation for PHK culture. PHK, isolated from neonatal foreskin, were 

cultured in Keratinocyte-SFM (Invitrogen/Gibco, Grand Island, NY, USA) containing 5 ng/mL 

recombinant EGF, 50 µg/mL BPE, 1% Pen/Strep, and 0.2% Amphotericin B (Invitrogen/Gibco). To 

induce terminal differentiation, sub-confluent PHK were differentiated in DMEM (Invitrogen/Gibco) 

containing high calcium (1.8 mM) but no serum or growth factors. In previous studies we determined 

that PHK grown under these culture conditions are highly differentiated [85]. Histamine dihydrochloride 
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(1–100 µM, Sigma-Aldrich, St. Louis, MO, USA) was added to the culture media from the time of 

differentiation and replaced every 48 h with the medium change. This model allows us to study the effect 

of histamine on TJ assembly. De-identified human discarded skin was obtained from the Pathology 

Department of the University of Rochester Medical Center with the approval of the institutional 

Research Subject Review Board. As we previously described [85], the epidermis was enzymatically 

separated from the dermis using dispase and the epidermal sheet was sandwiched between two sterile 

custom-made Plexiglas discs with an opening of 3-mm diameter and placed in modified Snapwell™ 

chambers (Corning; Corning, NY, USA). Fresh media (DMEM) with histamine (10 or 100 uM) or media 

alone were then added to both sides of the transwell. The TEER and paracellular flux of fluorescein of 

skin explants were measured at 24 h. This model allowed us to investigate the effect of histamine on 

already formed TJ. 

In agreement with published data, we found that histamine reduced TJ integrity. In cultured PHK, we 

observed a dose-dependent reduction of TEER (10 and 100 μM, p < 0.001, n = 9; Figure 1A) and 

enhanced permeability (100 μM, p < 0.001, n = 16; Figure 1B). Using the ex vivo model, we confirmed 

that histamine (100 μM) also reduced TEER (0.7 fold, p < 0.05, n = 3; Figure 2A) and enhanced 

fluorescein permeability flux (1.3 fold, p < 0.05, n = 3; Figure 2B) in epidermal explants. Based on these 

findings, we concluded that histamine impaired TJ integrity. Studies are ongoing to establish the 

signaling pathways mediating the histamine-induced modulation of TJ. Based on published studies in 

other epithelial and endothelial cell models, we speculate that histamine may act directly on TJ 

composition; however it is possible that the effect on TJ is indirect and therefore secondary to 

histamines’ actions on other biological pathways. As mentioned earlier, it has been shown that histamine 

treatment prevents terminal differentiation, which is mediated by H1R [78]. Impairment of differentiation 

could potentially affect the development of a mature TJ network, which is typically observed at the level 

of the stratum granulosum. Additionally, Glatzer et al. [51] demonstrated that histamine induced 

keratinocyte proliferation that was mediated by H4R. Increased proliferation would likely reduce 

differentiation and TJ assembly. On the other hand, histamine has been shown to induce the production 

of a number of inflammatory mediators (e.g., IL-31, human β-defensin 2) [86], which could affect the 

skin barrier [87,88]. 

In summary, our preliminary data and published studies demonstrate that histamine disrupts 

epidermal barriers (TJ and stratum corneum) and that blocking histamine may prevent this unwanted 

action on the epidermal barriers. Human clinical trials evaluating the effects of specific HR antagonists 

on skin barrier function and inflammation are needed to better understand the best clinical use of old as 

well as new, more selective, antihistamines in the management of AD. 
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Figure 1. Histamine reduces TJ integrity in cultured primary human keratinocytes. 

Histamine dose-dependently reduced (A) transepithelial electric resistance (TEER) and (B) 

enhanced permeability to fluorescein. TEER is shown as mean area under the curve (AUC) 

± SEM on n = 9 experiments; Permeability is shown as mean fold of control ± SEM of n = 

16–10. Samples from the same donor were compared and a paired t-test was used for 

statistical analysis: * p < 0.05; ** p < 0.001, *** p < 0.0001. 

 

Figure 2. In an ex-vivo model evaluating full-thickness human epidermis placed in a 

modified micro-snapwell system, histamine (100 μM) (A) reduced TEER (0.7-fold) and (B) 

enhanced fluorescein permeability flux (20 min time point; 1.3-fold). TEER is shown as 

mean fold of control ± SEM on n = 3; permeability is shown as mean fold of control ± SEM 

of n = 3. Samples from the same donor were compared and a paired t-test was used for 

statistical analysis: * p < 0.05; ** p < 0.001, *** p < 0.0001. 

4. Conclusions 

There is an ongoing debate about the notion that an impaired skin barrier promotes the development 

of AD. Whether this breach is the consequence of genetic mutations (i.e., FLG null mutations) or 

something that develops in response to changes in the micro- or macro-environment or both is still 

unclear. An argument for the acquired pathway is the fact that a number of T-cell-derived cytokines 

(e.g., IL-4, IL-13, IL-25, IL-22, or IL-17A) found in AD skin can inhibit the epidermal expression of 

key barrier proteins such as filaggrin, loricrin, and involucrin, which are also markers of terminal 

differentiation [88–91]. As discussed in this manuscript, histamine can be added to this list of  

barrier-modulating agents. Histamine can affect skin barrier integrity by promoting proliferation and 
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inhibiting differentiation of keratinocytes, by disrupting TJ integrity, or by indirectly modulating the 

parenchymal immune response. This knowledge, along with the observation that H1R or H4R blockade 

by itself may limit histamine-induced barrier disruption, has led to renewed interest in the role of 

histamine in allergic inflammation, and may lead to using blockades targeting H1R and H4R as “novel” 

prevention and/or treatment options for AD patients. 
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