
© AME Publishing Company. J Thorac Dis 2024;16(10):6496-6515 | https://dx.doi.org/10.21037/jtd-24-622

Original Article

Integrated bioinformatics and machine learning algorithms reveal 
the unfolded protein response pathways and immune infiltration in 
acute myocardial infarction 
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Background: The unfolded protein response (UPR) is a critical biological process related to a variety of 
physiological functions and cardiac disease. However, the role of UPR-related genes in acute myocardial 
infarction (AMI) has not been well characterized. Therefore, this study aims to elucidate the mechanism and 
role of the UPR in the context of AMI.
Methods: Gene expression profiles related to AMI and UPR pathway were downloaded from the Gene 
Expression Omnibus database and PathCards database, respectively. Differentially expressed genes (DEGs) 
were identified and then functionally annotated. The random forest (RF) and least absolute shrinkage and 
selection operator (LASSO) regression analysis were conducted to identify potential diagnostic UPR-AMI 
biomarkers. Furthermore, the results were validated by using external data sets, and discriminability was 
measured by the area under the curve (AUC). A nomogram based on the feature genes was developed to 
predict the AMI-risk rate. Then we utilized two algorithms, CIBERSORT and MCPcounter, to investigate 
the relationship between the key genes and immune microenvironment. Additionally, we performed uniform 
clustering of AMI samples based on the expression of UPR pathway-related genes. The weighted gene co-
expression network analysis was conducted to identify the key modules in various clusters, enrichment 
analysis was performed for the genes existing in different modules. 
Results: A total of 14 DEGs related to the UPR pathway were identified. Among the 14 DEGs, CEBPB, 
ATF3, EIF2S3, and TSPYL2 were subsequently identified as biomarkers by the LASSO and RF algorithms. 
A diagnostic model was constructed with these four genes, and the AUC was 0.939. The calibration curves, 
receiver operating characteristic (ROC) curves, and the decision curve analysis of the nomogram exhibited 
good performance. Furthermore, immune cell infiltration analysis revealed that four feature genes were 
linked with the infiltration of immune cells such as neutrophils. The cluster analysis of the AMI samples 
identified two distinct clusters, each with differential expression of genes related to the UPR pathway, 
immune cell infiltration, and inflammatory cytokine secretion. Weighted gene coexpression network analysis 
and enrichment analysis showed that both clusters were associated with the UPR. 
Conclusions: Our study highlights the importance of the UPR pathway in the pathogenesis of myocardial 
infarction, and identifies four genes CEBPB, ATF3, EIF2S3, and TSPYL2 as diagnostic biomarkers for AMI, 
providing new ideas for the clinical diagnosis and treatment of AMI.
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Introduction

Acute myocardial infarction (AMI) is caused by coronary 
artery occlusion, resulting in localized heart tissue 
ischaemia, hypoxia and necrosis, and is one of the leading 
causes of mortality worldwide (1). It is estimated that 
annually, more than 7 million individuals succumb to this 
disease, and this number is expected to increase to more 
than 9 million by 2030 (2). Clinical management of AMI 
aims to restore blood flow, and the main treatment methods 
include pharmacologic thrombolysis, vascular intervention 
or coronary angioplasty (3). Considerable improvements in 
the approaches for the prevention and treatment of AMI 
have occurred in recent decades. However, the incidence 
of myocardial infarction (MI) has not declined; in fact, it 
has increased (4). Early and accurate diagnosis of AMI is 
an important step to reduce the incidence of adverse events 
and improve the survival rate of AMI patients, especially for 
patients with atypical symptoms. Exploring the signalling 
pathways underlying the pathogenesis of MI has great 
potential for improving diagnosis and treatment.

The mitochondrial unfolded protein response (UPR) is 
considered the first line of defence against mitochondrial 
damage triggered by the accumulation of misfolded proteins 

within mitochondria (1). The mitochondrial UPR promotes 
the expression of mitochondrial protective genes encoded 
by nuclear DNA and mitochondrial DNA, and initiates 
the transcriptional activation program of mitochondrial 
chaperones and proteases to alleviate the abnormal 
protein accumulation within the mitochondria, thereby 
restoring mitochondrial protein homeostasis and protecting 
cells from extensive mitochondrial stress (1,5). When 
mitochondrial stress exceeds a certain threshold, the UPR is 
unable to fully repair the damaged mitochondria, triggering 
mitophagy to remove the dysfunctional mitochondria (6).  
The mechanisms regulating the mitochondrial UPR are 
complex. A recent study has shown that endoplasmic 
reticulum stress, mitophagy, inflammation, hypoxia, 
apoptosis and mitochondrial dysfunction are closely 
related to UPR (5). Aberrant UPR contributes to various 
diseases such as diabetes, cancers and obesity (7). Given 
the pleiotropic effects of UPR, in-depth research on UPR 
pathway-related genes in AMI will further enhance our 
understanding of the pathological mechanisms of AMI and 
find potential therapeutic approaches for AMI.

The development of bioinformatics analysis techniques 
has provided us with the ability to research the detailed 
regulatory mechanisms of complex disease occurrence and 
development (8). As a core field of artificial intelligence, 
machine learning has been widely used in the medical 
field. Machine learning can identify key biomarkers for the 
diagnosis and prognosis of diseases and has shown great 
potential in medical fields such as biomedical research 
and personalized medicine (9). In the present study, we 
downloaded the human AMI transcriptome dataset and 
UPR pathway-related genes from the Gene Expression 
Omnibus (GEO) database and PathCards database, 
respectively. The power of bioinformatics and two machine 
learning algorithms, random forest (RF) and least absolute 
shrinkage and selection operator (LASSO), were leveraged 
to identify key biomarkers related to the UPR pathway and 
gain new insights into the potential mechanisms underlying 
AMI. We hope this research will provide a foundation for 
the diagnosis and treatment of AMI and reduce the burden 
of this disease. We present this article in accordance with 
the TRIPOD reporting checklist (available at https://jtd.
amegroups.com/article/view/10.21037/jtd-24-622/rc).

Highlight box

Key findings
•	 We identified four genes CEBPB, ATF3, EIF2S3, and TSPYL2 as 

diagnostic biomarkers for acute myocardial infarction (AMI). A 
diagnostic model was constructed with these four genes, and the 
area under the curve was 0.939.

What is known and what is new?
•	 Unfolded protein response (UPR) is a critical biological process 

related to a variety of physiological functions and cardiac disease.
•	 The role of UPR-related genes in AMI has not been well 

characterized. The present study identified CEBPB, ATF3, EIF2S3, 
and TSPYL2 as the critical UPR genes for AMI.

What is the implication, and what should change now?
•	 CEBPB, ATF3, EIF2S3, and TSPYL2 may be potential therapeutic 

targets for AMI. We constructed a nomogram that can help 
clinicians identify high-risk individuals, and thus help guide 
treatment decisions for myocardial infarction patients.
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Methods

Data download

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). Microarray 
expression data, including the GSE66360 and GSE14975 
datasets, were downloaded from the GEO database. 
GPL570 (HG-U133_Plus_2; Affymetrix Human Genome 
U133 Plus 2.0 Array) served as the detection platform for 
both databases. The GSE66360 dataset was divided into 
a training set (21 AMI patients and 22 healthy control 
individuals) and a validation set (28 AMI patients and 28 
healthy control individuals). The GSE14975 dataset was 
used as the reverse validation set [5 atrial fibrillation (AF) 
patients and 5 healthy control individuals]. All the datasets 
were subjected to standardized data preprocessing. The 
UPR pathway-related genes were downloaded from the 
PathCards database.

Analysis of differentially expressed genes (DEGs) related to 
the UPR pathway

Differential expression analysis of mRNA data was 
conducted using the “limma” package (version 4.3.1), setting 
the criteria of a |log2[fold change (FC)]| >0.2 and P value 
<0.05 (10). The “ComplexHeatmap” package was used to 
generate heatmaps to reveal the expression patterns of these 
genes. We also analysed the correlations among DEGs and 
generated correlation heatmaps with the “ggplot2” package. 
In addition, we used the “GSVA” package to assess the 
single sample gene set enrichment analysis (ssGSEA) scores 
of the UPR pathway genes in the AMI and control groups. 
These results provide a foundation for exploring the role of 
the UPR pathway in AMI patients.

Functional enrichment analyses

Gene Ontology (GO) analysis, which includes molecular 
function (MF), biological process (BP) and cellular 
component (CC) ontologies, was used to describe the 
properties of genes and gene products. Kyoto Encyclopedia 
of Genes and Genomes (KEGG) enrichment analysis 
was used to identify pathways associated with the DEGs. 
We performed GO and KEGG analyses  with the 
“clusterProfiler” (version 4.4.4) package. The results of 
the enrichment analysis were visualized with the “ggplot2” 
package (11).

Single-gene GSEA enrichment analysis is implemented 

in the “GSEA” package in R. And we utilized the GO 
pathway set as the background gene set to perform GSEA 
analysis on each marker gene.

Screening key genes by machine learning and model 
building

Two distinct algorithms (LASSO and RF) were utilized 
to select key genes associated with the UPR pathway. 
The “glmnet” and “randomForest” packages were 
utilized for LASSO and RF analysis, respectively. The 
LASSO algorithm is a linear regression method that 
shrinks regression coefficients and sets some unimportant 
coefficients to shrink to zero (12). The RF algorithm 
was used to estimate the importance of each gene (13). 
We listed the seven genes with the highest values for 
MeanDecreaseGini, a RF prediction metric. Furthermore, 
key biomarkers for AMI were identified by overlapping 
genes derived from the two machine learning algorithms. 
Next, we assessed the predictive value of key biomarkers 
by quantifying their sensitivity and specificity using the 
“pROC” package and measuring the area under the receiver 
operating characteristic (ROC) curve (14). The area under 
the curve (AUC) was calculated as the predicted value of 
the key biomarkers in the training set and further validated 
in the validation and reverse validation set (GSE14975). 
Subsequently, the key genes were analysed by multivariable 
logistic regression, and a nomogram was generated using 
the “regplot” package to depict the key gene columns. 
Additionally, we performed decision curve analysis (DCA) 
to estimate the utility of the models for decision making 
and generated calibration curves to assess the performance 
and internal validity of the nomogram. The decision curves 
and clinical calibration curves were plotted using the “rmda” 
and “rms” packages, respectively. Moreover, the Hosmer-
Lemeshow test was used to assess the goodness of fit of the 
multivariable model, and a Hosmer-Lemeshow statistic 
>0.05 indicated good calibration. A correlation diagram of 
key genes was generated using the “ggstatsplot” package.

Immune infiltration analysis

Two cutting-edge algorithms, the CIBERSORT algorithm 
and the MCPcounter algorithm, were both used to calculate 
the relationships between the key genes and immune cells 
(15,16). Bar graphs were drawn to show the differential 
expression levels of immune infiltrating cells in the AMI 
group and control group. Pearson correlation analysis was 
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performed to determine the correlations between the hub 
genes and infiltrating immune cells, and the results were 
visualized using the ‘ggcorrplot’ package.

Consensus clustering analysis

We used the R package “ConsensusClusterPlus” to perform 
cluster analysis on the genes related to the UPR pathway 
in AMI patients (17). In the consensus clustering matrix 
at k=2, the samples are clearly clustered into two clusters. 
Then, the “ComplexHeatmap” package was used to 
construct a heatmap of gene expression in two clusters of 
AMI patients. In addition, we used the “GSVA” package 
to assess the ssGSEA scores of the UPR pathway genes in 
different clusters, and the results were visualized through 
a violin plot. The relationships between distinct clusters 
and immune cells and inflammatory factor expression were 
visualized through bar graphs.

Enrichment analysis of different clusters

We utilized the “weighted gene coexpression network 
analysis (WGCNA)” package to analyse the gene expression 
matrix of the distinct clusters (18). The “goodSampleGenes” 
function was used to check the integrity of the data. The 
ideal soft threshold (R2=0.9, β=4) was calculated by the 
“pickSoftThreshold” algorithm to construct a scale-free 
network. Then, we transformed the matrix data into an 
adjacency matrix to cluster gene modules with a dynamic 
tree-cutting algorithm, and the minimum size of the 
modules was 30 genes. In addition, we visualized the 
correlations between different clusters and gene modules 
using the “labeledHeatmap” function. The “anRichment” 
package was used to conduct an enrichment analysis of the 
gene module clusters.

Statistical analysis

All analyses were performed with R statistical software 
(version 4.3.1). When constant variables between groups 
were normally distributed, an unpaired Student’s t-test 
was used. When constant variables were not normally 
distributed, the Mann-Whitney U test was used. Pearson 
correlation analysis was used to reveal the relationships 
between genes and infiltrating immune cells. A P value less 
than 0.05 indicated statistical significance.

Results

Expression of UPR pathway-related genes in AMI patients

In this study, a total of 89 genes related to the UPR pathway 
were identified in the training set, and the clustering 
heatmap showed the expression patterns of UPR-related 
genes among the samples (Figure 1A). Fourteen of the 89 
UPR pathway-related genes were significantly differentially 
expressed. Correlation analysis revealed a high degree of 
correlation among these genes (Figure 1B). These findings 
indicate that a single change in gene expression in the UPR 
pathway often results in a cascading reaction involving 
multiple genes. Furthermore, the ssGSEA score of the AMI 
group was significantly greater than that of the control 
group, indicating a significant increase in UPR pathway 
activation in AMI patients (Figure 1C).

Functional analysis of the UPR-related DEGs

GO enrichment revealed that the UPR-related DEGs 
were significantly related to the functions “response to 
endoplasmic reticulum stress”, “response to topologically 
incorrect protein”, and “response to unfolded protein” 
in the BP category. They were related to “transcription 
regulator complex” and “RNA polymerase II transcription 
regulator complex” in the CC category. In the MF 
category, they were related to “DNA-binding transcription 
activator activity”, “DNA-binding transcription activator 
activity, RNA polymerase II-specific”, and “protein 
heterodimerization activity”. KEGG analysis indicated that 
the “lipid and atherosclerosis” and “protein processing in 
endoplasmic reticulum” pathways were enriched (Figure 2).

Four UPR-related DEGs as diagnostic genes for AMI

Next, we utilized two distinct algorithms, LASSO and RF, 
to screen the feature genes from the training set. For the 
LASSO algorithm, following 10-fold cross-validation, a 
set of 8 genes, namely, CEBPB, ATF3, DNAJC3, EIF2S3, 
DNAJB11, EXOSC3, TSPYL2, and CCL2, was selected 
(Figure 3A,3B). For the RF algorithm, we screened 7 genes 
with the highest values for MeanDecreaseGini, namely, 
CEBPB, DDIT3, ATF3, EIF2S3, TSPYL2, DNAJB11, and 
CXCL8 (Figure 3C). Finally, 5 key genes (CEBPB, ATF3, 
EIF2S3, TSPYL2, and DNAJB11) shared between the 
LASSO and RF algorithms were identified as diagnostic 
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Figure 1 UPR pathway-related genes in AMI patients. (A) Heatmap of UPR pathway-related genes. (B) The correlation of differential gene 
in the UPR pathway. (C) Violin plots show the difference of ssGSEA scores between the two groups. *, P<0.05; ***, P<0.001. AMI, acute 
myocardial infarction; Con, control; Cor, correlation; UPR, unfolded protein response; ssGSEA, single sample gene set enrichment analysis.
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Figure 2 Functional enrichment analysis. (A) The partial terms of the GO pathways. (B) The partial terms of the KEGG pathways. GO, 
Gene Ontology; BP, biological progress; CC, cellular component; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and 
Genomes. 
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markers for further analysis (Figure 3D). Notably, the AUC 
values of the 5 key genes were greater than 0.75, indicating 
that these 5 genes might serve as diagnostic markers for 
AMI patients (Figure 3E).

In addition, we further verified the reliability and 
reproducibility of the 5 diagnostic genes in the validation 
set. The results showed that CEBPB, ATF3, EIF2S3, 
and TSPYL2 were differentially expressed between the 
AMI group and the control group (Figure 3F). Then, the 
discriminatory ability of the nomogram was confirmed 
by ROC analysis. As shown in Figure 4A, the AUC of 
CEBPB was 0.728, the AUC of ATF3 was 0.898, the AUC 
of EIF2S3 was 0.74, and the AUC of TSPYL2 was 0.718. 
The diagnostic model constructed from these four genes 
(CEBPB + ATF3 + EIF2S3 + TSPYL2) showed excellent 
performance, with an AUC of 0.939, which was greater than 
that of the individual genes. However, in the AF dataset 
GSE14975, the expression of CEBPB, ATF3, EIF2S3 and 

TSPYL2 did not significantly differ (Figure 4B). Based on 
these results, the biomarkers CEBPB, ATF3, EIF2S3 and 
TSPYL2 have high diagnostic accuracy. A nomogram model 
was constructed with four diagnostic markers (CEBPB, 
ATF3, EIF2S3 and TSPYL2), and CEBPB and ATF3 had 
the greatest diagnostic significance for AMI patients  
(Figure 4C). Then, we used clinical calibration and DCA 
to evaluate the clinical effect of the nomogram model  
(Figure 4D). The DCA results showed that the CEBPB + 
ATF3 + EIF2S3 + TSPYL2 curve was significantly greater 
than the grey curve, indicating the high accuracy of the 
nomogram model. In addition, a calibration curve was 
constructed to assess the predictive ability of the nomogram 
model. According to the calibration curve, the actual risk 
of AMI was close to the predicted risk, and a Hosmer-
Lemeshow P value >0.05 indicated a high degree of 
accuracy in predicting AMI (Figure 4E). In addition, our 
analysis also revealed a strong positive correlation between 
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Figure 3 Screening of key genes. (A) LASSO coefficient profiles of UPR-related differential genes. (B) Cross-validation to select the 
optimal tuning parameter log Lambda in LASSO regression analysis. (C) RF analysis. (D) The key genes extracted from the LASSO and RF 
algorithms. (E) ROC curve of key genes in the training set. (F) Validation of the expression of the key genes by boxplot in the validation set. 
**, P<0.01; ***, P<0.001. ns, not significant; AMI, acute myocardial infarction; Con, control; LASSO, least absolute shrinkage and selection 
operator; UPR, unfolded protein response; RF, random forest; ROC, receiver operating characteristic. 
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Figure 4 Key biomarkers validation and model construction. (A) ROC curve of the key biomarkers in the validation set. (B) Validation of the 
expression of key biomarkers in the reverse validation set (GSE14975). (C) Nomogram plot. (D) DCA clinical decision curve. (E) Clinical 
calibration curve. (F) Correlation plot between ATF3 and CEBPB. *, P<0.05. Con, control; AF, atrial fibrillation; ROC, receiver operating 
characteristic; DCA, decision curve analysis.
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Figure 5 Single-gene GO-GSEA pathway analysis in ATF3 (A), CEBPB (B), EIF2S3 (C), TSPYL2 (D). GO, Gene Ontology; GSEA, gene 
set enrichment analysis. 

CEBPB and ATF3, indicating that these two genes may have 
synergistic effects on AMI patients (Figure 4F).

Pathway analysis of the feature biomarkers

To further explore the potential functions of marker genes, 
we performed a single-gene GO-GSEA pathway analysis. 
The top 10 pathways enriched for each marker gene were 
illustrated in Figure 5A-5D. Candidate diagnostic genes 
were mainly enriched in the mitochondrial gene expression, 
mitochondrial translation, specific granule, tertiary granule, 
neutrophil chemotaxis, ficolin 1 rich granule, vesicle 
lumen, mRNA processing and ribonucleoprotein complex 
biogenesis. We propose that CEBPB, ATF3, EIF2S3, 
TSPYL2 are not only related to mitochondrial UPR but 
may also be associated with immune response. 

Immune infiltration analysis based on marker genes

We used both the CIBERSORT and MCPcounter 
algorithms to determine the associations between the four 
marker genes and the immune microenvironment in AMI 
patients. According to the CIBERSORT algorithm, the 
proportions of resting CD4+ memory T cells and gamma 
delta T cells in AMI patients were lower than those in 
control individuals, and activated memory CD4+ T cells, 
resting natural killer (NK) cells, monocytes, activated 
dendritic cells, activated mast cells and neutrophils were 
more highly expressed in AMI patients (Figure 6A). In 
addition, Pearson correlation analysis revealed that CEBPB 
was strongly positively correlated with eosinophils, activated 
mast cells, activated monocytes and neutrophils, activated 
resting NK cells, activated memory CD4+ T cells, and 
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Figure 6 Immune landscape analysis by CIBERSORT algorithm. (A) Using the CIBERSORT algorithm to explore the differences in the 
immune microenvironment between AMI patients and normal controls. (B) Using the CIBERSORT algorithm to analysis immune cell 
infiltration of model genes. *, P<0.05; **, P<0.01; ***, P<0.001. ns, not significant; AMI, acute myocardial infarction; Con, control; NK, 
natural killer.
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negatively correlated with resting memory CD4+ T cells 
and gamma delta T cells. ATF3 was positively correlated 
with activated dendritic cells, activated eosinophils, activated 
mast cells, monocytes, activated neutrophils and activated 
memory CD4+ T cells but negatively correlated with 
resting memory CD4+ T cells. TSPYL2 and EIF2S3 were 
strongly positively correlated with activated dendritic cells 
and resting memory CD4+ T cells (Figure 6B). Further 
analysis using MCP-counter showed that the proportions 
of monocytes, neutrophils and endothelial cells in AMI 

patients were greater than those in control individuals  
(Figure 7A). Pearson correlation analysis revealed that CEBPB 
was positively correlated with endothelial cells, monocytic 
lineage cells, myeloid dendritic cells and neutrophils but 
negatively correlated with T cells. ATF3 was positively 
correlated with endothelial cells, fibroblasts, monocytic 
lineage cells, myeloid dendritic cells and neutrophils but 
negatively correlated with T cells. EIF2S3 expression was 
negatively correlated with the number of endothelial cells, 
monocytic lineage cells, and neutrophils (Figure 7B).
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Figure 7 Immune landscape analysis by MCPcounter algorithm. (A) Using the MCPcounter algorithm to explore the differences in the 
immune microenvironment between AMI patients and normal controls. (B) Using the MCPcounter algorithm to analysis immune cell 
infiltration of model genes. *, P<0.05; **, P<0.01; ***, P<0.001. ns, not significant; AMI, acute myocardial infarction; Con, control; NK, 
natural killer.
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Classifying AMI patients through consensus clustering

Based on the unsupervised clustering results,  the 
AMI patients were classified into two distinct clusters  
(Figure 8A,8B). The overall expression profiles of the UPR-
DEGs differed between the two clusters (Figure 8C). We 
observed that CXCL8 exhibited the highest expression in 
cluster 1, and EIF2S3 exhibited the highest expression in 
cluster 2. These two genes may be characteristic genes 
for each cluster. We further assessed the UPR pathway 
gene enrichment scores of each sample using the ssGSEA 
algorithm, and the results showed that the activation of the 

UPR pathway in cluster 1 was greater than that in cluster 2 
(Figure 8D). In addition, the infiltration of immune cells and 
the secretion of inflammatory markers were significantly 
different between the two clusters (Figure 8E,8F).  
The proportion of T cells was greater in cluster 2 than in 
cluster 1, but the proportions of monocytic lineage cells, 
myeloid dendritic cells, and neutrophils were greater in 
cluster 1. In terms of inflammatory markers, TP53 was 
highly expressed in cluster 2; however, the other DEGs 
were highly expressed in cluster 1. In summary, we found 
that the activation of UPR pathway genes, inflammatory 
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Figure 8 Consensus clustering analysis. (A) The CDF distribution diagram of consistency clustering analysis. (B) Consensus matrix 
heatmap. (C) Heatmap visualizing the expression of UPR-related genes in the two clusters. (D) Violin plots show the difference of ssGSEA 
scores between the two clusters. (E) Immune cell Infiltration in different clusters. (F) The expression of inflammatory factor in different 
clusters. *, P<0.05; **, P<0.01; ***, P<0.001. ns, not significant; CDF, cumulative distribution function; UPR, unfolded protein response; 
ssGSEA, single sample gene set enrichment analysis; NK, natural killer.

0.0	 0.2	 0.4	 0.6	 0.8	 1.0
Consensus index

	 Cluster 1	 Cluster 2

Cluster	 1	 2

Cluster	 1	 2

Cell type

T 
ce

lls

CD8 T
 ce

lls

M
on

oc
yti

c l
ine

ag
e

B lin
ea

ge

Neu
tro

phil
s

Cyto
to

xic
 ly

m
pho

cy
te

s

M
ye

loi
d d

en
drit

ic 
ce

lls

NK ce
lls

End
ot

he
lia

l c
ell

s

Fib
ro

blas
ts

TN
FIL6

M
APK14

IL1
B

CCL2

CXCL8
TP

53

STA
T3

ABCB1

NOD2
IL1

A
TL

R4
IL1

0
TL

R2

PTG
S2

NLR
P3

12

9

6

3

Gene

E
xp

re
ss

io
n

**

S
co

re
s

P
ro

po
rt

io
n

ns* ** *****ns ns ns ns ns
4.0

3.8

3.6

3.4

3.2

3.0

10

8

6

4

EIF2S1 

NFYB 

EXOSC3 

EIF2S3 

TSPYL2 

DNAJB11 

ATP6V0D1 

DNAJC3 

CCL2 

ATF3 

TLN1 

CXCL8 

CEBPB 

DDIT3

Cluster

Cluster

1
2

2

1

0

−1

−2

Consensus CDF

Consensus matrix k=2

2
3
4
5
6

1
2

C
D

F

1.0

0.8

0.6

0.4

0.2

0.0

******** **** ** ****** nsnsnsns

B

E

CA

D

F



Bai et al. The UPR pathways in AMI 6508

© AME Publishing Company. J Thorac Dis 2024;16(10):6496-6515 | https://dx.doi.org/10.21037/jtd-24-622

Figure 9 Construction of WGCNA modules. (A) Analysis of the scale-free index and the mean connectivity for different soft thresholds. 
(B) Histogram of connectivity distribution and checking the scale-free topology when β=4. (C) Cluster dendrogram. (D) Heatmap of the 
module-trait relationships. WGCNA, weighted gene coexpression network analysis.

markers and immune cells in cluster 1 was greater than that 
in cluster 2.

Functional enrichment analysis of different clusters

We used WGCNA to identify coexpressed gene modules in 
different clusters. First, we constructed a sample clustering 

tree and clustering samples for the processing of outliers.
Then, the soft threshold based on the scale-free topology 

fitting index R2 was selected (R2=0.89; soft thresholding 
power β=4; slope =−1.42) (Figure 9A,9B). Subsequently, we 
used a one-step method to construct a coexpression matrix, 
and a total of 13 gene modules were obtained through 
dynamic hybrid shearing (Figure 9C). Later, the correlations 
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Table 1 GO enrichment analysis in different gene modules

Module GO ID Term name P value FDR Size

Black GO:0006364 rRNA processing 1.10E−07 0.00017 174

Black GO:0016072 rRNA metabolic process 6.30E−07 0.00076 174

Blue GO:0005759 Mitochondrial matrix 5.30E−05 0.031 713

Blue GO:0034660 ncRNA metabolic process 6.60E−05 0.036 713

Brown GO:0048646 Anatomical structure formation involved in morphogenesis 8.30E−17 9.90E−13 344

Brown GO:0062023 Collagen-containing extracellular matrix 2.10E−15 2.10E−11 344

Green GO:0042101 T cell receptor complex 2.70E−06 0.0026 250

Greenyellow GO:0007059 Chromosome segregation 2.30E−24 1.50E−19 115

Greenyellow GO:0098813 Nuclear chromosome segregation 3.20E−23 1.50E−18 115

Magenta GO:0030326 Embryonic limb morphogenesis 2.70E−05 0.018 152

Magenta GO:0035113 Embryonic appendage morphogenesis 2.70E−05 0.018 152

Pink GO:0006281 DNA repair 3.50E−06 0.0033 154

Pink GO:0006974 Cellular response to DNA damage stimulus 4.40E−05 0.027 154

Purple GO:0050853 B cell receptor signaling pathway 4.90E−12 2.40E−08 116

Purple GO:0042113 B cell activation 3.30E−10 1.10E−06 116

Red GO:0030527 Structural constituent of chromatin 4.90E−32 1.30E−26 178

Red GO:0000786 Nucleosome 5.20E−29 7.20E−24 178

Tan GO:0006139 Nucleobase-containing compound metabolic process 2.60E−05 0.017 52

Tan GO:0090304 Nucleic acid metabolic process 3.30E−05 0.021 52

Turquoise GO:0031410 Cytoplasmic vesicle 4.00E−20 1.00E−15 2,099

Turquoise GO:0097708 Intracellular vesicle 5.80E−20 1.30E−15 2,099

rRNA, ribosomal RNA; ncRNA, non-coding RNA; GO, Gene Ontology; FDR, false discovery rate.

of gene modules with different clusters were presented 
via heatmaps, and we observed that the MEgreen module, 
MEturquoise module and MEblue module were correlated 
with different clusters, with correlation coefficients of 
0.86, 0.67 and 0.53, respectively (Figure 9D). Furthermore, 
we used the R package “anRichment” to perform GO 
enrichment analysis of different gene modules. We found 
that the genes within the MEgreen module were primarily 
involved in processes involving the T-cell receptor complex. 
The MEturquoise module was found to be enriched 
in processes such as cytoplasmic vesicles, intracellular 
vesicles, and secretory vesicles. The MEblue module was 
predominantly linked to the mitochondrial matrix, non-
coding RNA (ncRNA) metabolic processes, and transfer 
RNA (tRNA) metabolic processes (Table 1).

Discussion

Mitochondria play essential roles in various physiological 
processes, such as energy production, the immune response 
and apoptosis (19). Due to the diversity of mitochondrial 
functions, maintaining mitochondrial homeostasis is 
critical for cell survival and heart function. Mitochondrial 
homeostasis is regulated by quality control mechanisms, 
including mitochondrial dynamics, mitophagy, biogenesis 
and the UPR, and the associated molecular machinery is 
highly interconnected (1,20). In response to stress, such as 
oxidative stress, metabolic dysfunction or mitochondrial 
DNA impairment, the UPR is activated and maintains 
protein quality and mitochondrial function by promoting 
the expression of mitochondrial chaperones (HSP10, 
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HSP60, and DNAJ) and proteases (CLPP and LONP1) 
(1,21,22). Mitochondrial chaperones mainly promote 
the correct folding of newly imported proteins, and 
proteases mainly degrade misfolded or damaged proteins 
within mitochondria (22,23). However, when stress 
exceeds a certain threshold, the UPR cannot repair 
dysfunctional mitochondria. This triggers mitochondrial 
fission to separate the damaged region from the healthy 
mitochondrial network, and this region is cleared by 
mitophagy (1,9). Although UPR activation provides a 
cytoprotective advantage, prolonging UPR activation 
is detrimental and can lead to cell  death (24,25). 
Mitochondrial UPR has been widely studied in the field of 
cancer. It serves as an important support system in cancer to 
maintain mitochondrial health, and promote tumor growth 
and proliferation (26). It has been reported that components 
of mitochondrial UPR such as HSP10, HSP60, CLPP 
and LONP1, are overexpressed in various cancers (26).  
Additionally, mitochondrial UPR upregulates the expression 
of growth differentiation factor 15 (GDF-15) in tumor, thus 
promoting the invasion and migration of cancer cells (27). 
Targeting the UPR pathway may be a potentially effective 
treatment for various cancers. However, the activation of 
the UPR adaptive pathways may lead to drug resistance (28).  
Mitochondrial UPR has also been studied in different 
cardiac disease models, and its activation in mammals is 
mediated by the transcription factors CHOP (C/EBP 
homologous protein), ATF4, and ATF5 (1). A study revealed 
that pharmacologic UPR activation reduces MI size and 
improves ventricular function after cardiac reperfusion 
injury in wild-type mice but not in ATF5-deficient mice (29).  
Moreover, ATF5 is a downstream effector of PGC-1α. The 
PGC-1α/ATF5 axis activates mitochondrial UPR, which 
mediates the cardioprotective role under pathological 
cardiac hypertrophy (30). In addition, MRPS5/ATF4 
signaling has been shown to play an important role in 
cardiomyocyte proliferation, cardiac function and heart 
regeneration by regulating cell division-associated gene 
transcription after cardiac injury (31). Conversely, there 
is evidence that UPR may be associated with harmful 
events in the heart. Elevated LONP1 activity is a mediator 
of hypoxia-induced cardiomyocyte apoptosis, while loss 
of CLPP increases the expression of respiratory chain 
subunits and alleviates cardiomyopathy (32,33). Therefore, 
differential regulation of individual components of the UPR 
to alleviate stress responses may provide a promising avenue 
for therapeutic intervention in MI.

Our research identified four key genes associated with 

the UPR pathway that were involved in the occurrence 
of MI, namely, CEBPB, ATF3, TSPYL2 and EIF2S3. The 
AUC values of these 4 genes were all greater than 0.7. In 
addition, the diagnostic model constructed from these 4 
genes showed excellent performance, with an AUC value 
of 0.94, suggesting that these genes have high accuracy 
and specificity in distinguishing AMI patients from 
normal control individuals. Among these genes, CEBPB 
is a member of the bZIP family of transcription factors 
and can promote UPR activation through cooperation 
with the CHOP (34,35). Under mitochondrial stress, 
CEBPB is upregulated and forms a dimer with CHOP, 
which increases the expression levels of mitochondrial 
chaperones and proteases (34,36). CEBPB is involved 
in a variety of BPs, such as regulating cell proliferation 
and differentiation, inflammation, and the expression of 
immune genes (37,38). In addition, CEBPB accelerates the 
atherosclerotic process by increasing the release of oxidized 
low-density lipoprotein, which mediates the secretion of 
inflammatory factors from foam cells (39). In a mouse 
model of atherosclerosis, the expression of CEBPB was 
significantly greater in the atherosclerosis group than in 
the control group, and the expression level increased with 
the aggravation of atherosclerotic lesions (39). In addition, 
it has been reported that the induction of CEBPB leads 
to metabolic deregulation, excess lipid accumulation and 
endoplasmic reticulum stress in a rat model of cardiac 
hypertrophy, and the knockdown of CEBPB could prevent 
impaired cardiac function (40). Moreover, a previous study 
using integrated bioinformatics and machine learning 
algorithms reported that CEBPB plays a critical role 
in the development of ischaemic cardiomyopathy (41). 
These findings are consistent with our findings, as our 
study revealed that CEBPB is highly expressed in the AMI 
group, which may lead to UPR overactivation. However, 
the specific mechanisms underlying these effects need 
further study. ATF3 is a crucial transcription factor and 
a member of the ATF/cyclic adenosine monophosphate 
(cAMP) response element binding family (42). A previous 
study reported that ATF3 plays an indispensable role in 
the PERK/eIF2 signalling pathway of the UPR and that 
the UPR enhances ATF3 expression via p-eIF2-ATF4  
signalling (43). ATF3 is weakly expressed in various cells and 
can be induced in stressed tissues, such as atherosclerotic 
plaques and ischaemic heart tissue (44). ATF3 controls 
the expression of chemokines and cytokines to inhibit 
inflammatory responses, which is beneficial for stressed 
tissues (45). It has been reported that the cardioprotective 
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effects of ischaemic preconditioning are due to the 
activation of adaptive UPR signalling, including ATF3, and 
the deletion of ATF3 abolishes the cardioprotective effects 
of ischaemic preconditioning (46). Our study revealed that 
ATF3 is highly expressed in the AMI group, which may be 
a protective mechanism of the body against this disease. 
In addition, the level of ATF3 is thought to be related to 
atherosclerotic plaque stability, and the expression of ATF3 
in macrophages present in ruptured atherosclerotic plaques 
is lower than that in stable atherosclerotic plaques (47).  
Thus, ATF3 plays a role in both atherosclerosis and 
the UPR and may be a new prognostic biomarker and 
therapeutic target for AMI. EIF2S3 encodes a subunit of the 
eIF2 complex, which is an important translation initiation 
factor that promotes protein synthesis initiation by binding 
with Met-tRNA (48). TSPYL2 is an X-linked gene encoding 
a nucleosome assembly protein that plays important roles in 
regulating cell growth and the DNA damage response (49). 
A previous study revealed that the expression of TSPYL2 is 
increased in the aortas of diabetic Apoe−/− mice and that this 
increase is accompanied by the progressive development of 
atherosclerosis and increased atherosclerotic plaque area. 
Knockdown of TSPYL2 can block the profibrotic effect of 
TGF-β, thus preventing atherosclerosis (50). Thus, TSPYL2 
appears to be an attractive molecular target for treating 
atherosclerosis.

The immune ce l l s  found in  the  heart  inc lude 
neutrophils, dendritic cells, monocytes, T cells, B cells, 
eosinophils, mast cells, and macrophages (51). All of these 
cell types play important roles in maintaining cardiac 
function. Ischaemia induces significant alterations in the 
immune cell landscape in the heart. Our analysis revealed 
that activated memory CD4 T cells, resting NK cells, 
monocytes, activated dendritic cells, activated mast cells and 
neutrophils were highly abundant in the AMI group, and 
resting memory CD4 T cells and gamma delta T cells were 
less abundant than those in the control group. Immune 
activation is often associated with the reprogramming of 
cellular metabolism. Immune cells sense environmental 
and metabolic demands, and induce specialized stress 
responses within the cell, mitochondria serve as the central 
hub of metabolic signaling in cells. It has been reported 
that during stress, mitochondrial UPR promotes rewiring 
of cellular metabolism, such as increased glycolysis, to 
relieve mitochondrial stress and alter cellular metabolism 
to promote survival (7). Enhanced glycolysis enables 
immune cells to produce sufficient adenosine triphosphate 
(ATP) and biosynthetic intermediates to carry out their 

particular effector functions. For macrophages, this includes 
phagocytosis and inflammatory cytokine production, 
for dendritic cells, this includes antigen presentation, 
and for T cells this includes the production of effector 
cytokines. In addition, enhanced glycolysis also occurs 
in activated NK cells and activated B cells (52). Necrotic 
cardiomyocytes following infarction release danger signals 
that activate immune pathways and trigger an inflammatory  
response (53). This promotes adhesive interactions between 
leukocytes and endothelial cells, leading to the extravasation 
of neutrophils and monocytes (53). Subsequently, 
monocytes differentiate into macrophages to mediate the 
development and resolution of inflammation, together with  
neutrophils (53). Mast cells are abundant in coronary 
lesions and participate in plaque rupture (54). Treatment 
with ketotifen (a mast cell membrane stabilizer) reportedly 
reduces ischaemia/reperfusion injury in isolated rat  
hearts (55). Dendritic cells may alter the post-MI 
healing process by activating T lymphocytes, secreting 
inflammatory cytokines and activating fibroblasts (56). A 
previous study reported that the depletion of conventional 
dendritic cells in chimeric mice is related to a reduction 
in infarct size and an improvement in cardiac function 
after MI (56). In addition, CD4+ T cells are thought to be 
closely related to injury size, and RAG1 knockout (KO) 
mice lacking T lymphocytes have smaller MI sizes than 
control mice (57). Among the UPR pathway-related genes, 
CEBPB was positively correlated with neutrophils. CEBPB 
is reported to be crucial for ‘emergency’ granulopoiesis (58). 
CEBPB can promote the differentiation and migration of 
neutrophils and participate in the expression and production 
of inflammatory cytokines in neutrophils (59). A previous 
study reported that in neutrophils from CEBPB knockout 
mice, the levels of IL-6, IL-10, and IL-12 were markedly 
decreased compared to those in neutrophils from wild-type 
mice (60). CEBPB has been shown to form complexes with 
transcription factors such as PU.1 to regulate the expression 
of genes involved in neutrophil differentiation and 
function (61). ATF3 has been shown to enhance neutrophil 
chemotaxis by promoting TIAM2 expression (62).  
Our study revealed that ATF3 was positively correlated 
with neutrophils. However, whether this correlation is 
related to TIAM2 remains to be verified. In addition, 
several drugs or compounds have been reported to exert 
powerful protective effects against cardiovascular disease by 
regulating these biomarkers. Alpha-lipoic acid, a naturally 
occurring compound, has been shown to improve the 
progression of cardiac hypertrophy via inhibiting CEBPB 
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activation (63). Atorvastatin, not only reduces blood lipids 
but also protects hypertrophic cardiomyocytes induced by 
angiotensin II by downregulating CEBPB expression (64).  
Moreover, Panax notoginseng saponins have been 
reported to improve cardiac function and fibrosis in MI 
rats via regulating ATF3/MAP2K3/p38 MAPK signaling  
pathways (65). However, the effects of these drugs or 
compounds on the mitochondrial UPR in the post-infarcted 
heart are still unknown, and the mitochondrial UPR may be 
a new target for the treatment of AMI.

A previous study reported that AMI can be further 
subclassified by a suspected pathophysiology (66). Type 
1 MI is caused by atherothrombotic coronary artery 
disease and is usually initiated by atherothrombotic 
plaque rupture (66). Type 2 MI is caused by an acute 
imbalance in oxygen supply and demand without  
atherothrombosis (66). Furthermore, we analysed the 
expression profiles of genes related to the UPR pathway, 
immune cell infiltration, and inflammatory cytokine 
secretion in patients with AMI. Our results indicate that 
there are some differences in these characteristics among 
AMI patients in different clusters. Compared with those in 
cluster 2, the numbers of monocytes and neutrophils, which 
play important roles in atherosclerosis, were significantly 
greater in cluster 1, and the levels of UPR pathway-related 
genes and inflammatory factors were increased. Therefore, 
we speculate that UPR-related genes play important roles 
in the occurrence and development of atherosclerosis. 
However, due to the lack of clinical information on patient 
samples, the regulatory mechanism of AMI subtypes 
requires further study.

There are some limitations in this study that should be 
acknowledged. First, our study selected only UPR-related 
genes from the PathCards database. Thus, the identification 
of more UPR-related genes is needed. Second, our results 
were derived from relatively small sample sizes, which may 
cause deviations in the experimental results. However, we 
carried out internal and external validations to compensate 
for this limitation. Third, this is a bioinformatics study 
that is based on secondary mining and analysis of previous 
data and has not been experimentally verified. Further 
investigations based on animal experiments and clinical 
studies are needed.

Conclusions

In the present study, we analysed the microarray data of 

AMI patients and revealed that the relationships among the 
expression of genes related to the UPR pathway, immune 
cell infiltration, and inflammatory factor secretion were 
closed in patients with AMI. CEBPB, ATF3, EIF2S3, and 
TSPYL2 were identified as novel diagnostic biomarkers for 
AMI. Moreover, a diagnostic model based on these genes 
that has high applicability value for identifying AMI patients 
was constructed. Finally, we constructed a nomogram with 
these four biomarkers to predict the risk for estimating 
the status of patients with AMI. Our study provides new 
insights into the underlying mechanisms of AMI and lays a 
foundation for therapeutic strategies for AMI patients. 
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