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Endothelial cells line every blood vessel and thereby serve as an interface between

the blood and the vessel wall. They have critical functions for maintaining homeostasis

and orchestrating vascular pathogenesis. Atherosclerosis is a chronic disease where

cholesterol and inflammatory cells accumulate in the artery wall below the endothelial

layer and ultimately form plaques that can either progress to occlude the lumen or

rupture with thromboembolic consequences – common outcomes being myocardial

infarction and stroke. Cellular communication lies at the core of this process. In this

review, we discuss traditional (e.g., cytokines, chemokines, nitric oxide) and novel

(e.g., extracellular vesicles) modes of endothelial communication with other endothelial

cells as well as circulating and vessel wall cells, including monocytes, macrophages,

neutrophils, vascular smooth muscle cells and other immune cells, in the context of

atherosclerosis. More recently, the growing appreciation of endothelial cell plasticity

during atherogenesis suggests that communication strategies are not static. Here,

emerging data on transcriptomics in cells during the development of atherosclerosis

are considered in the context of how this might inform altered cell-cell communication.

Given the unique position of the endothelium as a boundary layer that is activated in

regions overlying vascular inflammation and atherosclerotic plaque, there is a potential

to exploit the unique features of this group of cells to deliver therapeutics that target the

cellular crosstalk at the core of atherosclerotic disease. Data are discussed supporting

this concept, as well as inherent pitfalls. Finally, we briefly review the literature for other

regions of the body (e.g., gut epithelium) where cells similarly exist as a boundary layer but

provide discrete messages to each compartment to govern homeostasis and disease.

In this light, the potential for endothelial cells to communicate in a directional manner is

explored, along with the implications of this concept – from fundamental experimental

design to biomarker potential and therapeutic targets.
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INTRODUCTION: ENDOTHELIAL CELLS AS
GATEKEEPERS

Endothelial cells (ECs) lie at a critical interface between the
circulating blood and cellular milieu below, and hence serve
as gatekeepers of vascular biology (1). Lining every blood
vessel throughout the human body, this linked network of
cells performs key roles unique to the local environment to
maintain organ homeostasis. In large and medium-sized arteries,
endothelial cells function as an anti-thrombotic physiological
barrier, are sensors of mechanical forces, oxygen tension and
nutrient availability, serve as sentinels of infectious threats, and
mount appropriate responses to distortions in normal physiology
to ensure tissue viability (2). Intercellular communication is at
the core of this homeostatic process. Through soluble mediators
such as nitric oxide and other small molecules, release of
growth factors and cytokines, production or degradation of
extracellular matrix, and secretion of extracellular vesicles (EVs)
containing nucleic acids, proteins, and lipids, endothelial cells
can govern one another, nearby cells in the local milieu, and
cells located in remote tissues (1, 3, 4). Control of permeability
(e.g., glycocalyx and junctional proteins), transcytosis (e.g.,
transcellular transport), and basement membrane composition,
are additional signaling hubs where endothelial cells govern
communication between the blood and tissue (5–7). Completing
this communication loop, the endothelium is also exquisitely
sensitive to mechanical and biochemical signals in their
microenvironment. Regardless of whether an EC communication
strategy is just being uncovered (e.g., EVs) or has been
investigated for decades (e.g., nitric oxide), they each play
a critical role in conditions such as atherosclerosis where
vascular homeostasis is dysregulated. In the following sections,
the nature of endothelial communication – both autocrine
and paracrine – is explored, with a specific focus on novel
modes of communication. Additionally, we will discuss the
impact of cellular plasticity on cell communication and will
consider approaches to exploit these lines of communication
therapeutically. Finally, we will determine whether there is
evidence for directionality of the messages that are sent and
received (Figure 1). Together, this review will provide the
reader with a highly focused update on the dynamic role of
the endothelium as a maestro in cellular communication in
atherosclerosis and provide provocative insights into how these
signals might be intercepted or modulated to mitigate disease.

Abbreviations: CD, cluster of differentiation; EC, endothelial cell; NP,

nanoparticle; EndMT, endothelial-to-mesenchymal transition; EV, extracellular

vesicle; EZH2, enhancer of zeste homolog 2; SIRT1, sirtuin 1; ICAM-1, intercellular

adhesion molecule-1; IL, interleukin; PAR3, partitioning defective 3; KLF2,

Kruppel-like factor 2; LDL, low-density lipoprotein; TAZ, tafazzin; VCAM-1,

vascular cell adhesion molecule 1; VE-cadherin, vascular endothelial-cadherin;

YAP, yes-associated protein; MerTK, MER proto-oncogene tyrosine kinase;

CaMKIIy, Ca2+/calmodulin-dependent protein kinase II; SR-B1, scavenger

receptor class B type 1; FMD, flow-mediated dilatation; TGF, transforming growth

factor; TNF, tumor necrosis factor; LDL, low density lipoprotein; EndICLT,

endothelial-to-immune cell like transition; MAPK, mitogen-activated protein

kinase; ERK1/2, extracellular signal-regulated kinase; HIF-1, hypoxia-inducible

factor.

ROLE OF THE ENDOTHELIUM AND
CELL-CELL CROSSTALK IN HEALTH AND
ATHEROSCLEROSIS

In its healthy state, the endothelium is quiescent and autocrine
and paracrine communication emanating from ECs preserves
organ function [reviewed in (8)]. Endothelial quiescence is a
process that must be actively maintained – it is not a “default”
setting. As Ricard et al. elegantly discuss in their review (8),
single cell sequencing is highlighting the regional- and organ-
specific heterogeneity of ECs (i.e., lymphatic vs. venous vs.
arterial and large-vessel vs. capillary) (9) and is uncovering
the distinct signaling pathways required for EC quiescence.
For example, in the vasculature, endothelial barrier function
and cell fate is maintained by the Angiopoietin/Tie2 pathway
and limitation of TGF-β signaling, respectively, among others
(10, 11). The importance of preserving endothelial quiescence
has been well-illustrated: loss of endothelial nitric oxide
synthase accelerates murine atherosclerosis and aortic aneurysm
formation (12), while endothelial-specific MAPK1/2 (ERK1/2)
knockout in mice has a catastrophic impact, with hypertension,
decreased endothelial nitric oxide synthase expression, increased
endothelin-1 expression, and death within 5 weeks (13).
Bi-directional cellular communication also participates in
endothelial homeostasis. Beyond autocrine signals from the
endothelium, monocytes patrolling the apical surface of the
endothelium have been shown to protect against endothelial
death (i.e., apoptosis) and limit inflammation – with a large
artery model suggesting these cells possibly serve a housekeeping
function to preserve endothelial integrity in the face of
hyperlipidemia and atherosclerosis (14). Conversely, loss of
endothelial quiescence causes a shift in metabolism and loss
of critical protective communication via soluble mediators,
including nitric oxide (15, 16). Equally important to endothelial
homeostasis is physiologic high shear stress from laminar
blood flow, modulated in part by the anti-inflammatory and
cytoprotective actions of the transcription factor, Kruppel-like
factor 2. Reduced or oscillatory shear stress, as found in arterial
branch points and curvatures, renders the artery prone to
atherosclerotic plaque development. Recent systems biology and
omics approaches are revealing that endothelial responses to low
shear stress involves activation of developmental pathways such
as WNT, Notch, HIF1-α, and Hippo-YAP-Taz [reviewed in (17)]
– consequently, these once dormant embryonic programs lead to
altered endothelial signaling and undoubtedly contribute to the
altered EC communication prevalent in atherosclerotic plaques.

Atherosclerosis is a disease of aging and cellular senescence
(18). Atherosclerotic plaques are a complex collection of
lipids, extracellular matrix, cells, and cellular debris that
accumulate in the vessel wall (19). Plaque formation has
a predilection for vascular branch points, where ECs are
exposed to disturbed laminar blood flow, resulting in activated
endothelial phenotypes (20). Activation of the endothelium
can include the following core changes: (1) upregulation of
proinflammatory cytokines (e.g., IL-1β, TNF-α) and chemokine
production; (2) expression of adhesion molecules such as
VCAM-1 and ICAM-1, which are critical for the recruitment
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FIGURE 1 | The endothelial cell as a communication hub in quiescent and activated states. Central endothelial cell with apical (hatched arrow) and basolateral (solid

arrow) release of mediators [e.g., proteins (lines), gases and small molecules (dots), extracellular vesicles (circles containing cargo)]. Communication differs depending

on whether the endothelium is quiescent or activated (e.g., regions prone to atherosclerosis) and can affect several cell types. Endothelial function and communication

are affected by several lifestyle factors such as physical activity, sleep hygiene, smoking, and diet. Atherosclerotic plaque development is a function of cellular

communication and represents a multicellular response to environmental, genetic, and epigenetic cues. Green: mediators and factors that actively maintain endothelial

quiescence. Red: mediators and factors that promote endothelial activation.

of circulating immune cells; (3) loss of an anti-thrombotic
surface; (4) upregulation of class II HLA molecules with
consequent function in antigen presentation; and (5), loss of
barrier integrity (21). The dysfunctional vascular endothelium
as a driver of atherogenesis has been recently reviewed (22).
In contrast to classic dogma citing loss of endothelial barrier
integrity and passive movement of low-density lipoprotein (LDL)
into the vessel wall (23, 24), transport of LDL cholesterol
(a critical event in atherogenesis) requires active endothelial
transcellular transport via expression of scavenger receptor class
B type 1 (SR-B1) (25–27) and potentially other molecules
such as activin-like kinase 1 (28). In regions of endothelial
activation, cellular communication mediated by expression of
adhesion molecules and chemokines leads to recruitment of
inflammatory cells, including neutrophils (29) and monocytes
(30), and accumulation and maintenance of macrophage
populations through survival/proliferation signals (31, 32). New
data is emerging however, that beyond the prototypic adhesion
molecules, ECs have the intrinsic capacity to form “hotspots”
for transendothelial neutrophil migration through the formation
of junctional membrane protrusions in regions of high Rac1
activity (33). The process is asymmetric within the endothelial
luminal and abluminal surfaces and heterogeneous between ECs,
with more comprehensive mechanistic understanding still being
unraveled (34). While beyond the scope of this review, the reader
is referred to work from the Muller laboratory delineating the

role of the lateral border recycling compartment – a key region
communicating transmigration of leukocytes across ECs (35).

While there are well-described roles for endothelial-
monocyte/macrophage communication through cell adhesion
molecules, cytokines and chemokines in atherosclerotic plaques
(36), more recently, it has been shown that local, but not
systemic, production of colony-stimulating factor 1 from
endothelial and smooth muscle cells provide macrophage
survival signals that drive macrophage proliferation and
atherosclerotic plaque progression (37). Atherosclerotic plaque
progression is a complex process and develops in response
to local and systemic intercellular communication. For many
diseases – atherosclerosis included – emerging studies have
focused on nanoparticle sized packages of information (EVs) and
how intercellular communication is regulated through secretion
and uptake of EVs and their contents (4). Endothelial-derived
EV communication is beginning to be understood in the context
of models of atherosclerosis (38). EVs are heterogeneous and
include exosomes, derived from the multivesicular body, and
microparticles, derived from budding and excision of cell
membrane. EV cargo contains a range of biologically relevant
material, including lipids, nucleic acids (e.g., microRNA), and
proteins. Of these, microRNA has been studied extensively.
These short sequences of non-coding RNA bind to the 3′

untranslated regions of mRNAs via their seed sequences and
destabilize mRNAs or repress their translation into protein.
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Each microRNA typically has multiple mRNA targets, and
thus microRNAs are considered as microregulators of health
and disease (39, 40). The microRNA content of EVs has
begun to be explored in the context of atherogenesis, and
comprehensive reviews of their role in atherosclerosis (41) and
carotid artery atherosclerotic disease (42) are available. This
form of cellular crosstalk is also beginning to explain gaps in our
understanding of acute myocardial infarction pathogenesis. For
example, VCAM-1 positive endothelial-derived EVs enriched
in microRNA-126 are responsible for the rapid neutrophil
mobilization from the spleen, making these EVs a potential
therapeutic target to limit infarct size (43).

In vitro models are the simplest way to examine EV
communication. This reductionist approach has revealed that
EVs derived from quiescent ECs have different effects on cells
than those derived from inflamed (e.g., TNF-α stimulated) ECs
(44). For example, under healthy quiescent conditions, ECs
suppress monocyte activation by release of EVs containing
anti-inflammatory microRNAs (45, 46). Similarly, ECs can
communicate atheroprotective microRNAs to vascular smooth
muscle cells via EVs (47). When ECs are activated with pro-
inflammatory cytokines or oscillatory shear stress, they release
EVs containing miR-92a, which cause macrophage activation,
increased lipoprotein uptake, and decreased migration (48).
In response to stress from serum-starvation, ECs release EVs
containing the inflammatory adhesionmolecule VCAM-1, which
drive inflammatory and senescent pathways in vascular smooth
muscle cells (49). Although in vitro studies suggest that
endothelial-derived EVs may serve as an important mode of
intercellular communication, they lack the complexity of animal
models. To that end, reporter systems in mice and zebrafish may
provide new opportunities to track endothelial-derived EVs and
better evaluate intercellular communication in complex disease
phenotypes such as atherosclerosis (50–52).

ENDOTHELIAL PLASTICITY IN
ATHEROSCLEROSIS: ALTERED
CELL-CELL COMMUNICATION?

Cellular plasticity and diversity within atherosclerotic plaques
has been increasingly appreciated in recent years (53). Single
cell RNA sequencing is a robust tool that has revealed in
intricate detail the complexity of the atherosclerotic plaques
[reviewed in (54)]. Lineage-tracing studies are supporting
the notion that cellular identities are on a continuum and
have the potential to “transform”, where cells acquire the
phenotype and properties typically attributed to another cell
[e.g., macrophage subsets (55, 56) and vascular smooth muscle
cell plasticity and plaque development (57, 58)]. Notably, ECs
can undergo partial or complete endothelial-to-mesenchymal
transition (EndMT), where classic cell-cell junction proteins
are lost, and mesenchymal markers are gained. This is often,
but not always, associated with enhanced migratory capabilities
and delamination from the endothelial monolayer, allowing
cells to migrate into the plaque. Ligand-receptor interactions
from transcriptomics are likewise informing our understanding

of cellular communication in states of health and disease
in the cardiovascular system (59). The Giannarelli laboratory
studied the immune landscape of human carotid atherosclerotic
plaques and found distinct T cell and macrophage populations
that differed from the blood and importantly, the putative
cell-cell interactions occurring in plaques from patients that
had clinical cerebrovascular events (i.e., strokes) (60). The
Lutgens laboratory observed the diversity of the endothelium
overlying atherosclerotic plaques in both mice and humans, with
electron microscopic images showing greater abnormalities in
early plaques and at the shoulder regions (61). The junctional
disruptions and large transcellular endothelial pores seen in
early plaques and aggravated on the shoulders of advanced
plaques are very likely to influence communication between the
blood and the medial layer of the vessel wall (61). Moreover,
these locations for endothelial transformations may correspond
to the extensive proatherogenic endothelial reprogramming in
response to disturbed flow that has been revealed by single-cell
RNA and chromatin accessibility studies (62). Indeed, Andueza
et al. show EC responses to disturbed flow are highly plastic,
with evidence that disturbed laminar flow leads to a transition
to pro-inflammatory cells, endothelial progenitor cells, EndMT,
and even a novel immune-like cell (EndICLT) (62). While
lineage tracing studies will be needed to confirm the origin of
EndICLT cells, prior lineage tracing studies have shown that
EndMT occurs during atherosclerotic plaque development in
mice (63). Moreover, analysis of human tissue has shown that
EndMT correlates with an unstable plaque phenotype, which is
likely driven by altered collagen and matrix metalloproteinase
expression causing decreased cap thickness (63). However,
EndMT also contributes to formation of the fibrous cap and
may therefore have protective, as well as detrimental roles (64).
As TGF-β is a key driver of EndMT, there is work showing
that limiting endothelial responses to TGF-β (i.e., by endothelial-
specific Tgfbr1/2 knock out in mouse models of atherosclerosis)
limits EndMT, decreases inflammation and plaque progression,
and even facilitates plaque regression (65). However, TGF-β is
also a potent anti-inflammatory cytokine, and a more nuanced
therapeutic target will therefore be required (66). What is clear,
however, is that endothelial activation and cellular plasticity
are drivers of atherosclerotic disease. Whether this cell identity
shift is truly “fluid” and reversible is unknown – it is certainly
conceivable, given the observation thatmesenchymal to epithelial
transition occurs in development and reprogramming (67).
Regardless, given ongoing cell-cell communication within the
atherosclerotic plaque environment, ECs transitioning to other
functional cell phenotypes will undoubtedly send and receive
different messages to/from their neighboring cells. As seen in
in vitro models, ECs induced to undergo EndMT produce a
different EV cargo that affect the metabolism and angiogenic
potential of naïve recipient ECs (68). We must now look at more
complex tissue to understand how altered endothelial signals
can be harnessed to detect disease earlier, intervene, and/or
identify targets for plaque stabilization or regression. To that
end, Depuydt et al. performed single cell transcriptomics and
chromatin accessibility on human carotid atherosclerotic plaques
and not only identified 4 distinct endothelial populations, but
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also utilized ligand-receptor interactions between cell types to
predict endothelial communication with myeloid and smooth
muscle populations (53). Together, these studies make the case
for continued work to focus on EC plasticity and consequent
EC-myeloid and EC-smooth muscle cell communication in
atherosclerotic disease. Moreover, there is emerging evidence
that EVs act on ECs to govern cell fate/plasticity – this
will undoubtedly affect the communication loop between the
endothelium in both a local and systemic manner (68, 69).

DIRECTIONALITY OF ENDOTHELIAL
COMMUNICATION – A PROVOCATIVE
IDEA WITH IMPLICATIONS FOR
CELL-CELL CROSSTALK?

Cellular polarity is common across tissues, particularly for cells
that serve as boundary layers. In the vasculature, endothelial
cells have apical-basal polarity to establish a barrier between
the circulation (i.e., blood) and tissues (70). Key functions
are performed by each surface, with polarized expression of
anticoagulant factors, receptors, ion channels, mechanosensors,
and junctional proteins conferring regional properties (71).
Importantly, uniform laminar and disturbed laminar blood
flow have distinct spatio-temporal shear stress profiles and
impart unique frictional forces that are sensed by ECs
through multiple mechanosensors, including Peizo1 (72, 73).
Endothelial mechanosensing contributes to the regulation of
many aspects of EC biology, including shape, orientation, and
polarity. Recent work has shown that PAR3 expression by
ECs governs endothelial polarity relative to the direction of
blood flow but not apical-basal polarity (74). Conversely, Scrib
is a polarity protein that helps to maintain apical-basolateral
polarity, endothelial quiescence, and confers atheroprotection
(75). Notably, the endothelial secretome is also polarized,
with proteomic analysis showing that extracellular matrix
components are predominantly secreted basally while the apical
proteome contains a significant proportion of EV proteins
(76). Further, ECs respond to inflammatory stimuli (TNF-α)
differentially depending on whether the apical vs. basolateral
surface is exposed (77). Endothelial-derived EVs contribute to
the circulating secretome and carry cargo capable of governing
endothelial function in a paracrine and perhaps endocrine
manner, as well as other cells: truly, EC-EVs have been
referred to as “keepers of health” as well as “messengers
of disease” (50). As ECs are situated at the interface of
the blood vessel lumen and wall, it is conceivable they
selectively load and directionally release EVs containing different
cargo depending on the stimulus (Figure 2). Other cells in
similar physiological environments, such as retinal pigmented
epithelium and intestinal epithelial cells, demonstrate polarized
release of exosomes containing differential protein content
(80, 81). Support for the concept that ECs communicate
with directional particle release is further supported by Yun
et al. who showed human brain microvascular endothelial
cells release microparticles (microvesicles) constitutively and
in response to pro-inflammatory cytokines and critically, that

protein content and functional effects (permeability) were
different between apical and basolateral sources (82). Given
the unique location of ECs, communication from activated
cells might reflect critical loco-regional information and this
information may be shared through distinct messages via apical
and basolateral EV release – providing unique candidates
for diagnostic and therapeutic targets to identify at-risk
patients and intervene at different stages of atherosclerotic
plaque development.

THE ENDOTHELIUM AS A THERAPEUTIC
TARGET IN ATHEROSCLEROSIS: CAN WE
EXPLOIT EV-BASED CELL-CELL
CROSSTALK?

It is clear the endothelium actively governs cardiovascular
health. From pro-homeostatic signals such as nitric oxide
release (1, 15), to atheroprotective EVs (45, 47), to molecules
that facilitate resolution of inflammation (83–85), there
are several means by which endothelial cross-talk is
beneficial. As the endothelium becomes activated with
transition to distinct phenotypes, cellular communication
is altered, such that these ECs now have the capacity to
mediate atherosclerotic disease through cell-cell crosstalk.
Strategies should therefore be designed to preserve or “boost”
homeostatic roles of the endothelium or alternatively, target
dysregulated endothelium to modulate atherosclerotic
plaque development. The concept that EVs participate
in intercellular communication is firmly established and
multiple groups are exploring their diagnostic and therapeutic
potential. As these lipid bilayers are ubiquitously released
throughout the body, protect their molecular cargo from
degradation, carry surface markers identifying the parent
cell, and can be employed as delivery systems, they have
tremendous potential in multiple disease applications
(86, 87). If we consider the profound significance of the
endothelium located at the interface of the vessel wall where
it participates in systemic (i.e., blood) and local (i.e., vessel
wall) communication, it may be that modifying endothelial
function is a viable target in cardiovascular disease. Here,
we consider a few novel endothelial-specific approaches in
the context of EV communication and atherosclerosis: (1)
designing treatments that preserve endothelial quiescence
and limit senescence; (2) interrupting EC communication
promoting early atherosclerotic plaques; and (3), selectively
targeting regions of activated endothelium to deliver plaque-
stabilizing/regression therapies to the atherosclerotic plaque
lying below.

Preserving Endothelial Quiescence
Through EV-Mediated Delivery of Bioactive
Molecules
Identifying EV components that govern endothelial health may
be difficult as few studies have focused on this process. However,
we can look to recent work on the protective effects of a
healthy lifestyle on atherosclerotic disease, such as nutrition,
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FIGURE 2 | Endothelial-derived extracellular vesicles (EVs) contribute to cell-cell communication that can be atheroprotective (green) or atheroprone (red). Endothelial

cells (ECs) release EVs containing different cargo depending on whether they are activated or quiescent, and these have effects on recipient cells [e.g., monocytes,

macrophages, and vascular smooth muscle cells (VSMC)]. For example, activated ECs release EVs that deliver pro-senescence signals such as microRNA-21 and

microRNA-217 to other ECs (78) or separately, release EVs containing microRNA-92a capable of inducing macrophage inflammation and impaired migration (48). In

contrast, quiescent ECs release EVs containing cargo such as microRNA-10a that limit monocyte activation (45) or EVs containing microRNA-126-3p to decrease

VSMC proliferation and neointima formation (79).

sleep, stress reduction and exercise, to provide some clues
on where to start (88). To date, a prototypic functional
measure of endothelial health is flow-mediated vasodilatation
(FMD). Human studies exploring Mediterranean diets have
demonstrated the benefits on EC function when assessed by
FMD (89). More recently, the benefits of carbohydrate restriction
improved FMD, markers of endothelial activation, and decreased
endothelial microparticles in subjects with type 2 diabetes (90).
Sleep is also critical for health. Key research by the Swirski
laboratory has emerged showcasing the importance of sleep
quality in the control of hematopoiesis and atheroprotection
(91). Endothelial health is specifically affected by altered
circadian rhythms and sleep deprivation, with reduced FMD
observed by several investigators (92, 93). Notably, aerobic
exercise is considered a particularly effective counterstrategy
through its ability to limit endothelial inflammation and bolster
nitric oxide production (94). Clearly, exercise affects multiple
cellular populations, with cardiovascular health depending upon
orchestrated crosstalk between them (95). A comprehensive

evaluation by Brahmer et al. has demonstrated leukocyte,
platelet, and endothelial-derived EVs increase in response to
exercise and represent a complex communication network that
could be exploited to preserve endothelial health (96). This
concept of “exerkines” has been recently established in models
of cardioprotection, which showed that both exercise training
or laminar shear stress directly enhanced EV-microRNA-342-
5p in ECs to provide cardiomyocyte protection (97). Whether
or not there is a similar beneficial autocrine effect on ECs is
unknown (97). As we seek to understand how cardiovascular
fitness can be preserved through maintenance of endothelial
health and potentially EV-based therapeutics, it would be prudent
to discern whether novel mediators act on ECs alongside other
cellular targets. In this light, some of the most promising work
might evolve from studies determining EV cargo produced by
senescent ECs – key insights precisely because of the paracrine
induction of senescence on younger cells through a “bystander
effect” from aged cells (98). Reversing or preventing effectors of
senescence would thereby limit “spread” and preserve endothelial
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health. Indeed, recent work by Mensa et al. determined that
senescent endothelial EVs spread pro-senescence signals through
microRNA-21 and−217, affecting DNA methylation and cell
replication, and these have an age-specific human biomarker
correlate when studied across subjects 40–100 years of age (78).
The therapeutic potential of using EVs to program target cells
with anti-senescence or rejuvenation strategies with a range of
natural EV sources (e.g., young donor-derived) and artificial (e.g.,
nanomedicines) is an area of active exploration and promise
(99). Taken together, there are multiple early insights that can be
further explored from work being done on circadian rhythms,
exercise, nutrition and aging to target endothelial health and
prevent atherosclerosis.

Interrupting Early Atherosclerosis
An additional target to limit atherosclerotic disease would be
honing endothelial-directed strategies to interrupt early plaque
development. The accumulation of LDL in the subendothelial
space would be a reasonable target. Antagonism of endothelial
SR-B1 (25–27) or downstream regulators of LDL transcytosis and
diverting LDL transcytosis to endolysosomal degradation (100)
could be promising approaches, but will require teasing apart the
pathways used by SR-B1 to effect the anti-atherogenic process of
reverse cholesterol transport (6). Alternatively, immunotargeting
activated ECs provides a strategy for delivering therapies to
atheroprone regions. While not new (101), this concept has
renewed potential in the era of EVs and nanomedicines.
Recent work by Distasio and colleagues demonstrated VCAM-
1-targeted gene delivery of nanoparticles (NPs) containing the
anti-inflammatory cytokine interleukin-10, localized to inflamed
ECs and atherosclerotic plaques (102). The Fang laboratory and
others have done elegant work over the past decade to not
only identify that disturbed flow-induced microRNA-92a causes
endothelial dysfunction (103, 104), but also recently reported
VCAM-1 targeted NPs can preferentially deliver microRNA-92a
inhibitors to inflamed ECs and reduce aortic atherosclerotic
plaque development in a murine model (105). Considering
endogenous sources, there is certainly promise that endothelial-
derived EVs play roles in the progression of atherosclerosis
(106); by focusing on those that are considered beneficial such as
microRNA-10a (45) or microRNA-126 (79, 107) and what drives
their expression, we may likewise find strategies to interrupt early
atherogenesis. Early work from the Fish laboratory revealed that
microRNA-146 repressed endothelial activation (108), with later
in vivo work showing its importance in restraining EC activation
and atherosclerosis (109). As highlighted, targeting the activated
endothelium with site-directed approaches to limit atherogenesis
has some clear promise – at least in pre-clinical models.
Selectively targeting advanced atherosclerotic plaques will have
different, but perhapsmore clinically relevant, objectives; namely,
to stabilize and protect from rupture.

Selective Targeting Over Advanced Plaque
The advanced atherosclerotic plaque has unique biology with
distinct therapeutic targets that are emerging. One heavily
studied target is microRNA-33 (110, 111). Studies using non-
human primates have demonstrated that pharmacological

inhibition of microRNA-33 can favorably improve cholesterol
profiles, with the potential for reducing cardiovascular disease
(112). Further insights from the Moore laboratory have shown
that microRNA-33 silencing reprograms the immune cell
landscape in atherosclerotic plaques to promote regression
(113). Intriguingly, ECs might serve as a “trojan horse” for
anti-microRNA-33 therapy: using adenoviral delivery, ECs can
be steered to release exosomes containing anti-microRNA-33a-
5p that transfer their contents to macrophages and vascular
smooth muscle cells to enhance cholesterol efflux (114).
Beyond the microRNA-33 family, additional novel targets exist
within resolution biology pathways. Defective efferocytosis
(clearing of the dead cells) has been associated with advanced
atherosclerotic plaques and is considered the linchpin in plaque
vulnerability (115). EVs from cardiac progenitor-derived cells
enhance macrophage efferocytosis through microRNA-26 to
sustain expression of a key efferocytosis receptor (MerTK)
(116). NPs containing small interfering RNA targeting a
macrophage molecule (CaMKIIy) can improve efferocytosis,
decrease necrotic core area, and increase fibrous cap thickness
– signs of atherosclerotic plaque stability – in a preclinical
model of atherosclerosis (117). Certainly, macrophage-
targeted nanomedicine holds unique promise (118). Work
from the Leeper laboratory has demonstrated that anti-CD47
(pro-efferocytic therapy), delivered systemically (119, 120)
or in a macrophage-specific nanotube therapy (121), holds
promise in animal models of atherosclerosis, while human
data has suggested anti-CD47 therapy reduces carotid artery
inflammation (122). Whether the endothelium can or should be
exploited for these delivery methods remains to be determined.
Within the sphere of resolution biology, pro-resolving lipid
mediators such as the resolvins and maresin, have also shown
promise (85, 123, 124). While several papers have focused on the
effect these mediators have on macrophage function (125–127),
it is notable that endothelial cells release resolvin-D1 as a
pro-resolution response to a range of low-density lipoproteins
(84). Given the ongoing intercellular communication regulated
by the endothelium over the lifetime of an atherosclerotic plaque,
it behooves us to determine how ECs govern efferocytosis and
resolution of inflammation. Lastly, understanding how the
endothelium governs plaque stabilizing features will likewise
provide new therapeutic targets. Stable plaque phenotypes can be
induced through endothelial-specific targets, with EC-deletion of
the P2Y2 receptor (regulates VCAM-1 expression and vascular
inflammation) (128) and EC-deletion of CD40 (leukocyte
adhesion) (129). MicroRNA have also been implicated, with
microRNA-210 and−21 both showing the potential to stabilize
fibrous caps in advanced atherosclerotic plaques (130, 131).
Lastly, sophisticated work from the Owens laboratory has shown
that endothelial cells can undergo EndMT and contribute to
atherosclerotic fibrous cap stability as a means to compensate,
at least for a time, the role usually played by smooth muscle
cells (64). Whether we can use ECs as the “trojan horse” to
drive any of these processes through specific EV cargo requires
exploration. Importantly, understanding the nature of distinct
endothelial crosstalk with cells in both the luminal and abluminal
space may yield additional critical insights and new targets.
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DISCUSSION: CHALLENGING DOGMA
FOR NOVEL INSIGHTS

As discussed in the preceding paragraphs, ECs are dynamic,
they anchor polarized communication hubs (e.g., “hot spots” for
leukocyte transmigration) and have the capacity to shift identity
and transform their regional ultrastructure. In the context of
atherosclerotic plaque progression, where the microenvironment
is continuously evolving, the endothelium likewise can provide
dynamic responses both locally and systemically. One challenge
will be to improve upon insights from single-cell transcriptomics
to distinguish between the endothelium within the vessel
lumen vs. that within the adventitia or vasa vasorum (58,
132). For this, we will need emerging techniques such as
microdissection, spatial transcriptomics (133) and imaging mass
spectrometry (134) to provide loco-regional information on
endothelial phenotype and function in atherosclerosis. Being
able to target the endothelium in a site-specific manner will be
a critical advance for any therapeutic target. In this way, NPs
that can target ECs for robust genome editing holds promise
(135). Ongoing work will be required to better understand the
mechanisms of EC-enriched NP or EV uptake, followed by
evaluation in large animal models. In this light, it is encouraging
that endothelial small interfering RNA delivery in non-human
primates can be performed using NPs that target multiple
organs (136). EV- or NP-based approaches will ultimately
need to target regions of activated endothelium, and in this
way, should capitalize on VCAM-1 expression for therapies or
molecular imaging (105, 137–139). More recent work on the
endothelial transcriptome suggests that epigenetic targets exist
for anti-atherogenic therapy such as EZH2 antagonism and
SIRT1 agonism – either through epigenetic drugs or epigenetic
editing [reviewed in (140)]. If endothelial communication is
distinct between the luminal (i.e., circulation) and abluminal
(i.e., vascular wall) environments, then it is conceivable that
therapies will need to consider how to exploit directional
communication. Moreover, with respect to EVs, it will be
imperative to improve our rudimentary understanding of EV
biogenesis, cargo loading, cellular uptake, and processing (3, 4,
141), done in accordance with standards set by the research field
(e.g., MISEV2018 guidelines) (142). Reductionist approaches
used to study endothelial function have historically collected
supernatants from plate-grown cells. As we look to better
understand EC communication in distinct environments, it will

be important to determine whether and how mediators are
released in a polarized fashion. More sophisticated approaches
will need to incorporate other cell types, extracellular matrix
proteins, and flow. In this way, we may need to move to organ-
on-a-chip methods (143) to better elucidate the ideal endothelial
communication strategy we wish to either boost or interrupt.
Likewise, more complex animal models will be required to track
endothelial communication and target endothelial gene editing
accordingly (135, 144). While these suggestions add inherent
complexity to our research paradigms, they will serve useful as
we strive to identify circulating biomarkers of endothelial health
and disease or novel targets that directly affect the endothelium

and/or can be conveyed across this strategic layer to target
cells below.
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