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Abstract: Determining biomarkers and better characterizing the biochemical progression of non-
alcoholic fatty liver disease (NAFLD) remains a clinical challenge. A targeted 1H-NMR study of
serum, combined with clinical variables, detected and localized biomarkers to stages of NAFLD in
morbidly obese females. Pre-surgery serum samples from 100 middle-aged, morbidly obese female
subjects, grouped on gold-standard liver wedge biopsies (non-NAFLD; steatosis; and fibrosis) were
collected, extracted, and analyzed in aqueous (D2O) buffer (1H, 600 MHz). Profiled concentrations
were subjected to exploratory statistical analysis. Metabolites varying significantly between the non-
NAFLD and steatosis groups included the ketone bodies 3-hydroxybutyrate (↓; p = 0.035) and acetone
(↓; p = 0.012), and also alanine (↑; p = 0.004) and a putative pyruvate signal (↑; p = 0.003). In contrast,
the steatosis and fibrosis groups were characterized by 2-hydroxyisovalerate (↑; p = 0.023), betaine
(↓; p = 0.008), hypoxanthine (↓; p = 0.003), taurine (↓; p = 0.001), 2-hydroxybutyrate (↑; p = 0.045),
3-hydroxyisobutyrate (↑; p = 0.046), and increasing medium chain fatty acids. Exploratory classi-
fication models with and without clinical variables exhibited overall success rates ca. 75–85%. In
the study conditions, inhibition of fatty acid oxidation and disruption of the hepatic urea cycle are
supported as early features of NAFLD that continue in fibrosis. In fibrosis, markers support inflam-
mation, hepatocyte damage, and decreased liver function. Complementarity of NMR concentrations
and clinical information in classification models is shown. A broader hypothesis that standard-of-care
sera can yield metabolomic information is supported.

Keywords: nonalcoholic fatty liver disease; NAFLD; obesity; nuclear magnetic resonance; NMR;
metabolomics; bariatric surgery

1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is associated with metabolic syndrome
(MetS) and is characterized as an epidemic [1,2]. The growing burden on healthcare
providers, the increased indication for liver transplants, and an increasing NAFLD-related
death rate are serious socioeconomic impacts of this epidemic [3–5].

The understanding of MetS and its associated conditions is being pursued through
the study of metabolic dysregulation. For example, elevated levels of the most abundant
blood proteins report on MetS [6,7], while the risk and progression of Type 2 diabetes
(T2D), cardiovascular disease (CVD), and insulin resistance (IR) have been associated with
elevated branched chain amino acids (BCAAs; isoleucine, leucine and valine; ILV) [8].
While T2D is perhaps the most extensively investigated disease by metabolomics, NAFLD
is now being associated with changing metabolite levels [9–16]. Associating specific
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metabolites with mileposts in the spectrum progression of NAFLD remains a challenge,
particularly due to comorbidities, such as T2D, which often progress in concert with
NAFLD, and to the participation of the gut microbiome in metabolism [17]. Yet if the
biochemical pathology of the progression of NAFLD can be unraveled, it may enable early
detection of liver disease or help identify subjects at risk to advance beyond steatosis.

Mass spectrometry has been applied widely to measure metabolite markers of NAFLD,
while the use of NMR methodology is more limited but growing [10,13,18–20]. These meth-
ods are generally complementary, where both can provide quantitative, targeted analysis
of a useful subset of metabolites. This work employed a curated (non-high-throughput)
NMR approach with the aim of further extending the precision and limits of NMR quanti-
tation to enhance the ability to discern metabolite trends relative to biopsy-proven NAFLD
groups. As the potential to identify small molecule biomarkers of NAFLD is growing, this
work also tested the ability to identify biomarkers in retrospective cohorts consisting of
biobanked, standard-of-care samples, where there is a need to determine the suitability of
such resources for metabolomic information [7]. Collected over non-consecutive time spans,
with less control of diet, fasting, interventions, supplements, medication, compliance, and
phlebotomy conditions, for example, such sera are expected to possess more variation
than would occur in prospective clinical trials in which such variables are often controlled.
Conducting biomarker validation and discovery in more variable patient groups tests the
metabolic information content of biobanked sera [7], but also tests the potential for such
biomarkers to have diagnostic potential in a broader population.

As noted, a challenge is to distinguish markers solely for the progression of NAFLD
in the presence of metabolic trends of comorbidities that are commonly associated with
NAFLD. Obesity, CVD, IR, and T2D are associated with trends in some of the most abun-
dant serum metabolites, including glucose and branched chain amino acids (BCAAs).
Increasing BCAA in NAFLD could be caused by parallel progression of IR and T2D with
NAFLD, but whether altered liver states contribute additionally to BCAA changes is
difficult to discern. Furthermore, given differences in the prevalence, progression, and
pathology of NAFLD between male and female subjects [21], identifying sex-specific
metabolite trends will contribute to the understanding of NAFLD progression. Under-
standing sex-specific trends in metabolism is a growing need in the study of metabolic
disorders [22].

In this work, NMR-derived markers are reported for steatosis and fibrosis relative
to a non-NAFLD liver in groups selected from a convenience sample of a population of
morbidly obese female bariatric surgery patients. A low influence of T2D and obesity
between the groups in this study is noted and suggests that the observed markers in this
study are sensitive to changing liver health.

2. Results

All subjects had very high body mass index (BMI) (Table 1), and their sera were often
visually lipemic and likely to contain high lipid content, even if not milky. Obesity can
strongly affect metabolism and metabolite variation [23]. In this sample, however, BMI
was consistent across the three subgroups studied.

Although acetonitrile and water are miscible in all proportions, an interesting result
connected to this work was the discovery of a liquid–liquid phase separation during the
extraction of the majority of the samples [24], where high lipids likely constitute a third
component and cause the observed phase separation. To reproducibly and reliably obtain
aqueous metabolites, a slightly modified extraction protocol was implemented for the sera
used in this study that includes a brief room-temperature step to break the liquid–liquid
phase separation; this simple modification preserves the removal of proteins and may be of
interest in metabolomics of obesity-related diseases [24].
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Table 1. Means and standard deviations, or frequencies and proportion percentages, for the characteristics of the three
groups studied in this work are shown. Two significant digits are retained in the standard deviation (SD), and the means
rounded to the decimal place dictated by the SD.

Parameter Non-NAFLD Steatosis Fibrosis p (ANOVA)

Total, n 32 39 29
Sex F (32) F (39) F (29)

Age (years) 45 ± 11 45 ± 11 43.9 ± 8.9 0.832

Race and Ethnicity d Caucasian (31)
Native American (1)

Caucasian (38)
African American (1) Caucasian (29)

BMI (kg/m2) 48.7 ± 6.9 50.1 ± 7.4 51.9 ± 8.0 0.268
Waist Circumference (inches) 50.5 ± 4.4 52.8 ± 5.5 54.0 ± 5.1 0.021

(Waist/cm) (128 ± 11) (134 ± 14) 137 ± 13
Hypertension 0.41 (n = 13) 0.41 (n = 16) 0.45 (n = 13) 0.935 a

Type 2 Diabetes 0.41 (n = 13) 0.38 (n = 15) 0.48 (n = 14) 0.713 a

Hyperlipidemia 0.41 (n = 13) 0.31 (n = 12) 0.41 (n = 12) 0.632 a

Blood sugar (mg/dL) 98 ± 40 107 ± 55 122 ± 64 0.472 c

Insulin (µU/mL) 16 ± 11 26 ± 17 29 ± 16 0.003 b

HbA1c (%) 5.85 ± 0.65 6.3 ± 1.2 7.0 ± 1.8 0.005 b

Triglycerides (mg/dL) 150 ± 70 175 ± 92 280 ± 370 0.074 c

Cholesterol (mg/dL) 192 ± 37 192 ± 44 201 ± 60 0.686
High-Density Lipoproteins (mg/dL) 53 ± 15 50 ± 11 48.0 ± 9.7 0.276
Low-Density Lipoproteins (mg/dL) 110 ± 37 107 ± 43 108 ± 42 0.961

Alanine Aminotransferase (U/L) 22.3 ± 9.1 28 ± 12 50 ± 35 <0.001 b

Aspartate Aminotransferase (U/L) 23.8 ± 8.3 23.9 ± 6.8 42 ± 30 0.001b

Lobular Inflammation (0/1/2/3) 32/0/0/0 30/8/1/0 2/17/10/0
Ballooning (0/1/2) 32/0/0 30/5/4 4/13/12
Steatosis Grading

0 (<5%) 32 (100%) 0 (0%) 0 (0%)
1 (5–33%) 0 (0%) 26 (67%) 0 (0%)
2 (34–66%) 0 (0%) 12 (31%) 15 (52%)
3 (>66%) 0 (0%) 1 (3%) 14 (48%)

Fibrosis Staging
0 (none) 32 (100%) 39 (100%) 0 (0%)

1a (mild perisinusoidal) 0 (0%) 0 (0%) 11 (38%)
1b (moderate perisinusoidal) 0 (0%) 0 (0%) 2 (7%)

1c (portal/periportal) 0 (0%) 0 (0%) 3 (10%)
2 (perisinusoidal and

portal/periportal) 0 (0%) 0 (0%) 8 (28%)

3 (bridging) 0 (0%) 0 (0%) 5 (17%)
4 (cirrhosis) 0 (0%) 0 (0%) 0 (0%)

a Exact chi-square test is reported. b Brown–Forsythe test is reported (skewness). c Kruskal–Wallis test is reported (extreme outlier or
skewness). d See Flanagin et al. [25]; a demographic statement is included in Methods.

2.1. Patient Characteristics and NMR-Derived Metabolite Levels

This work is a retrospective study of biobanked sera from 100 high BMI female sub-
jects consented during a preoperative standard-of-care draw for bariatric surgery. The
characteristics of the three groups are summarized in Table 1. Subjects were classified on as-
sessment of liver sections, which is the gold standard for determining NAFLD progression.
The progression of NAFLD in the groups in Table 1 is also illustrated by insulin, alanine
aminotransferase (ALT), aspartate aminotransferase (AST), and waist circumference, which
were observed to vary significantly across the groups and have known associations with
NAFLD [26–28].

A high BMI control group controlled the influence of obesity on metabolite trends [23].
The proportion of T2D diagnoses did not change across the groups in Table 1. Further,
clinical markers associated with T2D did not change significantly across the groups either.
Specifically, HDL and LDL levels were unchanged while triglyceride levels showed weak
evidence for potentially changing (p = 0.074). As noted earlier, Metformin use was allowed
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and expected in T2D subjects, and others as well. Although the effect of Metformin use on
the aqueous metabolome is not resolved, it may moderately stabilize some BCAA/AAA
T2D biomarkers [29].

Importantly, markers often associated with T2D can also be affected by NAFLD
progression. Notably, Hba1c and insulin levels are incorporated into diagnostic models of
NAFLD [27]. Given the evidence that T2D did not change across the groups, the Hba1c
and insulin levels are more likely to report on NAFLD progression in this work.

A summary of metabolite means (1H NMR, 600 MHz) and ANOVA (analysis of
variance) results is given in Table 2, where a small number of significant metabolites are
identified. One-way ANOVA analysis indicates seven metabolites that vary significantly
across all three groups (p < 0.05), with one additional metabolite that is weakly suggested
as significant (propylene glycol, p = 0.050). The significant metabolites in Table 2 generally
show good agreement with the results of related studies and will be discussed in more
detail below. Alanine has been noted previously as a potential marker but is one of the
most significant metabolites in this work, while 2-hydroxyisovalerate has recently been
reported with NAFLD progression [10]. The metabolites that change between the steatosis
and non-NAFLD groups are distinct from the metabolites that distinguish the fibrosis and
steatosis groups (Table 3).

Table 2. Mean metabolite values, standard deviations, and one-way ANOVA significance values for 49 metabolites measured
by 1H NMR (600 MHz; Chenomx 8.1) in the extracted sera (mM) across all three groups are listed. Multiply values by 2 to
obtain the serum concentration. Two digits are retained in the standard deviation (SD) and the means rounded to the final
decimal place dictated by the SD. Standard deviations in parentheses apply to the last digits of the mean, i.e., 0.1234 (56)
means 0.1234 ± 0.0056.

Metabolite Non-NAFLD (n = 32) Steatosis (n = 39) Fibrosis (n = 29) p (ANOVA)

2-Aminobutyrate 0.0136 (66) 0.0114 (42) 0.0113 (40) 0.208 a

2-Hydroxybutyrate 0.033 (22) 0.026 (13) 0.033 (14) 0.158 b

2-Hydroxyisovalerate 0.0018 (13) 0.0021 (13) 0.0040 (42) 0.005 b

2-Oxoisocaproate 0.0173 (64) 0.0177 (46) 0.0191 (64) 0.462 b

3-Hydroxybutyrate 0.14 (13) 0.076 (83) 0.082 (93) 0.066 c

3-Hydroxyisobutyrate 0.0057 (39) 0.0048 (18) 0.0057 (20) 0.273 b

2-Methyl-3-oxovalerate 0.0109 (45) 0.0117 (32) 0.0132 (47) 0.114 b

Acetate 0.033 (17) 0.039 (65) 0.0303 (61) 0.569 c

Acetoacetate # 0.0087 (65) 0.0071 (52) 0.0071 (50) 0.428
Acetone 0.014 (13) 0.0078 (53) 0.0070 (60) 0.003 b

Alanine 0.175 (43) 0.209 (55) 0.219 (61) 0.003
Asparagine 0.0195 (57) 0.0201 (59) 0.0181 (54) 0.356
Aspartate 0.0134 (61) 0.0136 (61) 0.0133 (52) 0.964
Azelate * 0.035 (24) 0.032 (16) 0.048 (42) 0.086 b

Betaine 0.0198 (64) 0.0208 (67) 0.0167 (52) 0.024
Carnitine 0.0168 (41) 0.0187 (45) 0.0188 (65) 0.154 a

Choline 0.0079 (24) 0.0083 (22) 0.0075 (22) 0.328 b

Citrate 0.0186 (55) 0.0179 (55) 0.0199 (54) 0.308
Creatine 0.026 (37) 0.0161 (67) 0.0186 (97) 0.445 c

Creatinine 0.027 (12) 0.025 (12) 0.023 (13) 0.575
Dimethylsulfone 0.05 (27) 0.0036 (58) 0.005 (13) 0.937 c

Formate 0.0231 (39) 0.0236 (34) 0.0222 (30) 0.258
Glucose 1.88 (55) 2.14 (75) 2.4 (1.3) 0.069 b

Glutamate 0.045 (17) 0.050 (16) 0.054 (21) 0.180
Glutamine 0.209 (41) 0.207 (39) 0.195 (50) 0.410
Glycerol 0.049 (23) 0.050 (18) 0.058 (25) 0.163
Glycine 0.131 (39) 0.126 (27) 0.126 (43) 0.813 a

Histidine 0.0344 (56) 0.0355 (59) 0.0344 (71) 0.696 b

Hypoxanthine ** 0.0059 (25) 0.0060 (27) 0.0042 (18) 0.006 b
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Table 2. Cont.

Metabolite Non-NAFLD (n = 32) Steatosis (n = 39) Fibrosis (n = 29) p (ANOVA)

Isobutyrate 0.0056 (15) 0.0053 (14) 0.0057 (13) 0.530
Isoleucine 0.037 (18) 0.0365 (70) 0.0378 (86) 0.900 b

Lactate 1.11 (43) 1.25 (38) 1.30 (40) 0.171 b

Leucine 0.072 (30) 0.067 (13) 0.069 (15) 0.641 b

Lysine 0.053 (14) 0.057 (11) 0.058 (13) 0.259
Mannose 0.0312 (61) 0.033 (12) 0.034 (12) 0.565 b

Methionine 0.0135 (38) 0.0137 (28) 0.0132 (26) 0.821
Ornithine 0.026 (11) 0.0260 (68) 0.0244 (71) 0.730 b

Phenylalanine 0.047 (14) 0.047 (12) 0.047 (10) 0.985
Proline 0.089 (36) 0.098 (33) 0.096 (40) 0.534 b

Propylene glycol 0.088 (35) 0.092 (29) 0.117 (70) 0.050 b

Pyroglutamate 0.0099 (45) 0.0108 (39) 0.0123 (54) 0.115
Pyruvate 0.0221 (93) 0.031 (14) 0.031 (17) 0.015 b

Serine 0.045 (12) 0.046 (11) 0.045 (13) 0.924
Suberate * 0.035 (11) 0.035 (10) 0.042 (15) 0.087a

Taurine 0.074 (40) 0.070 (17) 0.056 (13) 0.031 b

Threonine 0.049 (16) 0.053 (12) 0.048 (14) 0.232
Tryptophan 0.0254 (72) 0.0270 (63) 0.0281 (50) 0.242 b

Tyrosine 0.040 (13) 0.0428 (91) 0.044 (12) 0.555 b

Valine 0.117 (38) 0.118 (21) 0.123 (26) 0.689 b

a Levene’s test for homogeneity of variances is significant (p < 0.05) and Welch’s test is reported. b Brown–Forsythe test is reported (skew-
ness); c Kruskal–Wallis test is reported (extreme outlier or skewness). # due to overlap with stronger signals, acetoacetate concentrations are
estimates and significance may be unreliable. * suberate is considered to be confounded with pimelate; azelate is considered confounded
with sebacate. ** one missing hypoxanthine value in the non-NAFLD liver group due to confounding signals.

Table 3. Independent-samples t-tests among the three groups (Table 1).

Non-NAFLD vs. Steatosis Steatosis vs. Fibrosis Non-NAFLD vs. Fibrosis

Metabolite (NMR) p Metabolite (NMR) p Metabolite (NMR) p

3-hydroxybutyrate * 0.035 2-Hydroxybutyrate 0.045 2-Hydroxyisovalerate 0.010
Alanine 0.004 2-Hydroxyisovalerate 0.023 Acetone 0.007
Acetone 0.012 3-Hydroxyisobutyrate 0.046 Alanine 0.002
Pyruvate 0.003 Betaine 0.008 Betaine 0.041

Hypoxanthine 0.003 Hypoxanthine # 0.006
Suberate 0.031 Taurine 0.025
Taurine 0.001

2-Hydroxybutyrate 0.045

Clinical p Clinical p Clinical p

Waist 0.049 ALT 0.003 Waist 0.005
Insulin 0.006 AST 0.003 Insulin 0.001
HbA1c 0.046 HbA1c 0.002

ALT 0.042 Triglycerides * 0.029
ALT <0.001
AST 0.004

# one missing value of hypoxanthine in the non-NAFLD group; * Mann–Whitney U test cited.

Principal component analysis (PCA) was uninformative (not shown), confirming
that intra-group variation exceeded inter-group variation. Such variation was expected,
as retrospective standard-of-care sera of bariatric surgery patients are not subject to the
same controls as a prospective clinical research setting. The biomarkers summarized in
Tables 2 and 3 confirm that meaningful metabolites can be detected as a function of NAFLD
progression despite high intra-group variation. Consistent also with the substantive
intra-group variation, no metabolites in this study exhibited p < 0.001 in either ANOVA
tests across all groups or t-tests between groups. Finally, cluster analysis by PLSDA was
conducted (Figure S1), which shows that favorable separation between different groups is
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obtained; although PLSDA can be prone to overfitting, variables associated with PLSDA
clustering have substantial agreement with significantly varying means in Tables 2 and 3.

2.2. Fatty Acid Oxidation: Steatosis vs. Fibrosis

Inhibited hepatic fatty acid oxidation (FAO) is a part of the complex molecular pathol-
ogy of NAFLD [30,31] and is evidenced in this study through the accumulation of triglyc-
erides, weakly suggested in the ANOVA analysis (p = 0.074), and significant when com-
paring the non-NAFLD and fibrosis groups (p = 0.029). The data further show that the
ketone bodies 3-hydroxybutyrate (3HB) and acetone decrease, particularly between the
non-NAFLD and steatosis groups (Figure 1, Table 3).

Figure 1. Boxplots illustrate decreasing ketone bodies in the steatosis group that are also depressed
in the fibrosis group. Acetone may be influenced by the extraction, but its trend here is similar to that
of 3-hydroxybutyrate, where each decreased by about two-fold across the groups. Acetoacetate is un-
reliable in these data but is explored in Figure S2 (Supporting Information). Multiply concentrations
by 2 for the serum levels.

Whereas 3HB can be assigned unambiguously and profiled in the 1H-NMR data, there
are some experimental challenges for characterizing the remaining ketone bodies, acetone
and acetoacetate. Acetone is assigned from a single NMR line and was supported by
spiking several samples with dilute acetone solutions. Although vacuum drying has been
associated with a loss of acetone [32], the relatively weak vacuum (1 torr) employed in
this work may be protective, or possibly the high lipid content observed in these samples
may also help sequester acetone. Finally, profiling of acetoacetate is adversely affected
by the presence of stronger overlapping signals from more concentrated metabolites (see
Supporting Information, Figure S2). Normally such confounding signals would exclude
an underlying metabolite from consideration; however, we elected to profile acetoacetate
due to its potential importance, with the understanding that the significance determined
for acetoacetate may be unreliable. Decreasing acetoacetate has been reported in NAFLD,
and it could be speculated that a decrease in the steatosis group is weakly suggested
in this work (Figure S2), but this work does not resolve the significance of acetoacetate.
Nevertheless, the 3HB and acetone data are sufficient to demonstrate the early decrease
and sustained depressed levels of ketone bodies and show that a disruption of fatty acid
oxidation is detectable at steatosis in this study (Figure 1).
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The medium chain dicarboxylic fatty acids pimelate, azelate, suberate, and sebacate
are detected in 1D-1H-NMR spectroscopy; however, due to their chemical similarity they
involve overlapping signals in NMR spectra. In the conditions in this work (600 MHz, 14.1),
suberate is expected to be confounded primarily with pimelate, while azelate is expected to
be confounded primarily with sebacate, and larger profiling errors and standard deviations
are expected for these cases. Despite these factors, accumulation of these medium chain
fatty acids in the fibrosis groups is seen. Specifically, the suberate (pimelate) concentration
increases significantly between the steatosis and fibrosis groups (Table 3), while the azelate
(sebacate) concentration weakly suggests an increase between the steatosis and fibrosis
groups as well (t-test; p = 0.057, Figure S3). We refrain from interpreting these trends
specifically among these four dicarboxylic acids, but rather observe that the accumulation
of medium chain fatty acids is demonstrated in these data and supports MCAD (medium
chain acyl-CoA dehydrogenase) deficiency or inhibition in fibrosis, which could be a
genetic deficiency of the MCAD enzyme or a dysregulation of upstream species such as
malonyl CoA or PPARα (peroxisome proliferator-activated receptor).

These results portray a multi-step disruption of fatty acid oxidation that spans the
entire progression of NAFLD. Reduced ketone bodies are localized to steatosis and suggest
a milder disruption of ketogenesis at this stage. In contrast, accumulation of triglycerides
and medium chain fatty acids, likely reporters of broader accumulation of fatty acids, are
localized to fibrosis and signal an increase in the severity of FAO inhibition.

2.3. Comparing Steatosis and Fibrosis Groups

The metabolites that vary between fibrosis and steatosis are distinct from the metabo-
lites that change between the steatosis and non-NAFLD liver groups (Table 3). A related ob-
servation that distinct metabolites characterize NASH progression has been observed [10].
While NAFLD is reasonably viewed as a spectrum condition, the distinct metabolite panel
reporting on fibrosis speaks to the progression to fibrosis as a discretized step. Boxplots
of the seven metabolites that are significantly altered between the fibrosis and steatosis
groups are shown in Figure 2. The data for propylene glycol, which is weakly suggested
as significant in fibrosis (t-test, p = 0.050), are illustrated in the Supporting Information
(Figure S4). As an exogenous compound, significant variation of propylene glycol may be
expected, and any trends in its levels could be more accurately characterized in controlled,
prospective clinical tests. The weak accumulation of exogenous propylene glycol suggests
a decrease in liver function to break down exogenous compounds, and its increase in liver
tissue in NASH has been reported [18].

Disruption of taurine levels in fibrosis can indicate inhibited bile acid synthesis (e.g.,
tauro-conjugated bile acids), consistent with the understanding of loss of liver function
in fibrosis. Decreasing serum betaine has been associated with progression of NAFLD,
particularly with advanced stages [11,33], but detectable changes may occur as early as
steatosis relative to a non-NAFLD liver. A decrease in betaine of about 20% was observed
here in the fibrosis group relative to steatosis (Figure 2). Betaine is further suggested
as decreasing with fibrosis progression from F1 to F2–3 stages (p = 0.058, Figure S5 in
Supporting Information), suggesting that advanced fibrosis particularly influences the
decreasing betaine levels observed here. Whereas serum betaine decreases with NAFLD
progression, increasing betaine in liver tissue was observed in NASH, indicating betaine
upregulation in the liver may be a protective response [18].
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Figure 2. Boxplots of metabolite concentrations for which means changed significantly in this study between the steatosis
and fibrosis groups (the non-NAFLD liver group is included for comparison). * Suberate profiling is confounded with
another medium chain fatty acid pimelate (see additional medium chain fatty acids in Figure S3). See also Figure S4, where
a weak accumulation of propylene glycol is suggested (p = 0.050). Multiply concentrations by 2 for the serum levels.

Among the more significant markers in this study, 2-hydroxyisovaleric acid has not
been as widely associated with NAFLD but was noted recently in an MS study as a
feature of fibrosis relative to a fatty liver [10] and is independently validated here by
NMR methods. Further, 2-hydroxyisovalerate was associated with liver fibrosis in HCV
patients [34]. Trends in 2-hydroxyisovalerate have been observed in diverse conditions
and may be a general reporter of internal inflammation, which would be consistent with
observing its most significant change here in the fibrosis group.

2.4. Branched Chain Amino Acids (BCAA) and Aromatic Amino Acids (AAA)

Levels of BCAA (isoleucine, leucine, valine) and AAA (phenylalanine, tyrosine, tryp-
tophan) were not significantly changed with NAFLD progression between the three broad
groups (non-NAFLD; steatosis; fibrosis; Table 1), but they did decrease between stage 1
(n = 16) versus stages 2 and 3 (n = 13) fibrosis levels, as presented in the next section.

Considering the broader groups first (non-NAFLD; steatosis; fibrosis), analyses within
the T2D and non-T2D sub-groups, respectively, in this work also showed no significant
trends in BCAA or AAA levels (not shown). Yet several studies of NAFLD have implicated
branched-chain and aromatic amino acids [12–14,18], with perhaps more emphasis on
BCAA trends. It is well known that changing BCAA and AAA levels are associated with
increasing insulin resistance (IR) and T2D risk and progression. It is challenging to discern if
the serum BCAA changes observed in NAFLD progression are due to hepatic damage itself;
to confounding T2D risk or progression; or to broader metabolic outcomes of increasing
BMI, insulin resistance, and waist. In this study, both T2D and BMI were consistent across
the three groups (non-NAFLD; steatosis; fibrosis; Table 1). The high-BMI non-NAFLD
liver control group may have helped to reduce the influence of obesity-related risk factors
on the data. In other words, neither obesity nor T2D appeared to progress among the
groups studied here. Additionally, T2D interventions (e.g., Metformin) potentially reduced
metabolite variation [29], although more work is needed. Overall, obesity- and T2D-
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dependent metabolite trends are therefore expected to be reduced in this study, and it is
reasonable that BCAA and AAA did not change significantly between the three groups in
Table 2.

2.5. Decreasing BCAA as a Function of Fibrosis Stage

The fibrosis group was further divided into stage 1 (n = 16) and stages 2 and 3 (n = 13)
subgroups. While BCAA were consistent among the three broader groups (Table 2), there is
a decreasing trend in BCAA between stage 1 and stages 2 and 3 fibrosis samples (Table 4).
Changing BCAA levels are commonly interpreted with respect to insulin resistance and
T2D in obesity-related studies; however, the T2D rates and insulin levels here do not
support these as possible factors (Table 4). A decrease in BCAA, as well as an increase in
AAA, is associated with advanced liver disease, including hepato-cellular carcinoma (HCC)
and is characterized as the BCAA/AAA ratio (Fischer ratio) [35,36]. The BCAA/Tyrosine
Ratio (BTR) is also supported as a metric for the risk and advancement of liver disease [37],
while decreased tyrosine is associated with poorer survival outcomes of HCC [38]. The
decreasing BCAA observed here for fibrosis progression may therefore signal risk of
progression to more advanced liver disease such as cirrhosis [35–37,39]; however, the
potential for observing changes in AAA with fibrosis progression in Table 4 is less clear
in this work. Alternately, decreasing BCAA has also been associated with loss of kidney
function [40]. Note that decreasing NMR-derived serum creatinine is interpreted here to
be dictated by loss of liver function between stage 1 and stages 2 and 3 fibrosis groups.
The suppression of serum creatinine in liver fibrosis means that creatinine is difficult to
interpret relative to kidney function [41]. To consider the possible role of kidney function,
we examined the clinical determination of glomerular filtration rate (GFR), which shows
no change with the progression of fibrosis in Table 4. While this work leaves open a
hypothesis that BCAAs may be a potential signal of changing kidney health during the
progression of fibrosis, the decreasing BCAAs observed here in Table 4 are more likely
reporting on fibrosis progression and could signal risk of advanced liver disease. Although
there are relatively low sample numbers within the fibrosis stages (Table 4), and these
results should be interpreted cautiously, these key BCAA metabolites (isoleucine, leucine,
valine, creatinine) all decreased with p < 0.005 and should be investigated further.

Table 4. Comparison of metabolite means as a function of fibrosis staging, with selected clinical
variables. p values obtained from independent-samples t-test. Multiply concentrations by 2 for the
original serum levels.

Fibrosis Stage 1
(n = 16)

Fibrosis Stages 2 and 3
(n = 13) p Value

Metabolite (NMR)
2-Aminobutyrate 0.0128 (41) 0.0094 (32) 0.021

Acetoacetate 0.0087 (57) 0.0053 (33) 0.036 #

Creatinine 0.0295 (98) 0.016 (13) 0.001 #

Hypoxanthine 0.0051 (16) 0.0032 (15) 0.003
Isoleucine 0.0422 (72) 0.0324 (71) 0.001 #

Leucine 0.076 (12) 0.059 (14) 0.001
Lysine 0.063 (12) 0.052 (11) 0.020

Methionine 0.0141 (26) 0.0122 (21) 0.040
Tyrosine * 0.048 (13) 0.0385 (85) 0.050 #

Valine 0.135 (21) 0.109 (24) 0.004
Clinical

Type 2 diabetes 0.50 (8/16) 0.46 (6/13) 1.000 §

Insulin 31 (15) 28 (17) 0.475 #

HbA1c 6.5 (1.2) 7.6 (2.3) 0.232 #

GFR + 86 (20) 90 (23) 0.612
# Mann-Whitney U test exact significance. § Exact chi-square test. * additionally, tryptophan (decreasing; p = 0.051)
is weakly suggested. + glomerular filtration rate via Modification of Diet in Renal Disease (MDRD) Study method
(mL/min/1.73 m2).
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2.6. TCA Cycle and Urea Cycle Metabolites: Steatosis

Increasing alanine between the three groups is among the more significant findings
(p = 0.003) in the comparison of the three broad groups (Figure 3), with a larger change
occurring between the non-NAFLD liver and steatosis groups (p = 0.004). A putative
pyruvate signal (Figure 3) also increases between the non-NAFLD and steatosis groups.
Pyruvate is assigned from a singlet but occurs in a well-conserved location. A coincidental
singlet from a novel metabolite that varies strongly with NAFLD and is consistent with
increasing alanine cannot be ruled out but is unlikely.

Figure 3. Boxplots of alanine and putative pyruvate concentrations are shown as a function of group membership. In
the final panel, the spectral region corresponding to the doublet from the methyl sidechain is depicted for 10 randomly
selected spectra in each of two groups to illustrate the practical spectral differences. Multiply concentrations by 2 for the
serum levels.

Changes in alanine and pyruvate broadly indicate dysregulation of the alanine/glucose
cycle (a.k.a. Cahill cycle) and can be interpreted to further implicate dysregulation of the
TCA cycle. However, as alanine is the primary nitrogen shuttle in the body, increasing
alanine, together with pyruvate, could also be consistent with dysregulation of the hepatic
urea cycle, causing an accumulation of these key metabolites [42,43]. Furthermore, an
interesting observation is that alanine and ALT are uncorrelated in this work (Figure 4),
where alanine varies more strongly with steatosis but ALT varies more strongly in fibrosis.
The lack of correlation (Pearson coefficient = −0.044, p = 0.663) suggests considering mech-
anisms in which they are independently modulated; a disruption of the urea cycle could be
proposed to explain a buildup of alanine levels in steatosis, while overexpression of ALT in
response to hepatic damage occurs later in fibrosis. Notably, the lack of correlation among
two variables that are both sensitive to progression suggests their utility in classification
modeling, which is presented in the discussion.
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Figure 4. In this study, serum alanine increased particularly upon steatosis, whereas ALT increased more strongly in
fibrosis. While energy (TCA cycle) disruption is supported by these data, trends here could also be influenced by urea cycle
disruption in steatosis that builds up concentrations of alanine in steatosis, followed by overexpression of ALT in response
to fibrosis.

3. Discussion

Metabolic syndrome (MetS) is an umbrella of risk factors leading to increased inci-
dences of serious conditions such as type 2 diabetes (T2D) and heart disease. A global
health crisis, nonalcoholic fatty liver disease (NAFLD) represents the hepatic progression
of MetS and, particularly in developed regions, approximately 25–30% of the population
exhibits steatosis as the first stage of NAFLD [44], marked by excess fat deposits in the
liver. About 10–20% of that group (i.e., 2–6% of the general population) advances to more
serious stages of inflammation and fibrosis, which can further advance to cirrhosis and
hepatocellular carcinoma (HCC) if severe or untreated.

There is an unmet need for improved characterization of the metabolic progression of
NAFLD. Notably, the evolving study of NAFLD has led to a recommendation to associate
hepatic steatosis with declining metabolic health and to diagnose it as metabolic associated
fatty liver disease (MAFLD) [45]. Additionally, hepatic steatosis >5% is best detected with
an invasive histological biopsy, but if predictors of metabolic dysregulation can be obtained
from blood draws and multi-omics methods, then the detection of NAFLD presence, risk,
and advancement would be transformed.

3.1. Biobanked Sera of Bariatric Surgery Patients

A broad finding is that the results in this work support the idea that retrospective,
standard-of-care sera can be useful in discovering significantly varying metabolites in non-
clinical populations composed of different states of NAFLD, advancing a larger hypothesis
that metabolite trends are accessible in biobanked sera [7]. Significant trends were observed
in a small number of key metabolites (Tables 2 and 3), even though these samples can
represent more variation in the pre-draw conditions (e.g., fasting, time of draw, diet and
over-the-counter (OTC) drug monitoring, etc.) than in prospective clinical research studies.
For example, some samples showed acetaminophen and caffeine; a small number of
samples include pioglitazone use, and we do not exclude those either. Additionally, use of
over-the-counter supplements such as vitamin E was not monitored and could occur. The
intra-group variation is apparent, for example, even when applying supervised approaches
such as partial least squares discriminant analysis (PLSDA), shown in Figure 5 and Figure
S1. Despite the intra-group variation, the PLSDA analysis distinguishes the fibrosis group
relatively well from the non-NAFLD liver group (Figure 5 and Figure S1), with the steatosis
group scores occurring in between them (Figure 5). Histology notes were reviewed for one
sample, classified as a non-NAFLD liver but which clustered well in the fibrosis PLSDA
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group, and for another sample, classified as steatosis but which clustered in the fibrosis
PLSDA group. No evidence to update the assessments was found; however, the sample
classified as steatosis was limited by heat artefacts and it cannot be ruled out that a different
section might have yielded different information.

Figure 5. Log normalized PLS-DA clustering of all three groups (performed with Metaboanalyst [46]). Comparable
results are similar for different normalizations schemes and also when excluding lactate and glucose. Significant variables
(VIP > 1.2) are 2-hydroxyisovalete (3.5), acetone (3.2), 3-hydroxybutyrate (2.1), pyruvate (1.6), and azelate (1.3). Note that in
the right-hand panel, relatively clear separation between fibrosis and non-NAFLD groups is demonstrated with PC1 and
PC3 (i.e., the right panel shows a rotation around the PC2 axis relative to the projection in the left panel).

Prospective clinical metabolomics offers several advantages, such as controlling nu-
merous variables and monitoring compliances in order to measure weak trends, obtain
unique clinical data, isolate specific disease states, and respond to health crises in real time
(e.g., SARS-CoV-19 metabolomics). However, as biobanks grow, the potential to design
increasingly sophisticated studies from them will only increase, and this work supports
the growth of retrospective metabolomics studies.

3.2. Overview of Markers for NAFLD

In these groups comprised of morbidly obese female patients, known clinical indi-
cators of NAFLD (e.g., insulin, triglycerides, alanine aminotransferase, aspartate amino-
transferase) changed significantly between the groups. Among the NMR-derived markers,
inhibition of fatty acid oxidation was clearly observed in the steatosis group relative to the
non-NAFLD liver group through increasing ketone bodies. The localization of increasing
ketone bodies to the steatosis group in this study is noted; increasing ketone bodies also
distinguished steatosis in HCV patients [34]. Increasing alanine and pyruvate (putative)
are frequently associated with NAFLD progression, also in mouse models [47], and are
localized to steatosis in this study, where alanine and pyruvate means increased by about
20% and 40% in the steatosis group relative to the control group. Neither BCAAs nor AAAs
changed significantly with the progression of NAFLD between the three groups studied
here, in which obesity and diabetes were consistent between the groups (Table 1).

The markers (Figures 3 and 4) observed here to be associated with steatosis could
implicate the TCA cycle broadly and support mitochondrial disruption as a feature of
NAFLD, but they are also consistent with a growing hypothesis of hepatic urea cycle
disruption in NAFLD [42,43,47]. The results of this work, particularly the strong alanine
increase in the steatosis group, may help to localize urea cycle disruption to steatosis.
Decreasing serum betaine is widely reported in NAFLD, and it is also confirmed here,
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where this work observed that serum betaine decreased significantly in the fibrosis group
relative to the steatosis group. Additionally, betaine appeared to decrease weakly with
fibrosis progression (p = 0.058, Figure S5, Supporting Information). Significant metabolites
observed here in the steatosis group relative to a non-NAFLD liver are particularly similar
to several significant metabolites in a study of NAFLD progression for patients with
hepatitis C (e.g., ketone bodies, alanine, pyruvate, suberate) [34]. It is remarkable that,
except for ALT, the panel of biomarkers distinguishing the steatosis and fibrosis groups is
completely distinct from the panel distinguishing the non-NAFLD and steatosis groups
(Table 3). In other words, this work supports a discrete shift in metabolism between
steatosis and fibrosis. If TCA and urea cycles are dysregulated in steatosis, then the
complex responses in dealing with hepatic damage represent a distinct metabolic direction
in fibrosis. This finding should have utility in the development of exploratory classification
models, explored below.

The interplay of BCAAs, diabetes, and hba1c should be considered further. As in this
work, a recent study also did not see changes in serum BCAAs in the progression of NAFLD,
where obesity and diabetes were also consistent across the groups considered [10]. An
increased incidence of Type 2 Diabetes with NAFLD [48] means that biomarker discovery
often must take place in studies in which T2D rates increase with NAFLD progression [9,13].
As BCAAs are well known to increase with the risk and development of diabetes [8,49–51],
their changes could be attributed to T2D, NAFLD, or to an interaction between them.
Increasing BCAAs have been noted in liver tissue in NAFLD progression [18,52], and com-
paring serum and tissue levels of BCAAs in NAFLD could help to better understand their
trends in NAFLD. Given the consistent rates of obesity and diabetes between the groups in
Table 1, which are also supported by BCAA/AAA levels not changing significantly, the
increasing hba1c trend in this work is attributed to NAFLD progression and is consistent
with the use of hba1c as a reporter on NAFLD [27].

There is a widely recognized need to develop noninvasive classifiers for NAFLD
progression to cope with the clinical dilemma of identifying the small set of patients at risk
for progression beyond steatosis. The potential to develop omics-based classifiers with
high sensitivity/specificity scores has been demonstrated with both triglyceride panels in
lipidomics [53] and a multi-omics classifier [54]. While the current data set does not permit
discovery and validation classification modelling, it is sufficient to test the hypotheses
that aqueous metabolites can be used in NAFLD classification in non-clinical groups and
further that key clinical variables can be complementary to NMR-derived metabolomic
knowledge to improve classification.

First, while intra-group variation in biobanked samples is expected to affect cluster
analysis, meaningful separation was obtained with good agreement between important
variables in PLSDA (Figure 5 and Figure S1) and their means which varied significantly
across groups (Tables 2 and 3). Next, exploratory classification by logistic regression
was conducted on these variables, summarized in Table 5. Classification percentages on
the order of 75-85% are obtained, where success can be consistently improved through
productive combinations of metabolite and clinical variables. Attention is drawn to the
combination of alanine and ALT, where these variables both report on NAFLD progression
but are remarkably uncorrelated (Figure 4), an important characteristic of variables in
regression models. For example, just the combination of alanine (NMR) with clinical ALT
and AST levels led to about 70% overall classification between non-NAFLD and steatosis
subjects, and one additional metabolite increased overall success to about 78% (Table 5).

The prospects for distinguishing fibrosis from steatosis with logistic regression models
are slightly improved, where models using variables noted in the clustering and means
analyses yield overall success rates of about 85%. The results in Table 5 show good
classification performance with small numbers of NMR-derived aqueous metabolites
that are consistent with NAFLD pathology, supporting that the classification is neither
fortuitous nor a result of overfitting. The inclusion of key clinical variables to further
strengthen the models suggests the potential to develop a nonsurgical multi-component
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classifier that incorporates aqueous metabolites into broader omics knowledge of NAFLD
progression [53,54].

Some markers noted in this work (Table 3) as changing significantly upon steatosis
relative to a non-NAFLD liver (e.g., 3-hydroxybutyrate) are associated with NASH in
other work [13]. Possible reasons for these differing results are discussed further in the
Supporting Information (Figure S6). However, as this work supports the idea that ketone
bodies are depressed in steatosis and stay depressed for subsequent disease progression,
it is consistent that ketone bodies did not change in recent work focusing on progression
beyond steatosis [10].

Table 5. Exploratory logistic regression modeling shows that small numbers of NMR-derived aqueous metabolites are
sensitive to NAFLD progression in non-clinical groups, and further that a complementary interaction of clinical variables is
obtained. A particularly productive combination of alanine and ALT (alanine aminotransferase) is observed in this work.

Variables Non-NAFLD and Fibrosis (% Classification Success)

Overall Non-NAFLD Fibrosis Nagelkirke R2

Metabolite(NMR) only:
alanine, acetone, betaine, 2hiv 85.2 90.6 79.3 0.478

betaine, hypoxanthine, tryptophan, taurine 80.0 83.9 75.9 0.590
Metabolite(NMR) + clinical:
ALT, alanine, acetone, 2hiv 86.9 87.5 86.2 0.732

ALT, insulin, propylene glycol, 2hiv 86.2 89.7 82.8 0.726

Steatosis and Fibrosis (% Classification Success)

Overall Steatosis Fibrosis Nagelkirke R2

Metabolite(NMR) only:
pyroglutamate, betaine, taurine, 2hb 85.3 89.7 79.3 0.507
azelate, hypoxanthine, taurine, 2hiv 82.4 87.2 75.9 0.471

Metabolite(NMR) + clinical:
AST, taurine, azelate, 2hiv 85.3 89.7 79.3 0.587
AST, taurine, glucose, 2hiv 86.8 94.9 75.9 0.527

Non-NAFLD and Steatosis (% Classification Success)

Overall Non-NAFLD Steatosis Nagelkirke R2

Metabolite(NMR) only:
acetone, alanine, pyruvate, creatine 73.2 65.6 79.5 0.314

acetone, alanine, pyruvate 70.4 65.6 74.4 0.272
Metabolite(NMR) + clinical:

ALT, alanine, acetone, pyruvate 76.1 68.8 82.1 0.358
AST, ALT, alanine 78.6 77.4 79.5 0.305

2hiv = 2-hydroxyisovalerate; 2hb = 2-hydroxybutyrate.

This work used extracted sera. Native sera can be attractive to use but do require
suppression of broad background signals, may develop losses from filtration, and can
experience line broadening when metabolites interact with dissolved proteins and lipids.
Comorbidities can also cause confounding variation. For example, high ketone bodies
could signal the presence of ketoacidosis in T2D subjects. Indeed, a small number of
subjects in the steatosis and fibrosis groups displayed elevated values of 3HB, acetoacetate,
and acetone, suggestive of the presence of confounding ketoacidosis. Overall, the findings
reported here independently confirm the importance of key serum metabolites associated
with NAFLD by NMR, but in this work some of these trends are associated with steatosis
in middle-aged, high BMI female groups. The possible role of changing diabetes rates,
including ketoacidosis, appeared to be reduced in this work, but such effects should be
carefully considered in future metabolomic NAFLD work.

Tryptophan has been associated with NAFLD in some studies [9,10,55,56], but it
did not show any significant change in this work (p = 0.242). Although it is tempting to
inspect the means in Table 2 to speculate on a possible increase in tryptophan (or the other
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AAAs tyrosine or histidine) in the progression of NAFLD, note that tryptophan may have
decreased weakly as fibrosis advanced from stage 1 to stages 2 and 3 (p = 0.051, Table 4).
These variables could be more carefully isolated in prospective, controlled clinical research
studies, but might not show significance when studies contain more intra-group variation.

4. Materials and Methods
4.1. Organic Extraction of Aqueous Metabolites

The extraction was initiated with 200 µL aliquots of frozen serum samples in 1.5 mL
microcentrifuge tubes. Once the serum was thawed, 400 µL of acetonitrile was added and
the sample vortexed for 1 min. Acetonitrile solubilizes aqueous metabolites, precipitates
proteins, and strips viral membranes to promote subsequent safe sample handling. A
number of solvent systems are employed for extracting metabolites from sera [32,57–60],
where the use of acetonitrile yields high metabolite recoveries, and methanol protocols
may offer even more recovery [32]. The 1:2 (serum:ACN) ratio employed here yields high
levels of metabolites with a strong reduction in macromolecular constituents, and also
was shown to have linear recovery and reproduce ground truth for selected metabolites in
mock samples [60]. Samples were always on ice or refrigerated during handling, with one
exception noted below. Each sample was re-vortexed for 30–45 s at 4 ◦C to ensure proper
mixing and disruption of debris prior to centrifuging for 10 minutes at 4 ◦C and 10,600 rcf
on a benchtop refrigerated centrifuge, after which it was often found that the supernatant
consisted of two liquid phases, an intriguing behavior since these solvents are miscible in
all proportions [24]. We have reported and resolved the phase separation separately [24].
Briefly, the two-phase region is attributed to a third component (lipids), and this region can
be avoided by working briefly at room temperature. Samples were re-vortexed at room
temperature for 30–45 s, rested for 1 min at room temperature, and centrifuged for 5 min at
room temperature >15k RCF. This short corrective procedure yields a single phase without
observable protein contaminants. Room temperature refers to a laboratory maintained at
an average temperature of 293 K. The supernatant was transferred to a new microcentrifuge
tube and subjected to a centrifugal evaporator (1 torr) for 4 h to remove solvent. Sample
stability during centrifugal drying is attributed to evaporative cooling, oxygen deprivation,
and the stability of the dried pellet. Dried samples were stored in a −80 ◦C freezer and
resuspended at time-of-use in an NMR buffer (0.10 mM DSS, 99% D2O, 75 mM sodium
phosphate, pH 7.4).

4.2. Serum Collection and Group Design

Standard-of care serum samples from bariatric surgery patients were collected into
Serum Separation Tubes (SST) (BD Diagnostics, Franklin Lakes, NJ, USA) per the standard
clinic procedure. Briefly, blood samples were drawn into SST, set in room temperature for
30–60 min for clotting, and centrifuged for 15 min at 1500 RCF. Sera were then aliquoted
and banked in a −80 freezer. No visually hemolytic sera were present.

Informed consent was obtained from all subjects involved in the study. The serum
samples and clinical data for this study were obtained through an IRB approved research
study (IRB #2004-0255) that includes a registry and biobank of bariatric surgery patients
from Geisinger Health System [61]. The study included patient informed consent and
conforms with the Declaration of Helsinki Statement. As part of the bariatric research pro-
gram, serum samples were collected approximately 2–5 months before primary bariatric
surgery and stored in the biobank. In concurrence with the bariatric surgery, a liver
wedge biopsy is obtained from a consistent anatomic location per clinical standard of care.
The biopsies were fixed in neutral buffered formalin and stained with hematoxylin and
eosin for histological evaluation of steatosis and fibrosis using NASH CRN criteria [62].
All liver biopsies were read by experienced pathologists. Steatosis was graded as mini-
mal (<5% of parenchyma), mild (5–33%), moderate (34–66%), or severe (>66%). Fibrosis
stage was recorded as 0 (none), 1a (mild perisinusoidal), 1b (moderate perisinusoidal),
1c (portal/periportal), 2 (perisinusoidal and portal/periportal), 3 (bridging), or 4 (cirrhosis).
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Patients selected for this study were a convenience sample with available serum with paired
liver histology. A review of liver biopsy evaluation in the context of fatty liver disease is
given by E. Brunt [63]. Patient sera had not been used for any prior research. Patients were
candidates for bariatric surgery (BMI > 40 or BMI > 35 with a metabolic disease such as
diabetes, hypertension, hyperlipidemia, sleep apnea), chose to undergo bariatric surgery,
and completed bariatric surgery. As such the patients had to be able to safely undergo
surgery and were not medically fragile, had no major psychiatric issues, no major eating
disorders, and were able to quit smoking. Ethnicity and race were self-disclosed, and the
subjects are from a rural, generally Caucasian, geographically large, central Pennsylvania
(USA) demographic region.

Metformin use could modulate T2D and associated metabolites, but was not examined
since this is a study of retrospective biobanked standard of care sera, and compliance
could not be determined. The majority of the T2D patients were treated with Metformin,
while some without T2D may also be treated with Metformin such as for pre-diabetes, IR,
or PCOS.

4.3. Targeted Profiling

Spectra were imported in to Chenomx 8.1 (Chenomx Inc., Edmonton, AB, Canada) and
treated with line broadening (0.2 Hz), phasing, baseline correction, and reference deconvo-
lution prior to profiling the assignable metabolites. In a small number of cases, reference
deconvolution was deemed unnecessary. A rubric jointly developed by DSR/MCT/EJR
was employed, where we note that automated profiling was used for many metabolites.
The 100 spectra were processed and profiled by one blinded rater (DSR); a blinded and
independent analysis jointly conducted by EJR and MCT yielded comparable results. One
missing value, a hypoxanthine level that could not be determined in one sample due to the
presence of additional signals, occurs in this dataset.

In total, 49 metabolites and, in some cases, several active ingredients (acetaminophen,
salicylic acid, ibuprofen, caffeine), were profiled (Table 2). A putative dimethylamine
(DMA) signal was observed in some spectra and could not be profiled under these condi-
tions. Uridine was frequently observed, but was deemed below the limit of quantitation in
the majority of spectra and was not considered in the analysis. Trimethylamine-n-oxide
(TMAO) was suggested in a small number of spectra, but low levels and resolution con-
straints prohibited profiling TMAO. Acetoacetate was profiled in the presence of large
confounding signals (particularly valine) and its levels are considered to be estimates.
Valproic acid was not detected in any sample. Note that the limits of detection and quan-
titation in 1H-NMR metabolomics at this field strength (600 MHz) are typically of the
order of a few micromolar. Concentrations in Table 2 are a factor of 2 smaller than their
circulating serum values since metabolites were obtained from 200 µL of serum, but re-
constituted to a final volume of 400 µL in NMR buffer. Acetaminophen was profiled in
10 subjects (3 non-NAFLD, 2 steatosis, 5 fibrosis), caffeine in 28 subjects (7 non-NAFLD,
9 steatosis, 12 fibrosis), salicylate acid in 5 subjects (2 non-NAFLD, 1 steatosis, 2 fibrosis),
and ibuprofen in one subject (non-NAFLD). Note that other subjects’ sera could also have
these compounds, but at levels below the NMR detection limit.

4.4. Statistical Methodology and Data Analysis

Descriptive statistics (means, standard deviations, frequencies, proportions) were com-
puted for patient characteristics and metabolite and clinical serum concentrations. Groups
were compared on categorical clinical variables using exact chi-square tests. Continuous
variables for groups of two were compared using independent-samples t-tests, and in cases
of strong skewness or other strong non-normality features, Mann–Whitney U tests were
used. Continuous variables for groups of three were compared using ANOVAs and the
more robust Welch and Brown–Forsythe tests; in cases of strong skewness or other strong
non-normality features, Kruskal–Wallis tests were used. Classification by means of binary
logistic regression was explored to see if NAFLD groups could be separated using a few
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metabolites and/or clinical variables. IBM SPSS Statistics 25, 26, and 28 were used for
all analyses except PLSDA (Metaboanalyst [46]). Extreme outliers occurred in only three
distributions. The data for acetate, creatine, and dimethylsulfone each had one extreme
outlier, and all were retained. For these cases, the distance between the outlier and the next
largest value was more than 7 standard deviations. Samples were strictly deidentified prior
to handling. Extractions, NMR spectroscopy, data processing, and metabolite profiling
were blinded to group membership. All subjects were retained in data analysis. Prior to
data analysis and during the blinded phase of the work, one subject was removed when an
audit of the metadata showed they did not meet group criteria (sample was obtained from
a revision surgery, not the initial bariatric surgery).

4.5. NMR Data Acquisition

Presat-NOESY [64] one dimensional 1H-NMR spectra were acquired at 14.1 T (Varian
DD1, 600 MHz, 298 K) using a room temperature inverse probe. There is an approx. 2 hr
window from resuspension in which to measure spectra [60], so each sample was acquired
for 1 hr (typical pw90 = 6.5 µs; typical DSS linewidth = 0.90 Hz; 256 scans; 8 steady state
scans; 100 ms NOESY period); each scan consumed 15 s (4 s acquisition; 11 s recycle time).
The presat period was 2 s (included in 11 s recycle time).

5. Conclusions

The potential for aqueous metabolites to report effectively on NAFLD progression
in biobanked sera is demonstrated with a non-high-throughput NMR study of obese
female bariatric surgery patients. Changing metabolite levels show fatty acid oxidation
dysregulation in steatosis and are consistent with an emerging view of hepatic urea cycle
dysregulation in steatosis. Tissue damage as well as decreasing liver function in fibrosis
are reported by a set of metabolite markers distinct from those identified in the steatosis
group and which are consistent with inflammation and loss of liver function. Ketone
bodies are sensitive reporters of fatty acid oxidation, but the presence of ketoacidosis may
complicate the interpretation of ketone bodies. This work suggests that BCAA changes are
not observable when obesity and diabetes do not change across NAFLD groups. However,
the data clearly detect decreasing BCAA in advanced stages of fibrosis that may signal risk
of advanced liver disease, which should be investigated further.

Exploratory modeling supports strategic combinations of aqueous metabolites and
clinical variables that may be useful in classification modeling, where an important combi-
nation of NMR-derived alanine and clinical ALT levels improved NAFLD group classifica-
tion in this work. Finally, this work identifies key aqueous metabolites that support further
investigation for their inclusion in multi-omics models of NAFLD.
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