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Abstract

Selection for resource conservation can shape the coding sequences of organisms living in nutrient-limited environments.
Recently, it was proposed that selection for resource conservation, specifically for nitrogen and carbon content, has also
shaped the structure of the standard genetic code, such that the missense mutations the code allows tend to cause small
increases in the number of nitrogen and carbon atoms in amino acids. Moreover, it was proposed that this optimization is
not confounded by known optimizations of the standard genetic code, such as for polar requirement or hydropathy. We
challenge these claims. We show the proposed optimization for nitrogen conservation is highly sensitive to choice of null
model and the proposed optimization for carbon conservation is confounded by the known conservative nature of the
standard genetic code with respect to the molecular volume of amino acids. There is therefore little evidence the
standard genetic code is optimized for resource conservation. We discuss our findings in the context of null models
of the standard genetic code.
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The standard genetic code (SGC) exhibits numerous opti-
mizations (Freeland et al. 2003). For example, the missense
and frameshift mutations allowed by the SGC tend to pre-
serve key physicochemical properties of amino acids, such as
polar requirement, hydropathy, and to a lesser extent, mo-
lecular volume (Haig and Hurst 1991, 1999; Geyer and
Madany Mamlouk 2018; WneRtrzak et al. 2019; Bartonek et
al. 2020; Xu and Zhang 2021a). Recently, an additional op-
timization was proposed, namely for resource conservation
(Shenhav and Zeevi 2020). Motivated by the observation
that selection for resource conservation can shape the cod-
ing sequences of organisms living in nutrient-limited envi-
ronments (Mazel and Marlière 1989; Elser et al. 2006; Bragg
and Wagner 2007; Lv et al. 2008; Li et al. 2009; Grzymski and
Dussaq 2012; Mende et al. 2017; Hellweger et al. 2018), it was
hypothesized that selection for resource conservation has
also shaped the structure of the SGC, such that the missense
mutations the SGC allows tend to cause small increases in
the number of nitrogen and carbon atoms in amino acids.
Moreover, it was hypothesized that this optimization is not
confounded by known optimizations of the SGC, such as for
polar requirement or hydropathy.

Optimizations in the SGC are typically identified using one
of two approaches (Freeland, Knight, and Landweber 2000). In
the “engineering approach,” the SGC is compared with codes
found by analytical methods or heuristic search algorithms that
minimize some objective function, such as the mean absolute
change in polar requirement caused by missense mutations (Di
Giulio 1989a; Di Giulio et al. 1994; Santos and Monteagudo

2011; Bła_zej et al. 2018; WneRtrzak et al. 2018). In the “statistical
approach,” the SGC is compared with a large number of ran-
domized codes (Alff-Steinberger 1969; Haig and Hurst 1991).
The hypothesis that the SGC is optimized for resource conser-
vation was tested using the statistical approach, specifically by
quantifying the expected random mutation cost (ERMC) of
missense mutations allowed by the SGC, measured in units
such as the number of nitrogen or carbon atoms or the abso-
lute change in polar requirement or hydropathy of amino acids,
and comparing this cost to those incurred by 1 million ran-
domized codes (Shenhav and Zeevi 2020).

Because the space of randomized codes is so large
(�1:5� 1084) (Caporaso et al. 2005), it is necessary to
draw comparisons with a sample from this space, which
can then be used as a null model (Freeland et al. 2003).
There are many methods for generating randomized codes,
and different methods can generate codes with different
properties (Wichmann and Ardern 2019). For example, a
method known as quartet shuffling generates randomized
codes by shuffling quartet blocks—the blocks of four codons
that share the first two bases (e.g., AAA, AAC, AAG, AAU)
(Alff-Steinberger 1969; Caporaso et al. 2005). This method,
which was used to test the hypothesis that the SGC is opti-
mized for resource conservation (Shenhav and Zeevi 2020),
generates randomized codes that preserve two key properties
of the SGC, namely the number of codons per amino acid and
the degeneracy of the third base (e.g., the three codons for
isoleucine always have the same first and second base as the
codon for methionine). In contrast, a method known as
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amino acid permutation generates randomized codes by per-
muting the 20 standard amino acids among the synonymous
codon blocks (Haig and Hurst 1991). This method, which is
most commonly used in the field (Haig and Hurst 1991; Ardell
1998; Freeland and Hurst 1998; Freeland, Knight, Landweber,
and Hurst 2000; Gilis et al. 2001; Archetti 2004; Caporaso et al.
2005; Goodarzi, Shateri Najafabadi, Nejad, et al. 2005; Goodarzi,
Shateri Najafabadi, and Torabi 2005; Novozhilov et al. 2007;
Butler et al. 2009; Tripathi and Deem 2018), generates random-
ized codes that preserve a different key property of the SGC,
namely the structure of the synonymous codons blocks.
Importantly, in these randomized codes, the number of codons
per amino acid can change drastically relative to the SGC, be-
cause the permutation of amino acids among the synonymous
blocks is random. These two methods therefore generate ran-
domized codes with substantially different structural properties
(supplementary fig. S1, Supplementary Material online).

Here, we test the hypothesis that the SGC is optimized for
resource conservation with respect to nitrogen and carbon
content by drawing comparisons with randomized codes
generated using ten different methods, including quartet
shuffling and amino acid permutation (table 1 and supple-
mentary methods and fig. S1, Supplementary Material on-
line). With respect to nitrogen, we find consistent statistical
support for resource conservation using only one of the ten
methods. With respect to carbon, we find consistent statisti-
cal support for resource conservation across the ten methods,
but show that this optimization is confounded by the known
conservative nature of the SGC with respect to the molecular
volume of amino acids (Haig and Hurst 1999).

Results

Computing the ERMC
We compute the ERMC as:

ERMC ¼
X

v;v02V;v 6¼v0

FreqðvÞ � Probðv! v0Þ � Costðv! v0Þ;

(1)

where V is the set of all 64 codons, FreqðvÞ is the frequency
of codon v (supplementary note 1, Supplementary Material

online), Probðv! v0Þ is the probability of mutation from
codon v to v0 given a genetic code (standard or randomized)
and mutation rates (e.g., based on a transition:transversion
ratio), and Costðv! v0Þ is the cost of mutating codon v to v0

(Shenhav and Zeevi 2020). For resource conservation, the cost
is defined as the increase in the number of nitrogen or carbon
atoms in the amino acid encoded by codon v0 relative to the
amino acid encoded by v, whereas for amino acid properties
such as polar requirement, hydropathy, and molecular vol-
ume, it is defined as the absolute difference in the respective
property of the amino acid encoded by codon v0 and the
amino acid encoded by v (Shenhav and Zeevi 2020).

We use three sets of codon frequencies and mutation rates
to compute the ERMC of a genetic code (Shenhav and Zeevi
2020) (supplementary methods, Supplementary Material on-
line), namely:

(1) Baseline parameters: All codon frequencies are equal and
mutation rates are based on a transition:transversion ratio
of 1:2.

(2) Ocean parameters: Codon frequencies (supplementary
data S1, Supplementary Material online) and mutation
rates (supplementary data S2, Supplementary Material
online) are derived from marine metagenomics samples
(Shenhav and Zeevi 2020).

(3) Diverse species parameters: Codon frequencies are de-
rived from 39 species (supplementary data S3,
Supplementary Material online) (Athey et al. 2017) and
mutation rates are based on 11 transition:transversion
ratios ranging from 1:5 to 5:1. In total, this set includes
429 combinations of codon frequencies and mutation
rates (Shenhav and Zeevi 2020).

For each set, we determine the statistical significance of the
ERMC of the SGC by computing an empirical P value, which is
the fraction of 1 million randomized genetic codes that have
an ERMC that is less than or equal to that of the SGC. We
compute this empirical P value separately for each of the ten
methods for generating randomized codes. For the “diverse
species parameters,” we correct the P values for testing mul-
tiple hypotheses (Benjamini and Hochberg 1995). We report
the raw and corrected P values for all tests in supplementary

Table 1. Two Key Properties of the Randomized Genetic Codes Generated with the Ten Different Methods Used in This Study (supplementary
methods, Supplementary Material online).

Method Preserves the Number of
Codons per Amino Acid

Preserves the Exact Block
Structure of the SGC

Quartet shuffling Yes Noa

Amino acid permutation No Yes
Restricted amino acid permutation Nob Yes
N-Block shuffler Yes Noa

Codon shuffler Yes No
AAAGALOC shuffler No No
Random expansion No Yes
Ambiguity reduction 1 No Yes
Ambiguity reduction 2 No Yes
2–1–3 model No Yes

aThe randomized codes have a block structure, but it is different from that of the SGC.
bThe number of codons per amino acid is allowed to change by at most two, relative to the SGC.
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data S4–S12, Supplementary Material online (supplementary
table S1, Supplementary Material online).

Nitrogen Conservation Is Highly Sensitive to Choice of
Null Model
We find consistent statistical support for nitrogen conservation
in the SGC using only one of the ten methods for generating
randomized codes (supplementary data S4, Supplementary
Material online), namely the codon shuffler (Caporaso et al.
2005) (Baseline parameters: P ¼ 1:00� 10�6; Ocean

parameters: P ¼ 3:00� 10�6; Diverse species parameters:
P � 0:016). For the remaining nine methods, nitrogen conser-
vation is never consistently statistically significant across all tested
parameters, as illustrated for amino acid permutation in figure 1
(Baseline parameters: P¼ 0.485; Ocean parameters: P¼ 0.115;
Diverse species parameters: P � 0:573). Surprisingly, even for
randomized codes generated by quartet shuffling, nitrogen con-
servation is not statistically significant for the “diverse species
parameters” (P � 0:316), although it is for the “baseline param-
eters,” (P¼ 0.023) and “ocean parameters” (P¼ 0.034).

FIG. 1. Nitrogen conservation is highly sensitive to choice of null model. (A) Histograms of the ERMC for nitrogen (blue) and carbon (black) in 1
million randomized codes generated by amino acid permutation. The vertical red line corresponds to the SGC. Codon frequencies and mutation
rates are from the “ocean parameters.” (B) P values of the ERMC for nitrogen (top) and carbon (bottom) of the SGC, relative to 1 million
randomized codes generated by amino acid permutation, using the “diverse species parameters.” Shades of gray correspond to statistically
insignificant P values (P> 0.05; darker¼less significant) and shades of red to statistically significant P values (P � 0:05; darker¼more significant).
The P values were adjusted using Benjamini–Hochberg correction for multiple testing. Organisms in each group are ordered based on the GC
content of their coding sequences. Unicell. euk., unicellular eukaryotes.
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What explains the qualitative difference between the
results obtained using these different methods? The key is
that the randomized codes generated by both the codon
shuffler and quartet shuffling maintain the number of codons
per amino acid. In the SGC, the codons of the six nitrogen-
rich amino acids (i.e., those with at least one nitrogen atom
in their side chain: histidine, lysine, asparagine, glutamine,
arginine, and tryptophan) are clustered in the codon
table (supplementary fig. S1A and supplementary note 2,
Supplementary Material online), such that a point mutation
to a codon of a nitrogen-rich amino acid leads with proba-
bility 48.9% to a codon of the same or different nitrogen-rich
amino acid. Because such clustering is highly unlikely in ran-
domized codes that maintain the number of codons per
amino acid, these almost always have a higher ERMC for
nitrogen than the SGC, thus rendering nitrogen conservation
statistically significant. In contrast, if the number of codons
per amino acid is allowed to change, many randomized codes
have a lower ERMC for nitrogen than the SGC. The reason is
that the ERMC for nitrogen is strongly correlated with the
number of codons for nitrogen-rich amino acids in these
randomized genetic codes (Pearson’s correlation 0:567; P <
2:2� 10�16 for codes generated by amino acid permutation;
fig. 2) and this number is often smaller than in the SGC, thus
rendering nitrogen conservation statistically insignificant.

Carbon Conservation Is Confounded by the Molecular
Volume of Amino Acids
We find consistent statistical support for carbon conservation
in the SGC across the ten methods for generating randomized
codes (Baseline parameters: P< 0.05 for ten of ten methods;
Ocean parameters: P< 0.05 for nine of ten methods; Diverse

species parameters: median P< 0.05 for nine of ten methods;
fig. 1; supplementary data S5, Supplementary Material online).
However, we hypothesize that carbon conservation is con-
founded by molecular volume (Grantham 1974), because the
molecular volume of an amino acid is strongly correlated with
its number of carbon atoms (Pearson’s correlation 0.906,
P ¼ 3:97� 10�8; fig. 3A) and the changes caused by mis-
sense mutations to amino acids’ molecular volume and num-
ber of carbon atoms are therefore strongly correlated
(Pearson’s correlation 0.813, P < 2:2� 10�16; fig. 3B). We
test this hypothesis using a hierarchical model (Shenhav and
Zeevi 2020). Specifically, for each of the ten methods for
generating randomized codes, we examine the subset of ran-
domized codes that have an ERMC that is less than or equal
to that of the SGC for molecular volume and test whether the
SGC is also optimized for carbon conservation relative to this
subset. It is not (Baseline parameters: P> 0.05 for ten of ten
methods; Ocean parameters: P> 0.05 for ten of ten methods;
Diverse species parameters: minimum P> 0.05 for nine of ten
methods; supplementary data S6, Supplementary Material
online), as illustrated in figure 3C for randomized codes gen-
erated by amino acid permutation (Baseline parameters:
P¼ 0.139; Ocean parameters: P¼ 0.125; Diverse species
parameters: P> 0.190). Thus, carbon conservation is con-
founded by the known conservative nature of the SGC
with respect to the molecular volume of amino acids (Haig
and Hurst 1999).

Discussion
We found that the proposed optimization of the SGC for
nitrogen conservation (Shenhav and Zeevi 2020) is highly
sensitive to choice of null model. Specifically, we only found
statistical support for nitrogen conservation when using null
models that preserve the number of codons per amino acid
from the SGC. Choosing an appropriate null model to test for
optimizations in the SGC is challenging, because different null
models preserve different key properties of the SGC, while
perturbing others. Which key properties should be preserved
and which should be perturbed? This is a difficult question.
On the one hand, null models that preserve the number of
codons per amino acid can be justified by correlations be-
tween the number of codons per amino acid and the molec-
ular weight of amino acids (Hasegawa and Miyata 1980; Di
Giulio 1989b; Dufton 1997) as well as the frequency of amino
acids in the proteome (Gilis et al. 2001). However, these
correlations are far from perfect (Pearson’s R ¼ �0:45,
P¼ 0.046 and R¼ 0.67, P¼ 0.001, respectively) and modest
changes in the number of codons per amino acid are com-
monly observed in extant non-standard genetic codes
(Knight et al. 2001). On the other hand, null models that
preserve the structure of the synonymous codon blocks
can be justified by the mode of interaction between
mRNA, tRNA, and the ribosome (Ogle et al. 2001, 2003),
which results in the third “wobble position” of codons
(Crick 1966). However, extant non-standard genetic codes
often have synonymous codon blocks that differ from those
of the SGC, demonstrating that the exact block structure of
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FIG. 2. The ERMC for nitrogen is correlated with the number of
codons for nitrogen-rich amino acids. The black line shows the
mean, and the shaded area shows the 25th to the 75th quantile, of
the ERMC for nitrogen in relation to the number of codons for ni-
trogen-rich amino acids in 1 million randomized codes generated by
amino acid permutation. The point and dotted lines correspond to
the SGC. Histograms of the number of codons for nitrogen-rich
amino acids and the ERMC for nitrogen are shown on the top and
on the right of the main panel, respectively. The ERMC for nitrogen
was computed using the “ocean parameters.”
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the SGC is not the only possible structure (Knight et al. 2001).
Given these challenges, a sensible way forward is to use a
diversity of null models when testing for optimizations in
the SGC (Wichmann and Ardern 2019) and to refrain from
reporting optimizations that only find statistical support from
a small number of these null models.

Indeed, we found such broad statistical support across a
diversity of null models for the proposed optimization for
carbon conservation (Shenhav and Zeevi 2020), but we also
found that this optimization is confounded by the known
conservative nature of the SGC with respect to molecular
volume (Haig and Hurst 1999). This highlights another chal-
lenge in choosing an appropriate null model to test for opti-
mizations in the SGC: Most null models are agnostic to the
evolutionary history of the SGC, which can give the false
impression that optimizations are the product of selection
rather than a byproduct of the physical processes of gene
duplication and mutation (Stoltzfus and Yampolsky 2007;
Massey 2008; but, see Di Giulio 2018). Carbon conservation
is a case in point. Although there are several nonmutually
exclusive hypotheses for how the genetic code evolved
(Koonin and Novozhilov 2017), one hypothesis suggests

that in the early stages of code evolution, amino acids were
recognized by pockets in the tertiary structure of proto-
tRNAs and that the expansion of the code proceeded via
duplication and mutation of these proto-tRNAs (Wolf and
Koonin 2007). Because a recently duplicated proto-tRNA
would likely recognize an amino acid with similar molecular
volume to that recognized by its parent proto-tRNA (Massey
2008), gene duplication and mutation would naturally result
in a clustering of codons for amino acids with similar molec-
ular volumes in the codon table, as present in the SGC. As
carbon is the main building block of all proteinogenic amino
acids, the proposed optimization for carbon conservation
follows naturally, without needing to evoke selection for re-
source conservation. More importantly, no matter which
model of genetic code evolution one considers, the endpoint
is always the SGC, which is conservative with respect to mo-
lecular volume (Haig and Hurst 1999). This will always con-
found carbon conservation.

Finally, we note that if in nutrient-limited environments it
is costly for missense mutations to increase the number of
nitrogen or carbon atoms in amino acids, then it should be
beneficial for missense mutations to decrease the number of

FIG. 3. Carbon conservation is confounded by the molecular volume of amino acids. (A) Scatter plot of the number of carbon atoms and the
molecular volume of the 20 proteinogenic amino acids. (B) Scatter plot of the absolute change in the number of carbon atoms and the absolute
change in molecular volume for the 75 amino acid pairs that are connected by a missense mutation in the SGC. Jitter applied in the x axis for
visualization. (C) Histograms of the ERMC for (top) the molecular volume of amino acids in 1 million randomized codes generated by amino acid
permutation and (bottom) for carbon in the subset of 14,400 randomized codes that have an ERMC for molecular volume that is less than or equal
to that of the SGC. The ERMC was computed using the “ocean parameters.”
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nitrogen or carbon atoms in amino acids. This simple fact
makes it difficult to justify the ERMC as a measure of the cost
of missense mutations, because it only accounts for increases.
Indeed, contemporaneous work to ours shows that the SGC
is not optimized for resource conservation when the ERMC is
modified to also account for decreases in the number of
nitrogen or carbon atoms (Xu and Zhang 2021b). Taken to-
gether, our analyses strongly suggest that the SGC is not op-
timized for resource conservation.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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