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A B S T R A C T   

An effective cooling method with the proper selection of process parameters can intensify the 
machining performance by reducing the loss of resources with better quality products. In this 
regard, modelling is an appropriate way of predicting responses in changing environment and 
optimization is an efficient tool of selecting the best process parameters based on the specific 
desire. With a view to enhance the machinability of Ti–6Al–4V alloy, the first attempt of the 
current study was to predict the performance characteristics of milling such as cutting force (N), 
specific cutting energy (J/mm3) and surface roughness (μm) with the variation of speed (m/min), 
feed (mm/min), depth of cut (mm) and cooling approach by developing mathematical models. 
For the present work, three different predictive models such as response surface methodology 
(RSM), artificial neural network (ANN), and adaptive neuro fuzzy inference system (ANFIS) was 
followed. Additionally, a comparative assessment of the used predictive models was carried out 
and ANFIS was noticed as the most accurate predictive model. After that, optimization of the 
selected responses was conducted by multiple-objective optimization on the basis of ratio analysis 
(MOORA) method where the relative weights of each response were defined by principal 
component analysis (PCA). For milling Ti–6Al–4V alloy within the specific boundary conditions, 
PCA-MOORA suggested an optimal parameter setting at 32 m/min speed, 22 mm/min feed rate, 
and 0.75 mm depth of cut with rotary high-pressure cooling. Finally, the sensitivity of the used 
MOORA method with the variation of unitary ratio was checked out to take a robust decision.   

1. Introduction 

Milling is a complex intermittent cutting process that is extensively used in producing flat plain surfaces of both simple and intricate 
parts by using a multi-point cutter. Many studies have already explored the various aspects of machinability of Ti–6Al–4V alloy in dry 
milling such as cutting temperature, cutting forces, power consumption, surface roughness, and tool wear [1–4]. Exploring the 
abovementioned studies, it has been discovered that the excess heat generation with drastic tool wear, higher surface roughness, 
frequent tool vibrations, and higher cutting forces hinder dry milling of Ti–6Al–4V alloy. Currently, researchers have focused on 
effective cooling approaches such as minimum quantity lubrication (MQL), high-pressure cooling (HPC), and cryogenic cooling. 
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Among those, HPC is regarded as one of the prominent cooling technologies for efficiently managing cutting temperature as well as 
lubricating surfaces. High-pressure coolant jets significantly reduce abrasion, microcracks, and chipping, hence preventing premature 
tool failure [5]. Furthermore, HPC boosts productivity by minimizing residual stress and giving a superior surface quality with 
appropriate chip removal at a faster rate. However, in respect of proper cooling/lubrication in milling, two issues are needed to 
resolve-cooling the complex helix-shaped rotating cutter and successfully lubricating the interface between tool-work. Some studies 
suggested internal cooling to overcome these issues [6]. However, the fundamental disadvantage of this internal cooling is that it has a 
drastic impact on tool strength [7]. As a result, a difference in the cooling approach is to be expected. To fill this void, an external rotary 
liquid applicator for providing high-pressure coolant jets was conceptualized and fabricated. The performance of the developed 
applicator was evaluated in terms of cutting force, specific cutting energy, and surface roughness. 

The emerging application areas of Ti–6Al–4V alloy (automotive, aerospace components) necessitate highly precise machined parts 
since the functionality of machined parts is dependent on the degree of surface finish, which is just opposite to surface roughness. 
Surface finish qualitatively denotes surface evenness without cracks, holes, or other imperfections, whereas surface roughness 
quantitatively shows surface irregularities. Because of its quantitative nature and straightforward calibration procedure, average 
surface roughness is often used as a measure of surface integrity. Cutting force is another notable measure of performance because it 
represents the machining status [8]. In addition, excessive tool wear with higher cutting force degrades the surface quality. To achieve 
a cost-effective machining process, reduction of power consumption is necessary that is directly linked with specific cutting energy. In 
a nutshell, it can be claimed that it is imperative to find out the effects of process parameters on those responses for attaining the 
desired machinability in milling Ti-alloy. 

Soft Computing (SC) imitates the human brain by utilizing soft values and fuzzy sets, as well as the ability to operate in an uncertain 
environment. This feature broadens its application in the manufacturing industry for anticipating and modelling behaviours. Common 
SC technologies include regression analysis, Taguchi method (TM), response surface methodology (RSM), artificial neural network 
(ANN), fuzzy logic (FL), adaptive neuro-fuzzy inference systems (ANFIS), sintered annealing (SA), data envelopment analysis (DEA), 
and support vector machines (SVM) [9]. Among the mentioned SC technologies, RSM, ANN, and ANFIS were chosen as prediction 
models in this study with fewer resources and time. RSM is a powerful statistical tool with fewer experimental runs than full 
factorial-based design of experiment (DoE), used in different machining processes by researchers [10]. Shetty et al. [11] studied the 
minimum quantity lubrication (MQL) turning of Ti–6Al–4V alloy in terms of speed, feed, and depth of cut using RSM. Hashmi et al. 
[12] conducted high-speed milling of Ti–6Al–4V alloy without coolant and concluded that surface roughness is mostly governed by the 
depth of cut, whereas cutting velocity and feed rate have no major effects based on the analysis of RSM. Daramola et al. [2] used RSM to 
explore the influence of milling process parameters on resulting forces and found that RSM is a useful numerical technique for creating 
realistic DOE models that properly anticipate machining responses. Another effective prediction approach in anticipating machining 
outcomes with process parameter variations is ANN. Because of its strong generalization strength, numerous researchers have already 
used this AI approach in diverse applications. Zain et al. [13] applied ANN by changing the number of layers and functions for pre
dicting roughness accurately in milling and suggested that high speed with a low feed rate and radial rake angle produces the optimum 
surface roughness value. Namlu et al. [14] reported that ANN can predict surface roughness in milling Ti–6Al–4V alloy with a mean 
absolute percentage error (MAPE) of 1.85%. ANFIS has recently been proven to be another effective prediction tool in engineering 
applications by several researchers. Al-Zubaidi et al. [15] investigated the ANFIS model’s predictability in anticipating surface 
roughness in milling Ti–6Al–4V alloy and found a minimal root mean square error (RMSE) of 0.1030. The predictability of the ANFIS 
model changes with membership functions. Bandapalli et al. [16] discovered that the gbell membership function had the lowest 
prediction error (0.04%) when compared to triangular and trapezoidal membership functions. It is critical to assess the prediction 
models to choose the most suited one. With this in mind, researchers are now driven to conduct a comparative examination of many 
widely used models in specific issues. Manufacturers will be able to determine the most appropriate approach capable of generating a 
quick and precise performance by employing an accurate modelling technique for the design of an efficient machining process. 
Klickcap et al. [17] developed ANN and RSM models for predicting cutting force and surface roughness in dry milling of Ti alloy but no 
clear comparative analysis in selecting the best predictive model was explained. Karkalos et al. [4] investigated surface roughness in 
milling Ti–6Al–4V alloy using both the statistical RSM model and ANN model. The authors concluded that in terms of roughness 
prediction, the ANN model outperforms RSM, whereas RSM is better for optimizing process parameters. The better predictability of 
ANN over RSM was also divulged by another research work conducted by Yanis et al. [18]. Sada and Ikpeseni [19] compared the 
predictability of ANN and ANFIS in projecting tool wear and surface roughness in turning medium carbon steel, concluding that ANN is 
more predictable than ANFIS. Gupta et al. [20] compared RSM with ANFIS in assessing the performance of several nanofluids in 
turning Ti–6Al–4V alloy and found that ANFIS outperformed RSM. Onu et al. [21] researched on estimating the fraction adsorption of 
EBT using RSM, ANN, and ANFIS, with a critical evaluation of the three models’ prediction powers, noting that ANFIS is superior to the 
other two. But, no comparative study on the performance evaluation of RSM, ANN, and ANFIS in milling Ti–6Al–4V alloy with high 
pressure cooling was found that motives us to do this job. 

The optimization model, in addition to the prediction models, is required to construct an optimal design matrix for better output. 
There are a variety of advanced evolutionary optimization strategies to choose from. Many researchers in the engineering and in
dustrial areas use the MOORA method, which is a simple and well-known optimization strategy [22]. To optimize surface roughness 
and kerf taper angle of composites in abrasive water jet machining, MOORA method was used by Kalirasu et al. [23]. Khan and Maity 
[24] recommended MOORA as a robust and time-saving optimization method. Not only in machining but also in some other appli
cations such as for material selection problems, MOORA was proposed by researchers [25]. To increase the accuracy of the MOORA 
method, some researchers proposed PCA as an extended tool for determining the relative weights of each criterion in any specific case. 
Majumder and Maity [26] suggested PCA based MOORA as an efficient way of optimization in WEDM of titanium alloy. Zaman et al. 
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[27] used PCA-MOORA in turning 42CrMo4 and suggested the optimal parameter settings as speed of 352 m/min and feed of 0.10 
mm/rev under MQL. In recent manufacturing applications, sensitivity analysis is crucial to test the robustness of the used optimization 
model. Very few researchers have assessed the model’s sensitivity systematically. Li et al. [28] conducted a sensitivity analysis of the 
TOPSIS method with equal criteria weights in determining water quality. Following that, Bhadra et al. [29] performed sensitivity 

Fig. 1. Experimental set up.  
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analysis of the criteria importance through inter-criteria correlation (CRITIC) and Analytic Hierarchy Process (AHP) for order of 
preference by similarity to ideal solution (TOPSIS) methods to select the best natural fiber for aerospace cabin interior. In this study, it 
is tried to perform sensitivity analysis of the MOORA method considering the different relative weight of criterion derived by PCA. 

As referred to previous studies, it is clear that a lot of research works have already been carried out in optimizing process pa
rameters and modelling milling responses but no research study concerning the sensitivity analysis of the used optimization model 
with the variation of the unitary ratios of selected responses was noticed. To bridge that gap, this paper attempts to perform sensitivity 
analysis of the used MOORA method along with the prediction and modelling of the cutting force, specific cutting energy, and surface 
roughness in milling by using RSM, ANN, and ANFIS. Moreover, the developed models were comparatively assessed based on different 
statistical error analysis. 

2. Methodology 

2.1. Machining methods 

The work material, Ti–6Al–4V alloy (Grade 5), had an average hardness of around 37 HRC was chosen for its versatility. The 
chemical composition of the used alloy is: 6.41% Al, 4.44% V, 0.40% Fe, 1.19% O, 4.13% C and 83.71% Ti. Four flute high-speed steel 
(HSS) end mill cutter (Dormer, ENGLAND) with 0⁰ rake angle, 15◦ clearance angle, 30⁰ uniform helix angle, and 65 HRC hardness was 
employed for slot milling. The thermophysical properties of the cutting tool can be specified as follows: density 7600 kg/m3, Young’s 
modulus 233 GPa, Poisson’s ratio 0.30, specific heat 461 J/kg-0C, thermal conductivity 20.2 W/m-0C [30]. During milling, the cutter 
was rigorously supported and rotated vertically by collet with jam nut. Using a vertical milling machine (Sunlike, China, power: 7hp), 
experimental tests were carried out under three different cutting environments: dry, high-pressure cooling (HPC), and rotary 
high-pressure cooling (RHPC). This research used speed (Vc) of 16~32 m/min, table feed rates (f) of 22~68 mm/min, and cutting 
depths (ap) of 0.5–1.0 mm. VG-68 (viscosity grade 68) was chosen as the high-pressure coolant for both HPC and RHPC that boosts 
oxidation resistance and metal passivation. The specific characteristics of the used cutting fluid were: density 932 kg/m3 at 20 ◦C, 
viscosity index 68 at 40 ◦C, and flash point at 300◦ [31]. Fig. 1 depicts the experimental setups for HPC and RHPC aided end milling of 
Ti–6Al–4V alloy. In the designed applicator (as shown in Fig. 1(c)), cutting fluids were passed through the oil chamber (kept sta
tionary) to the adapter (rotary) which is supported by a spindle with a jam nut. Next, oil enters into a secondary mini oil chamber 
which was attached and rotated with the adapter and embedded with four nozzles (dia. 0.50 mm) for supplying high-pressure coolant 
jets. The end mill cutter was supported by a collet and specially designed jam nut. So, the angular velocity of the cutter and rotary 
chamber was same. 

In this study, cutting force (Fc) was measured by using a KISTLER dynamometer equipped with a load cell and charge amplifier 
during milling. After that, specific cutting energy (SCE) was calculated mathematically by using the following Eqn. (1): 

SCE=
Fc

f × ap
,

J
mm3 ; (1) 

Rank Hobson’s Surtronic 3+ portable roughness checker (with a sampling length of 0.8 mm) was used to measure mean surface 
roughness (Ra) after each experimental trial run. The experiments were designed by following the Box Behnken Design (BBD) approach 
of RSM. For the current study, response surface methodology (RSM) was selected as the statistical prediction model, artificial neural 
network (ANN) and adaptive neuro fuzzy inference system (ANFIS) were employed as artificial intelligence approaches. 

2.2. Response surface methodology (RSM) 

The first step in determining the appropriate process parameters is to generate mathematical models of the process to establish a 
link between the process’s inputs and outputs. RSM is a popular statistical approach for establishing a specific relationship between a 
set of influential input factors and a set of performance indicators [32]. Based on previous research conducted by Zaman and Dhar 
[33], BBD based RSM models were employed in this work to show the mathematical relationships between the specified responses 
(cutting force, specific cutting energy, and surface roughness) and a set of independent factors (speed, feed, depth of cut, and cooling 
approaches). In general, a first-order polynomial is appropriate for determining the main effects of individual input variables and for a 
relatively small region of the independent variable space (low response curvature), whereas a second-order model can be used to 
determine the interaction effects of variables on output quality (Mia et al., 2017). Mathematical expressions for both first-order and 
second-order models can be written symbolically as in Eqns. (2) and (3), respectively. 

y= α0 + α1x1 + α2x2 + … + αnxn; (2)  

y= α0 + α1x1 +
∑n

i=1
αixi +

∑n

i=1
αiix2

i +
∑n

i,j
αijxixj+ ∈ ; (3) 

The regression coefficients of the linear, quadratic, and interaction terms are represented by the variables α0, αi, αii and αij, 
respectively. The input variables relating to speed (Vc), feed rate (f), and depth of cut (ap) are represented by xi . Since the input 
variable cooling approach (CA) is a categorical variable, three different forms of Eqns. were produced for dry, HPC, and RHPC. 
Additionally, analysis of variance (ANOVA) was employed to demonstrate the effects of each factor and their interactions on the 
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responses [34]. A random experimental error is represented by the symbol ∈. 

2.3. Artificial neural network (ANN) 

A non-linear, multi-layered (input layer, hidden layer, and output layer) prediction system called an artificial neural network 
(ANN) can model complex issues just like the human brain [35]. Each layer is made up of one or more neurons. While, the input layer 
contains input variables as neurons, the output layer comprises a single neuron for each output variable. Trial and errors are needed to 
determine the number of layers and neurons in the hidden layer, which influences the accuracy and predictability of the adopted ANN 
model. Due to the higher complexity of multiple hidden layers, one hidden layer was used in this study to form the network [36]. Using 
the ‘nntool’ wizard of MATLAB 2019, a 4-n-1 multi-layer feed-forward backpropagation (FFBPN) type network was created (as shown 
in Fig. 2), where ‘n’ is the number of neurons in hidden layer. The number of neurons for the hidden layer was varied within 3~39. 
Because of its superior ability to handle less random training data sets without a cross-validation test and less noise, the Bayesian 
Regularization (TrainBR) algorithm was chosen for the training network [37]. The learning function was used as gradient descent with 
momentum weight and bias (LEARNGDM) [38]. Finally, ‘TANSIG’ for the hidden layer and ‘PURELIN’ for the output layer were used 
[39]. The Absolute percentage error (APE), mean absolute percentage error (MAPE), and coefficient of determination (R2) were used to 
assess the effectiveness of the networks that were created. 

2.4. Adaptive neuro-fuzzy inference system (ANFIS) 

ANFIS is another widely used hybrid AI approach for accurate prediction and modelling of complicated nonlinear issues, comprised 

Fig. 2. 4-n-1 multi-layer ANN structure.  

Fig. 3. Proposed five-layered ANFIS structure with two rules.  
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of fuzzy logic theory and a self-learned adaptive ANN approach [35]. Fuzzy logic contains a set of theoretical linguistics if-then rules 
that can approximate thinking in any real-world scenario [40]. However, due to a lack of learning ability, it is unable to adapt to 
uncertain environments [41]. ANN, on the other hand, can deal with ambiguous situations by training raw data acquired from any 
external source but unable to explain [20]. In ANFIS, the benefits of fuzzy logic if-then rules are blended with ANN to create a hybrid 
neuro-adaptive intelligence system. The ANFIS structure is comprised of five layers: the fuzzy layer, the product layer, the normalized 
layer, the de-fuzzy layer, and the output layer. The Fuzzy layer converts the received inputs from the outer sources into fuzzy sets using 
various membership functions (MFs) and this layer contains adaptive nodes with multiple rules. Next, the product layer calculates the 
firing strength of the received fuzzy inputs from the previous layer. After that, the normalization layer converts firing strength into 
unitless values which are transformed into crisp values in the De fuzzy layer. The cumulative sum of the de-fuzzy layer’s obtained 
outputs is computed based on ‘wtaver’ command and signified by a fixed node. The suggested ANFIS model for the current study was 
designed in MATLAB R2019a using a fuzzy toolbox to analyze the link between inputs (Vc, f, ap, and CA) and outputs such as cutting 
force (Fc), specific cutting energy (SCE), and surface roughness (Ra). The structure of the proposed ANFIS model is drawn in Fig. 3. 

2.5. Integrated PCA-MOORA method 

Principal component analysis (PCA) was first proposed by Pearson [42] and then, explored by Hotelling [43] to evaluate the 
weights of different quantitative objectives. This statistical weight evaluation method transformed correlated variables into linear 
non-correlated variables which are defined as principal components. Initially, a decision matrix of responses for all alternatives was 
formed as seen in Eqn. (4): 

X=

⎡

⎢
⎢
⎣

x11 x12 … … x1n
x21 x22 … … x2n
… … … … …
xm1 xm2 … … xmn

⎤

⎥
⎥
⎦; (4)  

Where, xij is the measured response of ith alternative on jth objective, m corresponds to the number of experimental observations = 39, 
and n represents the number of responses = 3. Then the correlation coefficient was calculated by using the following Eqn. (5): 

rjz =
cov(xi(j), xi(z))
σxi (j) × σxi (z)

;
y = 1, 2,……..., n
z = 1, 2,……..., n. (5)  

Where, cov(xi(j),xi(z)) symbolizes the covariance of xi(j) and xi(z) sequence, σxi(j) and σxi(z) are the standard deviations of xi(j) and xi(z), 
respectively. Finally, the principal components were estimated by using Eqn. (6) and then, arranged in descending order based on 
variability. The data obtained by the first principal component with the maximum variability were used to establish the relative 
weights of objectives. 

Pmk =
∑n

i=1
xm(i) × Eik ; Pmk, the first principal component and Eik, the eigen vector. (6) 

The Eigen vector (Eik) can be mathematically determined by using the correlation coefficient value ryz as presented inEqn. (7): 

Eik(r − λkIm)= 0 ; λk denotes the Eigen value. (7) 

The MOORA method is recommended by many researchers in decision making because it assists in selecting the best option from a 
large number of candidate alternatives for a particular situation. This approach was introduced by Brauers and Zavadskas [44]. The 
first stage of this method is to create a decision matrix that displays the performance of numerous alternatives in terms of various 
quantitative objectives as presented in Eqn. (4). After that, the normalized and weighted normalized decision matrix are required to 
form by using Eqns. (8) and (9), respectively, where weights ‘wj’ for each j objective can be derived by using PCA. 

Nij =
xij
̅̅̅̅̅̅̅̅̅̅̅
∑3

j=1
x2

ij

√ ; (8)  

WNij =wj × Nij; (9) 

Finally, the computation of the weighted overall assessment value Xi* can be conducted by adding up the performance measures for 
all the maximizing criteria and subtracting the similar for the minimizing criteria by using Eqn. (10). 

X∗
i =

∑b

j=1
WNij−

∑n

j=b+1
WNij; (10)  

Where, b is the number of objectives to be maximized, (n-b) denotes the number of objectives to be minimized, and X∗
i represents the 

normalized weighted assessment value of the ith alternative in relation to all the objectives. 
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2.6. Sensitivity analysis 

Different statistical error functions, such as APE, and MAPE (as expressed in mathematical form in Eqns. (11) and (12), respec
tively) were used to examine the predictive power of the RSM, ANN, and ANFIS. 

APE=
|actual − predicted|

actual
× 100%; (11)  

MAPE=

|actual− predicted|
actual × 100%

no. of trial runs
; (12) 

The stability of ranking alternatives by MOORA method was checked out by performing sensitivity analysis. For this, the relative 
weights of the selected responses were altered. The systematic way of sensitivity analysis can be briefly described as follows [28]: 

Step 1: To impose any disturbance weight w′
k instead of initial weight wk. The mathematical relation between wk and w′

k can be 
expressed as in the form of Eqn. (13): 

γk =
w′

k

wk
; where γk symbolizes the unitary ratio and k = 1, 2,……, n. (13) 

Step 2: To calculate the changed weights of other responses w′
n in respect to w′

k considering the sum of all weights equal to 1, the 
following Eqn. (14) may be used: 

w′
n =

wn

1 + (βk − 1)wk
; where βk =

γk − γkδk

1 − γkδk
represents the initial variation ratio. (14) 

Table 1 
BBD design matrix of input variables with their corresponding responses.  

Experimental 
alternatives 

Speed (Vc), 
m/min 

Feed rate (f), 
mm/min 

Depth of cut 
(ap), mm 

Cooling 
approach (CA) 

Cutting force 
(Fc), N 

Specific cutting energy 
(SCE), J/mm3 

Surface roughness 
(Ra), μm 

1 24 45 0.75 3 292 8.65 0.84 
2 32 22 0.75 2 216 13.09 0.78 
3 24 68 1.00 3 378 5.56 1.32 
4 16 68 0.75 2 426 8.35 1.52 
5 24 68 0.50 3 298 8.76 1.18 
6 24 45 0.75 2 301 8.92 1.24 
7 24 68 1.00 2 416 6.12 1.59 
8 32 22 0.75 3 202 12.24 0.64 
9 16 45 1.00 1 481 10.69 1.63 
10 32 22 0.75 1 280 16.97 1.18 
11 32 45 1.00 1 377 8.38 1.32 
12 24 68 0.50 1 419 12.32 1.74 
13 24 45 0.75 1 342 10.13 1.41 
14 24 22 1.00 3 314 14.27 0.96 
15 32 68 0.75 2 328 6.43 1.02 
16 16 68 0.75 3 387 7.59 1.50 
17 16 22 0.75 3 289 17.52 1.10 
18 32 45 0.50 3 213 9.47 0.74 
19 24 22 1.00 1 384 17.45 1.47 
20 16 22 0.75 2 333 20.18 1.22 
21 16 45 0.50 3 283 12.58 0.98 
22 32 45 1.00 3 308 6.84 1.00 
23 24 22 0.50 3 189 17.18 0.72 
24 24 68 1.00 1 458 6.74 2.25 
25 32 68 0.75 1 351 6.88 1.68 
26 32 45 0.50 1 289 12.84 1.35 
27 24 22 0.50 2 213 19.36 0.88 
28 16 45 1.00 2 435 9.67 1.44 
29 32 45 1.00 2 333 7.40 1.24 
30 16 45 1.00 3 377 8.38 1.30 
31 16 68 0.75 1 473 9.27 2.15 
32 32 45 0.50 2 270 12.00 0.84 
33 24 22 0.50 1 243 22.09 1.53 
34 16 45 0.50 2 316 14.04 1.14 
35 24 22 1.00 2 335 15.23 1.34 
36 24 68 0.50 2 368 10.82 1.24 
37 16 45 0.50 1 363 16.13 1.58 
38 16 22 0.75 1 362 21.94 1.39 
39 32 68 0.75 3 302 5.92 1.00  
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For this study, γk = 0.01, 0.03, 0.05, 0.07, 0.1, 0.2, 0.5, 1.0, 1.5, and 2.0 were assumed. After imposing γk values, the changed 
weights of responses were recalculated for finding out the new sequence of ranking of alternatives. 

3. Results and discussions 

The objective of this study is to optimize the milling process by defining the relationship between input and response variables 
mathematically. Based on BBD design matrix, 39 experiment runs were carried out considering speed (Vc), feed rate (f), depth of cut 
(ap), and cooling approach (CA) as input variables. The categorical variable cooling approach (CA) was symbolically presented for 
simplicity in computation where ‘1, 2, 3’ were used for dry, HPC, and RHPC, respectively. Table 1 collects the results of multiple 
responses corresponding to experimental runs. 

Mathematical models of Fc, SCE, and Ra were developed by using statistical software ‘Design Expert’ as presented in Eqns. 15–23. 
The selection of appropriate mathematical models is dependent on the value of determination of coefficient (R2). Higher value of R2 

indicates the better predictability of any developed model [36]. The reported R2 values of the quadratic models for Fc, SCE, and Ra were 
0.98, 0.99, and 0.90. Additionally, the Predicted R2 values of 0.96, 0.97, and 0.90 are consistent with the Adjusted R2 values of 0.97, 
0.98, and 0.90 for Fc, SCE, and Ra, respectively; the variation between this two is less than 0.2. The signal-to-noise ratio was measured 
by ‘adequate precision’ and this ratio greater than 4 is ideal, for Fc, SCE, and Ra which are 45.73, 47.89, and 25.09, respectively, 
suggest a sufficient signal, and the produced models can be utilized to navigate the design space. Another crucial factor, coefficient of 
variation, denoted by Cv represents the degree to which experimental results for any specified response are close to their mean [45]. Cv 
values of Fc, SCE, and Ra were 4.00%, 5.09%, and 10.02%, respectively. The lower value of Cv for Fc compared to other twos indicates 
that the variance with mean is the lowest. 

Table 2 
ANOVA results of cutting force (Fc).  

Response Source SS DF MS F-value p-value PC  

Vc 46,464 1 46,464 263 <0.0001 21.81 
F 64,480 1 64,480 365 <0.0001 30.27 
ap 53,392 1 53,392 302 <0.0001 25.06 
CA 37,766 2 18,883 107 <0.0001 17.73 
Vc × ap 602 1 602 3.41 0.0746 0.28 
f × ap 4070 1 4070 23.07 <0.0001 1.91 
a2

p 967 1 967 5.48 <0.0001 0.45 
∈ 5293 30 176.4   2.48 
Total 213,034 38    100.00  

Table 3 
ANOVA results of specific cutting energy (SCE).  

Response Source SS DF MS F-value p-value PC  

Vc 59.75 1 59.75 166.82 <0.0001 7.12 
F 529.74 1 529.74 1478.95 <0.0001 63.33 
ap 107.92 1 107.92 301.29 <0.0001 12.64 
CA 52.49 2 26.24 73.27 <0.0001 6.31 
Vc × f 10.74 1 10.74 29.99 <0.0001 1.29 
f × CA 6.47 2 3.23 9.03 0.0011 0.78 
ap × CA 3.38 2 1.69 4.71 0.0179 0.41 
f2 51.81 1 51.81 144.64 <0.0001 6.03 
a2

p 8.17 1 8.17 22.81 <0.0001 0.98 
∈ 9.31 26 0.3582   1.12 
Total 832.15 38    100.00  

Table 4 
ANOVA results of surface roughness (Ra).  

Response Source SS DF MS F-value p-value PC  

Vc 0.7211 1 0.7211 45.81 <0.0001 14.57 
F 1.03 1 1.03 44.67 <0.0001 20.81 
ap 0.3601 1 0.3601 64.02 <0.0001 7.27 
CA 2.22 2 1.11 22.31 <0.0001 44.85 
f2 0.1018 1 0.1018 68.77 <0.0001 2.06 
∈ 0.5165 32 0.0161 6.31 0.0173 10.44 
Total 4.95 38    100.00  
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F1
c = 173.96 − 2.84Vc + 4.66f + 172.2ap − 3.54

(
Vc × ap

)
− 3.20

(
f × ap

)
+ 163.73a2

p; (15)  

F2
c = 133.04 − 2.84Vc + 4.66f + 172.2ap − 3.54

(
Vc × ap

)
− 3.20

(
f × ap

)
+ 163.73a2

p; (16)  

F3
c = 97.8 − 2.84Vc + 4.66f + 172.2ap − 3.54

(
Vc × ap

)
− 3.20

(
f × ap

)
+ 163.73a2

p; (17)  

SCE1
c = 57.87 − 0.43Vc − 0.78f − 33.73ap + 0.005(Vc × f)+ 0.004f2 + 15.8a2

p; (18)  

SCE2
c = 53.7 − 0.43Vc − 0.78f − 33.73ap + 0.005(Vc × f)+ 0.004f2 + 15.8a2

p; (19)  

SCE3
c = 49.9 − 0.43Vc − 0.78f − 33.73ap + 0.005(Vc × f)+ 0.004f2 + 15.8a2

p; (20)  

R1
a =Ra = 1.67 − 0.022Vc − 0.009f − 0.49ap + 0.0002f2 + 1.22a2

p; (21)  

Fig. 4. Main effect plot for cutting force (Fc).  

Fig. 5. Main effect plot for specific cutting energy (SCE).  
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Fig. 6. Main effect plot for surface roughness (Ra).  

Fig. 7. ANN structure for (a) Fc, (b) SCE, and (c) Ra with selected hidden neurons.  

Fig. 8. Regression plots for Fc.  
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R2
a = 1.28 − 0.022Vc − 0.009f − 0.49ap + 0.0002f2 + 1.22a2

p; (22)  

R3
a = 1.10 − 0.022Vc − 0.009f − 0.49ap + 0.0002f2 + 1.22a2

p; (23)  

***Superscript 1, 2, 3 on the left side of the equations represents the cooling approach-dry, HPC and RHPC, respectively. 
To predict the effect of process parameters on changing Fc, SCE, and Ra, ANOVA analysis of the developed models was carried out. 

Insignificant terms from the statistical analysis were subtracted by using the ‘Backward elimination approach’ to improve the model’s 
accuracy within a 95% confidence level. Table 2 summarizes the ANOVA results for Fc with the percentage contribution of each input 
variable. In respect of Fc, linear terms, feed rate has the greatest effect (30.27%), followed by the depth of cut (25.06%), and cutting 
speed (20.88%). Cooling approach has the least effect (15.73%) on Fc comparative to others. Similarly, ANOVA analysis for SCE is 
collected in Table 3. Like Fc, for SCE, feed rate was noticed as the highest significant input variable with 63.3% contribution in 

Fig. 9. Regression plots for SCE.  

Fig. 10. Regression plots for Ra.  

Fig. 11. Sugeno type ANFIS structure for modelling responses.  
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changing response followed by the depth of cut (12.64%), speed (7.12%), and lastly by the cooling approach (6.31%). Like Fc and SCE, 
all the linear input variables are significant in changing Ra. However, the insight of the percent contribution value reveals the cooling 
approach as the highest impactful element, among the studied factors. In terms of role (as presented in Table 4), next to cooling 
approach (44.85%), are the feed rate (20.81%), cutting speed (14.57%), and lastly, the depth of cut (7.27%). The application of RHPC 
in milling enhances the fluid penetration between tool-work interfaces that accredits to the reduction of rubbing action as well as the 

Fig. 12. Training datasets of (a) Fc, (b) SCE, and (c) Ra.  

Fig. 13. Testing process results for (a) Fc, (b) SCE, and (c) Ra.  
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reduction of tool wear through the proper controlling of temperature rise and therefore, is possible to reduce roughness significantly. 
Fig. 4 shows the main effect plot for Fc regarding the variation of input variables at different levels. From the main effect plot it is 

visible that, the minimum cutting force was achieved at 32 m/min speed, 22 mm/min feed rate, and 0.50 mm depth of cut with RHPC. 
The explanation can be given by mentioning Johnson-Cook’s flow stress model [46]. This material model states that the strain rate, 
strain hardening, and thermal softening effect significantly affects the flow stress behaviour of material. In case of machining 
Ti–6Al–4V alloy, thermal softening occurs at higher speed because of enhanced heat generation that positively affects in reducing 
cutting force. On the other hand, at higher feed rate and depth of cut, the chip load increases at each tool tip of the cutter that raises up 
the cutting force. Beside those parameters, proper cooling and lubrication effect of RHPC reduces cutting force significantly. 

From Fig. 5, minimum specific cutting energy (SCE) was noticed at 32 m/min speed, 68 mm/min feed rate, and 1.00 mm depth of 
cut with RHPC. At higher cutting speed, lower SCE was accredited by the reduced cutting force with thermal softening and less built-up 
edge formation. The inverse relationship between specific cutting energy and feed rate as well as depth of cut can be justified by the 
mathematical relation expressed in Eqn. (1). The higher reduction rate of SCE in RHPC reduced compared to HPC reveals the better 
cooling and lubrication behaviour of RHPC. 

Like cutting force, lower surface roughness was achieved for milling under RHPC at 32 m/min speed, 22 mm/min feed rate and 
0.50 mm depth of cut, as shown in Fig. 6. With increased speed, the less formation of BUE ultimately minimizes surface roughness. 
Moreover, at higher speed, the coefficient of friction is reduced that is also reported by another research study [47]. But, at higher feed 
rate and depth of cut, the increased cutting pressure reduced the surface quality of the finished product. 

The feed forward back propagation type ANN network for each response was trained with Bayesian regularization (TrainBr) al
gorithm considering 33 alternatives for 1000 epochs and tested for 6 alternatives. After trial and error, 5, 25, and 7 neurons in the 
hidden layer was set for constructing the optimized ANN models of Fc, SCE, and Ra, respectively, as shown in Fig. 7. Figs. 8, 9 and 
10show the regression plots for Fc, SCE, and Ra that also reveals the higher accuracy of the selected models because most of the points 

Table 5 
Statistical error analysis of RSM, ANN, and ANFIS.  

Trial runs APE values for RSM predicted results of- APE values for ANN predicted results of- APE values for ANFIS predicted results of- 

Fc SCE Ra Fc SCE Ra Fc SCE Ra 

1 1.21 4.68 13.92 4.28 4.83 12.32 0.0172 0.0214 0.1190 
2 5.50 6.98 9.12 4.54 7.18 8.01 0.0092 0.0069 0.1282 
3 0.34 6.62 5.45 4.58 7.02 3.60 0.0263 0.0212 0.1515 
4 1.52 2.72 6.11 1.42 2.93 7.91 0.0048 0.0352 0.0658 
5 7.98 4.53 2.81 1.18 3.07 4.45 0.0337 0.0537 0.0847 
6 7.54 6.83 9.12 2.43 5.92 13.34 0.0101 0.0166 0.1613 
7 0.36 2.21 1.77 3.02 0.06 1.28 0.0410 0.0384 0.0629 
8 4.63 1.11 6.42 0.30 1.89 0.56 0.0348 0.0198 0.1563 
9 1.64 4.14 11.78 1.47 1.35 18.49 0.0147 0.0104 0.0613 
10 4.00 3.07 5.96 4.69 2.67 2.25 0.0035 0.0018 0.1695 
11 1.61 4.80 11.77 0.38 7.29 9.93 0.0052 0.0265 0.0758 
12 5.03 5.34 1.37 1.64 1.71 1.54 0.0240 0.0286 0.0575 
13 6.62 9.38 8.24 2.30 10.15 4.05 0.0381 0.0329 0.7092 
14 0.49 0.01 1.76 2.69 1.31 3.83 0.0126 0.0191 0.1042 
15 1.08 6.70 24.13 1.43 2.46 10.52 0.0214 0.0213 0.9804 
16 0.70 5.25 3.81 0.31 4.78 5.74 0.0130 0.0233 0.6667 
17 2.89 0.51 6.56 3.44 1.89 4.15 0.0103 0.0277 0.9091 
18 0.76 2.05 10.66 3.48 2.79 13.33 0.0470 0.0352 0.1351 
19 1.20 0.08 5.18 1.28 1.11 1.43 0.0051 0.0260 0.0680 
20 5.14 5.60 1.82 3.68 2.53 1.42 0.0361 0.0090 0.1639 
21 1.93 1.19 2.84 0.33 0.32 2.83 0.0034 0.0177 0.1020 
22 4.29 11.79 9.39 0.31 1.88 11.05 0.0064 0.0650 1.0000 
23 4.08 1.89 1.65 0.79 0.79 5.39 0.0530 0.0106 0.2778 
24 0.56 1.54 12.84 0.30 4.46 5.15 0.0198 0.0698 0.0889 
25 6.11 9.42 0.88 1.04 7.71 4.03 0.0115 0.0342 0.0595 
26 0.62 1.28 8.87 1.38 2.18 3.02 0.0036 0.0346 0.0741 
27 1.65 1.96 2.49 3.80 1.27 5.17 0.0423 0.0188 0.1136 
28 0.65 2.04 1.19 3.79 1.49 4.23 0.0231 0.0345 0.1389 
29 0.89 9.34 13.22 2.19 3.69 11.83 0.0151 0.0000 0.0806 
30 5.29 9.74 3.63 0.76 2.66 13.82 0.0240 0.0265 2.3077 
31 2.65 5.18 6.42 1.47 1.38 2.65 0.0212 0.0486 0.0465 
32 7.46 6.97 1.06 4.69 4.80 0.43 0.0371 0.0000 0.3571 
33 5.94 1.74 14.95 1.15 1.06 10.17 0.1400 0.0041 0.0654 
34 2.43 1.96 3.32 2.48 3.19 0.15 0.0126 0.0317 0.1754 
35 3.79 0.39 14.41 0.92 2.27 6.28 0.0029 0.0179 0.1493 
36 2.98 1.07 6.20 1.02 2.37 1.81 0.2447 0.0326 0.0806 
37 0.44 0.20 0.19 1.02 0.09 1.24 0.2480 0.0207 0.0633 
38 1.44 2.02 14.89 0.92 1.38 5.17 0.0277 0.0028 0.1439 
39 1.88 0.08 9.61 0.84 3.02 2.03 0.0034 0.0265 1.0000 
MAPE 2.957 3.908 7.072 1.993 3.050 5.759 0.035 0.024 0.025  
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fit very well with the line except a few points. The calculated values of coefficient of determination (R2) for the trained ANN models of 
Fc, SCE, and Ra were 0.99601, 0.99723, and 0.97992, respectively. All the measured values of R2 are higher than 0.90 that also depicts 
the model accuracy. Furthermore, for training and test data sets, the predicted results fit very well with the 45-degree line especially 
that also manifests that the selected specific ANN output network was adequate in describing the selected responses Fc, SCE, and Ra 
(see ). 

Like RSM and ANN, the ANFIS structure was used to predict responses of the given dataset in Table 1. The initiation of ANFIS 
analysis was carried out by the formation of 39 × 5 matrix that actually signifies the presence of four inputs with a single output for 39 
trial runs as shown in Fig. 11. Sugeno type FIS structure was chosen because of its better processing time with the weighted average 
defuzzification. 

For analysis, Grid partition technique was adopted to generate the optimized rules considering triangular membership functions 
(trimf). Hybrid optimization method with 0 error tolerances was carried out for 100 epochs after loading training and test datasets that 
comprises of the least square method and the gradient descent method. Fig. 12 shows the model outcomes of Fc, SCE, and Ra with their 
experimental results under the same processing conditions for showing the discrepancies between those actual and predicted datasets 
in the training process. For training datasets of Fc, SCE, and Ra by using ANFIS model, the minimum RMSE values were achieved as 
0.00339, 0.000013, and 0.000001 that manifests the higher prediction accuracy of the used model. Finally, the validation was checked 
out by the testing process and the testing results are shown in Fig. 13. The estimated coefficients of determination (R2) for Fc, SCE, and 
Ra were 0.9999, 0.9998 and 0.9768, respectively reveal the model’s higher prediction accuracy. 

Different degrees of prediction accuracy were noticed for each prediction model (RSM, ANN, ANFIS) and hence, to declare the best 
prediction model in this specific case, the statistical error analysis was carried out following APE and MAPE. Table 5 summarizes the 

Fig. 14. Comparative study of RSM, ANN, and ANFIS models in predicting (a) Fc, (b) SCE, and (c)Ra.  

Table 6 
PCA derived relative weights of selected criteria for the current study.  

Criteria Cutting force Specific cutting energy Surface roughness 

Weights 0.46 0.13 0.41  
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suggested models’ predictability for 39 experimental trials. The statistical analysis reveals no significant discrepancies between used 
models in predicting the machinability characteristics. However, from the tabulated results, the ANN and ANFIS models seem to be 
more appropriate compared to RSM models. Such results also agreed with the prior study results [48]. As the error results are within 
10%, it can be claimed that the selected models are capable to accurately predict the results. The comparative analysis is also 

Table 7 
Selection of the best alternative based on PCA-MOORA method.  

Alternatives Normalized values of- Weighted normalized values of- Performance score Rank 

Fc SCE Ra Fc SCE Ra 

A1 0.1375 0.1097 0.1021 0.0636 0.0142 0.0416 − 0.1194 5 
A2 0.1017 0.1660 0.0948 0.0470 0.0215 0.0386 − 0.1071 4 
A3 0.1780 0.0705 0.1605 0.0823 0.0091 0.0653 − 0.1568 20 
A4 0.2006 0.1059 0.1848 0.0928 0.0137 0.0752 − 0.1817 31 
A5 0.1403 0.1111 0.1435 0.0649 0.0144 0.0584 − 0.1377 12 
A6 0.1417 0.1131 0.1508 0.0655 0.0147 0.0614 − 0.1416 14 
A7 0.1959 0.0776 0.1933 0.0906 0.0101 0.0787 − 0.1793 30 
A8 0.0951 0.1552 0.0778 0.0440 0.0201 0.0317 − 0.0958 1* 
A9 0.2265 0.1355 0.1982 0.1047 0.0176 0.0807 − 0.2030 37 
A10 0.1319 0.2152 0.1435 0.0610 0.0279 0.0584 − 0.1473 17 
A11 0.1775 0.1062 0.1605 0.0821 0.0138 0.0653 − 0.1612 24 
A12 0.1973 0.1562 0.2115 0.0912 0.0202 0.0861 − 0.1976 36 
A13 0.1611 0.1285 0.1714 0.0745 0.0167 0.0698 − 0.1609 23 
A14 0.1479 0.1810 0.1167 0.0684 0.0235 0.0475 − 0.1393 13 
A15 0.1545 0.0815 0.1240 0.0714 0.0106 0.0505 − 0.1325 11 
A16 0.1822 0.0962 0.1824 0.0843 0.0125 0.0742 − 0.1710 29 
A17 0.1361 0.2221 0.1337 0.0629 0.0288 0.0544 − 0.1461 16 
A18 0.1003 0.1200 0.0900 0.0464 0.0156 0.0366 − 0.0986 2 
A19 0.1808 0.2213 0.1787 0.0836 0.0287 0.0727 − 0.1850 35 
A20 0.1568 0.2559 0.1483 0.0725 0.0332 0.0604 − 0.1661 27 
A21 0.1333 0.1595 0.1191 0.0616 0.0207 0.0485 − 0.1308 10 
A22 0.1450 0.0868 0.1216 0.0671 0.0112 0.0495 − 0.1278 9 
A23 0.0890 0.2178 0.0875 0.0412 0.0282 0.0356 − 0.1050 3 
A24 0.2157 0.0854 0.2736 0.0997 0.0111 0.1113 − 0.2221 38 
A25 0.1653 0.0873 0.2043 0.0764 0.0113 0.0831 − 0.1709 28 
A26 0.1361 0.1629 0.1641 0.0629 0.0211 0.0668 − 0.1508 19 
A27 0.1003 0.2455 0.1070 0.0464 0.0318 0.0435 − 0.1217 7 
A28 0.2049 0.1226 0.1751 0.0947 0.0159 0.0713 − 0.1819 32 
A29 0.1568 0.0938 0.1508 0.0725 0.0122 0.0614 − 0.1460 15 
A30 0.1775 0.1062 0.1581 0.0821 0.0138 0.0643 − 0.1602 22 
A31 0.2227 0.1176 0.2614 0.1030 0.0152 0.1064 − 0.2246 39 
A32 0.1272 0.1521 0.1021 0.0588 0.0197 0.0416 − 0.1201 6 
A33 0.1144 0.2801 0.1860 0.0529 0.0363 0.0757 − 0.1649 26 
A34 0.1488 0.1781 0.1386 0.0688 0.0231 0.0564 − 0.1483 18 
A35 0.1578 0.1931 0.1629 0.0729 0.0250 0.0663 − 0.1643 25 
A36 0.1733 0.1372 0.1508 0.0801 0.0178 0.0614 − 0.1593 21 
A37 0.1709 0.2046 0.1921 0.0790 0.0265 0.0782 − 0.1837 34 
A38 0.1705 0.2782 0.1690 0.0788 0.0360 0.0688 − 0.1837 33 
A39 0.1422 0.0751 0.1216 0.0658 0.0097 0.0495 − 0.1250 8 
* Represents the optimal solution  

Table 8 
Changed criteria weights with the imposed disturbances.  

Unitary ratio (γk, k = Fc, SCE, Ra) Weights of criteria due to 
disturbance induced on cutting force 
(Fc) 

Weights of criteria due to disturbance 
induced on specific cutting energy (SCE) 

Weights of criteria due to disturbance 
induced on surface roughness (Ra) 

Fc SCE Ra SCE Fc Ra Ra Fc SCE 

0.01 0.005 0.240 0.756 0.001 0.528 0.471 0.004 0.776 0.219 
0.03 0.014 0.237 0.749 0.004 0.527 0.469 0.0123 0.770 0.218 
0.05 0.023 0.235 0.742 0.007 0.525 0.468 0.0205 0.764 0.216 
0.07 0.032 0.233 0.735 0.009 0.524 0.467 0.0287 0.757 0.214 
0.1 0.046 0.230 0.724 0.013 0.522 0.465 0.041 0.748 0.211 
0.2 0.092 0.219 0.689 0.026 0.515 0.459 0.082 0.716 0.202 
0.5 0.230 0.185 0.585 0.065 0.494 0.441 0.205 0.620 0.175 
1.0 0.460 0.130 0.410 0.130 0.460 0.410 0.41 0.460 0.130 
1.5 0.690 0.075 0.235 0.195 0.426 0.379 0.615 0.300 0.085 
2.0 0.920 0.019 0.061 0.260 0.391 0.349 0.82 0.140 0.040  
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graphically shown in Fig. 14. 
With the criteria weights derived by PCA as presented in Table 6, the MOORA method was applied to optimize the selected re

sponses. Table 7 represents the optimization results with the indication of best alternatives. It can be observed that alternative A8 at 32 
m/min speed, 22 mm/min feed rate, and 0.75 mm depth of cut under RHPC was selected as the best alternative with the highest 
weighted assessment value. 

After selecting the best alternatives, the next step was to conduct the sensitivity analysis with the variation of unitary ratio of the 
criteria weights. Table 8 shows the changed criteria weights w′

k with the variation of unitary ratios γk. The sensitivity of each alter
native’s ranking with the imposed disturbances on the PCA derived weightages of cutting force, specific cutting energy, and surface 
roughness, respectively are summarized in Tables 9–11. As can be seen in Table 9, the variation of the ranking alternatives was 
consistent for the lower range of unitary ratio (γFc) at 0.01–0.07. After, γFc = 0.2 the change of ranking sequence became more un
predictable. The optimal alternative was noticed insensitive for γFc up to 1.5. Table 10 shows the variation of weightages for specific 
cutting energy. Severe inconsistency of ranking sequence was not noticed for the unitary ratio γSCE reaching up to 0.2. Above this value 
of unitary ratio, the alteration of ranking sequence was found to be more irregular. The selection of optimal alternative was changed 
when γSCE reached above 1.5. Lastly, Table 11 lists the sequence of ranking alternatives for changing weightages of surface roughness. 
No sharp deviations of ranking sequence were observed. But, alternative A8 was selected as the best optimal alternative like PCA- 
MOORA after considering the imposed unitary ratio γRa within 0.5–2.0 that indicates the higher sensitivity of surface roughness 
with the lower value of γRa. For clear understanding concerning this, a graphical analysis was carried out, as shown in Fig. 15. From the 
graphical plot, it has been observed that for cutting force, the sensitivity of ranking derived from PCA-MOORA was higher compared to 
specific cutting energy, and surface roughness. Actually, imposed disturbances affected it more because the weightage of cutting force 
derived by PCA was higher than the other twos. 

Table 9 
Ranking of alternatives with the imposed disturbances on cutting force (Fc).   

Ranking due to the change of unitary ratios (γFc) 

Alternatives 0.01 0.03 0.05 0.07 0.1 0.2 0.5 1.0 1.5 2.0 
A1 3 3 3 3 3 3 4 5 7 10 
A2 5 5 5 5 4 4 3 4 4 4 
A3 14 14 15 15 15 16 16 20 25 28 
A4 28 28 28 28 28 28 31 31 34 35 
A5 12 12 12 12 12 12 13 12 11 14 
A6 16 16 16 16 16 15 15 14 13 15 
A7 27 27 27 27 27 27 29 30 33 33 
A8 1 1 1 1 1 1 1 1 1 2 
A9 32 32 32 32 32 32 36 37 37 38 
A10 22 22 22 22 22 22 21 17 12 9 
A11 18 18 19 20 20 20 22 24 27 30 
A12 36 36 36 36 36 36 37 36 36 34 
A13 23 23 23 23 23 23 24 23 21 23 
A14 11 11 11 11 11 11 12 13 16 17 
A15 7 8 8 8 8 9 9 11 14 19 
A16 24 24 24 24 25 25 25 28 29 31 
A17 21 21 21 21 21 21 18 16 15 11 
A18 2 2 2 2 2 2 2 2 3 3 
A19 33 33 33 33 33 33 33 35 32 32 
A20 30 30 30 30 30 30 27 27 23 21 
A21 10 10 10 10 10 10 10 10 8 8 
A22 6 6 6 6 6 7 8 9 10 16 
A23 9 9 9 9 9 8 5 3 2 1 
A24 39 39 39 39 39 39 38 38 38 37 
A25 31 31 31 31 31 31 30 29 28 24 
A26 26 26 25 25 24 24 23 19 18 12 
A27 15 15 14 14 14 13 11 7 5 5 
A28 25 25 26 26 26 26 28 32 35 36 
A29 13 13 13 13 13 14 14 15 20 20 
A30 17 17 17 17 17 18 19 22 26 29 
A31 38 38 38 38 38 38 39 39 39 39 
A32 8 7 7 7 7 6 6 6 6 7 
A33 37 37 37 37 37 37 32 26 17 6 
A34 20 20 20 18 18 17 17 18 19 18 
A35 29 29 29 29 29 29 26 25 22 22 
A36 19 19 18 19 19 19 20 21 24 25 
A37 34 34 34 34 34 34 34 34 31 27 
A38 35 35 35 35 35 35 35 33 30 26 
A39 4 4 4 4 5 5 7 8 9 13  
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4. Conclusions and limitations of the study 

From the mathematical model development, comparison, optimization, and sensitivity analysis, the following conclusions can be 
drawn.  

• The present study explores the novel use of rotary applicator for spraying high-pressure coolant jets targeting the tool tip of 
complex helix shaped end mill cutter. Forced convective heat transfer mechanism of this modified design enhanced the cooling rate 
that results comparatively better machinability than conventional HPC. RHPC reduced cutting force, specific energy consumption, 
and surface roughness by 10.60%, 10.61%, and 14.36% respectively compared to HPC.  

• Based on the determination of coefficients (R2, adjusted R2, predicted R2), the developed RSM models for predicting responses such 
as cutting force, specific cutting energy, and surface roughness were found to be satisfactory. All of the coefficients were greater 
than 90%, indicating that the derived models described more than 90% of the variability in the response data. As a whole, these 
models are highly favorable.  

• ANOVA results divulged that the feed rate has the greatest effect on modifying the value of cutting force and specific cutting energy, 
whereas the cooling strategy has the most dominant effect on surface roughness variation.  

• Main effects plots revealed that the minimum cutting force and surface roughness were found to be prompted by the high-pressure 
coolant condition, cutting speed of 32 m/min, feed rate of 22, and depth of cut of 0.50 mm; the minimum specific cutting energy 
required the highest feed rate (68 mm/min) and depth of cut (1.0 mm), not the lowest feed rate and depth of cut along with similar 
speed and cooling approach.  

• For predicting responses such as cutting force, specific cutting energy, and surface roughness, feed forward back propagation type 
ANN networks with 4-5-1, 4-25-1, and 4-7-1 structures trained by Bayesian regularization were selected. The recommended ANN 

Table 10 
Ranking of alternatives with the imposed disturbances on specific cutting energy (SCE).  

Alternatives Ranking due to the change of unitary ratios (γSCE) 

0.01 0.03 0.05 0.07 0.1 0.2 0.5 1.0 1.5 2.0 

A1 7 7 7 7 7 7 7 5 5 5 
A2 4 4 4 4 4 4 4 4 3 3 
A3 27 27 27 26 26 26 24 20 16 15 
A4 34 34 34 34 34 34 35 31 31 29 
A5 15 15 15 15 15 15 13 12 12 10 
A6 17 17 17 17 17 17 16 14 13 12 
A7 35 35 35 35 35 35 34 30 28 27 
A8 1 1 1 1 1 1 1 1 2 2 
A9 37 37 37 37 37 37 37 37 37 36 
A10 13 13 13 13 13 14 15 17 20 23 
A11 26 26 26 27 27 27 27 24 22 20 
A12 36 36 36 36 36 36 36 36 36 35 
A13 24 24 24 24 24 24 25 23 24 22 
A14 10 10 10 11 11 11 11 13 15 16 
A15 14 14 14 14 14 13 12 11 9 8 
A16 31 31 31 31 30 29 28 28 26 26 
A17 12 12 12 12 12 12 14 16 19 24 
A18 3 3 3 3 3 3 3 2 1 1 
A19 29 29 29 29 29 30 32 35 34 34 
A20 20 20 20 21 21 21 21 27 29 31 
A21 8 8 8 8 8 8 8 10 11 11 
A22 11 11 11 10 10 10 10 9 8 6 
A23 2 2 2 2 2 2 2 3 4 7 
A24 39 39 39 39 39 39 38 38 38 38 
A25 32 32 32 32 32 31 30 29 25 25 
A26 19 19 19 19 18 18 19 19 18 18 
A27 5 5 5 5 5 5 5 7 10 14 
A28 33 33 33 33 33 33 33 32 32 30 
A29 21 21 21 20 20 20 18 15 14 13 
A30 25 25 25 25 25 25 26 22 21 17 
A31 38 38 38 38 38 38 39 39 39 39 
A32 6 6 6 6 6 6 6 6 7 9 
A33 18 18 18 18 19 19 20 26 30 32 
A34 16 16 16 16 16 16 17 18 17 19 
A35 22 22 22 22 22 22 23 25 27 28 
A36 23 23 23 23 23 23 22 21 23 21 
A37 30 30 30 30 31 32 31 34 33 33 
A38 28 28 28 28 28 28 29 33 35 37 
A39 9 9 9 9 9 9 9 8 6 4  
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models of the specified responses have higher coefficients of determination (R2) of 0.99601, 0.99723, and 0.97992, indicating its 
better predictability.  

• Like RSM and ANN, ANFIS model was employed to predict responses and the calculated coefficients of determination (R2) for 
cutting force, specific cutting energy, and surface roughness were 0.9999, 0.9998, and 0.9768, indicating the model’s superior 
prediction accuracy.  

• Comparative assessment of the used predictive models recommended ANFIS as the most accurate and precise way to anticipate 
responses with the lowest MAPE value.  

• The PCA-MOORA optimization approach revealed that milling of Ti–6Al–4V alloy at a cutting speed of 32 m/min, feed rate of 22 
mm/min, and 0.75 mm depth of cut under the application of high-pressure coolant jets by rotary applicator simultaneously 
optimize all the responses.  

• Sensitivity analysis revealed that the deviation of the order of preference sequences is more irregular with the higher value of 
unitary ratio. 

This study provides a substantial platform for sensitivity analysis of the PCA-MOORA approach in milling, and its use in the field of 
other machining processes can be significantly expanded. Furthermore, sensitivity analyses for additional multi-criteria decision 
models can be undertaken to determine the best decision model for a specific scenario. 
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Table 11 
Ranking of alternatives with the imposed disturbances on roughness (Ra).  

Alternatives Ranking due to the change of unitary ratios (γRa) 

0.01 0.03 0.05 0.07 0.1 0.2 0.5 1.0 1.5 2.0 

A1 6 6 6 6 6 6 5 5 5 5 
A2 3 3 3 3 3 3 4 4 4 4 
A3 20 20 21 22 21 22 20 20 21 22 
A4 32 32 32 32 32 32 31 31 32 32 
A5 10 10 10 10 10 10 12 12 13 15 
A6 11 11 11 11 11 11 13 14 15 17 
A7 29 29 29 29 29 29 30 30 34 33 
A8 2 2 2 2 2 2 2 1 1 1 
A9 39 39 39 39 39 39 38 37 36 36 
A10 17 17 17 17 16 16 17 17 17 16 
A11 25 25 25 25 25 25 25 24 24 24 
A12 35 35 34 34 34 35 36 36 37 37 
A13 19 19 19 20 23 23 21 23 26 26 
A14 22 21 20 19 19 17 16 13 12 11 
A15 12 12 12 12 12 12 11 11 11 12 
A16 26 26 26 26 26 27 28 28 28 29 
A17 21 22 22 21 20 19 18 16 14 13 
A18 1 1 1 1 1 1 1 2 2 2 
A19 36 36 36 35 35 34 34 35 33 31 
A20 31 30 30 30 30 30 29 27 23 20 
A21 13 13 13 13 13 13 10 10 10 9 
A22 7 8 8 9 9 9 9 9 9 10 
A23 4 4 4 4 4 4 3 3 3 3 
A24 34 34 35 36 36 37 37 38 39 39 
A25 16 16 16 16 17 18 23 29 31 35 
A26 14 14 14 14 14 15 15 19 19 23 
A27 8 7 7 7 7 8 8 7 7 7 
A28 33 33 33 33 33 33 33 32 30 28 
A29 15 15 15 15 15 14 14 15 18 18 
A30 24 24 24 24 24 24 24 22 22 21 
A31 38 38 38 38 38 38 39 39 38 38 
A32 9 9 9 8 8 7 7 6 6 6 
A33 18 18 18 18 18 20 22 26 27 30 
A34 23 23 23 23 22 21 19 18 16 14 
A35 28 28 28 28 28 28 27 25 25 25 
A36 27 27 27 27 27 26 26 21 20 19 
A37 30 31 31 31 31 31 32 34 35 34 
A38 37 37 37 37 37 36 35 33 29 27 
A39 5 5 5 5 5 5 6 8 8 8  
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[1] G.M. Pittalà, M. Monno, A new approach to the prediction of temperature of the workpiece of face milling operations of Ti-6Al-4V, Appl. Therm. Eng. 31 (2–3) 
(2011) 173–180, https://doi.org/10.1016/j.applthermaleng.2010.08.027. 

[2] O.O. Daramola, I. Tlhabadira, J.L. Olajide, I.A. Daniyan, E.R. Sadiku, L. Masu, L.R. VanStaden, Process design for optimal minimization of resultant cutting force 
during the machining of Ti-6Al-4V: response surface method and desirability function analysis, Procedia CIRP 84 (2019) 854–860, https://doi.org/10.1016/j. 
procir.2019.04.185. 

[3] S. Pervaiz, I. Deiab, B. Darras, Power consumption and tool wear assessment when machining titanium alloys, Int J Precis Eng 14 (6) (2013) 925–936, https:// 
doi.org/10.1007/s12541-013-0122-y. 

[4] N.E. Karkalos, N.I. Galanis, A.P. Markopoulos, Surface roughness prediction for the milling of Ti–6Al–4V ELI alloy with the use of statistical and soft computing 
techniques, Measurement 90 (2016) 25–35, https://doi.org/10.1016/j.measurement.2016.04.039. 

Fig. 15. Graphical plots for standard deviations of ranking alternatives due to variation of unitary ratios of (a) cutting force, (b) specific cutting 
energy, and (c) surface roughness. 

M.N. Sultana and N.R. Dhar                                                                                                                                                                                        

https://doi.org/10.1016/j.applthermaleng.2010.08.027
https://doi.org/10.1016/j.procir.2019.04.185
https://doi.org/10.1016/j.procir.2019.04.185
https://doi.org/10.1007/s12541-013-0122-y
https://doi.org/10.1007/s12541-013-0122-y
https://doi.org/10.1016/j.measurement.2016.04.039


Heliyon 9 (2023) e18582

20

[5] E.O. Ezugwu, Key improvements in the machining of difficult-to-cut aerospace superalloys, Int. J. Mach. Tool Manufact. 45 (12–13) (2005) 1353–1367, https:// 
doi.org/10.1016/j.ijmachtools.2005.02.003. 

[6] R. Peng, J. Liu, M. Chen, J. Tong, L. Zhao, Development of a pressurized internal cooling milling cutter and its machining performance assessment, Precis. Eng. 
72 (2021) 315–329, https://doi.org/10.1016/j.precisioneng.2021.05.010. 

[7] S. Shu, Y. Zhang, Y. He, H. Zhang, Design of a novel turning tool cooled by combining circulating internal cooling with spray cooling for green cutting, J Adv 
Mech Des Sys Manuf 15 (1) (2021) 1–11, https://doi.org/10.1299/jamdsm.2021jamdsm0003. 

[8] S. Zhang, J.F. Li, J. Sun, F. Jiang, Tool wear and cutting forces variation in high-speed end-milling Ti-6Al-4V alloy, Int. J. Adv. Manuf. Technol. 46 (1) (2010) 
69–78, https://doi.org/10.1007/s00170-009-2077-9. 

[9] M. Mia, N.R. Dhar, Modelling of surface roughness using RSM, FL and SA in dry hard turning, Arabian J. Sci. Eng. 43 (3) (2018) 1125–1136, https://doi.org/ 
10.1007/s13369-017-2754-1. 

[10] M.A. Sulaiman, C.C. Haron, J.A. Ghani, M.S. Kasim, Effect of high-speed parameters on uncoated carbide tool in finish turning Titanium Ti-6Al-4V ELI, Sains 
Malays. 43 (1) (2014) 111–116. 

[11] R. Shetty, C.R. Kumar, M.R. Ravindra, RSM based expert system development for cutting force prediction during machining of Ti–6Al–4V under minimum 
quantity lubrication, Int J Syst Assur Eng Manag 1–8 (2021), https://doi.org/10.1007/s13198-021-01495-z. 

[12] K.H. Hashmi, G. Zakria, M.B. Raza, S. Khalil, Optimization of process parameters for high-speed machining of Ti-6Al-4V using response surface methodology, 
Int. J. Adv. Manuf. Technol. 85 (5) (2016) 1847–1856, https://doi.org/10.1007/s00170-015-8057-3. 

[13] A.M. Zain, H. Haron, S. Sharif, Prediction of surface roughness in the end milling machining using Artificial Neural Network, Expert Syst. Appl. 37 (2) (2010) 
1755–1768, https://doi.org/10.1016/j.eswa.2009.07.033.4. 

[14] R.H. Namlu, C. Turhan, B.L. Sadigh, S.E. Kilic, Cutting force prediction in ultrasonic-assisted milling of Ti–6Al–4V with different machining conditions using 
artificial neural network, Artif Intell Eng Des Anal Man 35 (1) (2021) 37–48, https://doi.org/10.1017/S0890060420000360. 

[15] S. Al-Zubaidi, J.A. Ghani, C.H. Che Haron, Prediction of surface roughness when end milling Ti6Al4V alloy using adaptive neuro-fuzzy inference system, Model. 
Simulat. Eng. 2013 (2013) 1–12, https://doi.org/10.1155/2013/932094. 

[16] C. Bandapalli, B.M. Sutaria, D.V. Bhatt, Estimation of surface roughness on Ti-6Al-4V in high-speed micro end milling by ANFIS model, Indian J. Eng. Mater. Sci. 
26 (2019) 379–389. 

[17] E. Kilickap, A. Yardimeden, Y.H. Çelik, Mathematical modelling and optimization of cutting force, tool wear and surface roughness by using artificial neural 
network and response surface methodology in milling of Ti-6242S, Appl. Sci. 7 (10) (2017) 1064, https://doi.org/10.3390/app7101064. 

[18] M. Yanis, A.S. Mohruni, S. Sharif, I. Yani, Z. Suzen, Z.A. Ahmad, Cutting force prediction when green machining of thin-walled Ti-6Al-4V under dry and MQL- 
cutting using response surface methodology and artificial neural networks-algorithm, AIP Conf. Proc. 29 (1) (2019), 020027 (AIP Publishing LLC). 

[19] S.O. Sada, S.C. Ikpeseni, Evaluation of ANN and ANFIS modelling ability in the prediction of AISI 1050 steel machining performance, Heliyon 7 (2) (2021), 
e06136, https://doi.org/10.1016/j.heliyon.2021.e06136. 

[20] M.K. Gupta, M. Mia, C.I. Pruncu, A.M. Khan, M.A. Rahman, M. Jamil, V.S. Sharma, Modelling and performance evaluation of Al2O3, MoS2 and graphite 
nanoparticle-assisted MQL in turning titanium alloy: an intelligent approach, J. Braz. Soc. Mech. Sci. 42 (4) (2020) 1–21, https://doi.org/10.1007/s40430-020- 
2256-z. 

[21] C.E. Onu, J.T. Nwabanne, P.E. Ohale, C.O. Asadu, Comparative analysis of RSM, ANN and ANFIS and the mechanistic modelling in eriochrome black-T dye 
adsorption using modified clay, South Afr. J. Chem. Eng. 36 (2021) 24–42, https://doi.org/10.1016/j.sajce.2020.12.003. 

[22] V.S. Gadakh, Application of MOORA method for parametric optimization of milling process, Int. J. Appl. Eng. Res. 1 (4) (2010) 743. 
[23] S. Kalirasu, N. Rajini, S. Rajesh, J.W. Jappes, K. Karuppasamy, AWJM Performance of jute/polyester composite using MOORA and analytical models, Mater. 

Manuf. Process. 32 (15) (2017) 1730–1739, https://doi.org/10.1080/10426914.2017.1279314. 
[24] A. Khan, K. Maity, Parametric optimization of some non-conventional machining processes using MOORA method, Int. J. Eng. Res. Afr. 20 (2016) 19–40. 

https://dx.doi.org/10.4028/www.scientific.net/JERA.20.19. 
[25] P. Karande, S. Chakraborty, Application of multi-objective optimization on the basis of ratio analysis (MOORA) method for materials selection, Mater. Des. 37 

(2012) 317–324, https://doi.org/10.1016/j.matdes.2012.01.013. 
[26] H. Majumder, K. Maity, Optimization of machining condition in WEDM for titanium grade 6 using MOORA coupled with PCA—a multivariate hybrid approach, 

J. Adv. Manuf. Syst. 16 (2) (2017) 81–99, https://doi.org/10.1142/S0219686717500068. 
[27] P.B. Zaman, M.N. Sultana, N.R. Dhar, Multi-variant hybrid techniques coupled with Taguchi in multi-response parameter optimisation for better machinability 

of turning alloy steel, Adv Mater Process Technol 8 (3) (2021) 3127–3147, https://doi.org/10.1080/2374068X.2021.1945302. 
[28] P. Li, H. Qian, J. Wu, J. Chen, Sensitivity analysis of TOPSIS method in water quality assessment: I. Sensitivity to the parameter weights, Environ. Monit. Assess. 

185 (3) (2013) 2453–2461, https://doi.org/10.1007/s10661-012-2723-9. 
[29] D. Bhadra, N.R. Dhar, M.A. Salam, Sensitivity analysis of the integrated AHP-TOPSIS and CRITIC-TOPSIS method for selection of the natural fiber, Mater. Today: 

Proc. 56 (2022) 2618–2629, https://doi.org/10.1016/j.matpr.2021.09.178. 
[30] Y.C. Zhang, T. Mabrouki, D. Nelias, Y.D. Gong, Chip formation in orthogonal cutting considering interface limiting shear stress and damage evolution based on 

fracture energy approach, Fin elem anal des 47 (7) (2011) 850–863, https://doi.org/10.1016/j.finel.2011.02.016. 
[31] M. Mia, N.R. Dhar, Response surface and neural network based predictive models of cutting temperature in hard turning, J. Adv. Res. 7 (6) (2016) 1035–1044, 

https://doi.org/10.1016/j.jare.2016.05.004. 
[32] M. Ikhlas, Y.M. Athmane, B. Hamza, K. Ahmed, E. Mohamed, Prediction of surface roughness and cutting forces using RSM, ANN, and NSGA-II in finish turning 

of AISI 4140 hardened steel with mixed ceramic tool, Int. J. Adv. Manuf. Technol. 97 (5–8) (2018) 1931–1949, https://doi.org/10.1007/s00170-018-2026-6. 
[33] P.B. Zaman, N.R. Dhar, Multi-objective optimization of double-jet MQL system parameters meant for enhancing the turning performance of Ti–6Al–4V alloy, 

Arabian J. Sci. Eng. 45 (11) (2020) 9505–9526, https://doi.org/10.1007/s13369-020-04806-x. 
[34] M. Mia, M.A. Khan, N.R. Dhar, Study of surface roughness and cutting forces using ANN, RSM, and ANOVA in turning of Ti-6Al-4V under cryogenic jets applied 

at flank and rake faces of coated WC tool, Int. J. Adv. Manuf. Technol. 93 (1) (2017) 975–991, https://doi.org/10.1007/s00170-017-0566-9. 
[35] C. Naresh, P.S. Bose, C.S. Rao, Artificial neural networks and adaptive neuro-fuzzy models for predicting WEDM machining responses of Nitinol alloy: 

comparative study, SN Appl. Sci. 2 (2) (2020) 1–23, https://doi.org/10.1007/s42452-020-2083-y. 
[36] X.A. Vasanth, P.S. Paul, A.S. Varadarajan, A neural network model to predict surface roughness during turning of hardened SS410 steel, Int J Sys Assur Eng 

Manag 11 (3) (2020) 704–715, https://doi.org/10.1007/s13198-020-00986-9. 
[37] M. Mia, N.R. Dhar, Prediction and optimization by using SVR, RSM and GA in hard turning of tempered AISI 1060 steel under effective cooling condition, Neural 

Comput. Appl. 31 (2019) 2349–2370, https://doi.org/10.1007/s00521-017-3192-4. 
[38] I. Asilturk, M. Cunkas, Modelling and prediction of surface roughness in turning operations using artificial neural network and multiple regression method, Exp 

sys appl 38 (5) (2011) 5826–5832, https://doi.org/10.1016/j.eswa.2010.11.041. 
[39] E. Ezugwu, D. Fadare, J. Bonney, R. Da Silva, W. Sales, Modelling the correlation between cutting and process parameters in high-speed machining of Inconel 

718 alloy using an artificial neural network, Int. J. Mach. Tool Manufact. 45 (12) (2005) 1375–1385, https://doi.org/10.1016/j.ijmachtools.2005.02.004. 
[40] J.S. Jang, Neuro-fuzzy modelling for dynamic system identification, in: Soft Computing in Intelligent Systems and Information Processing. Proceedings of the 

1996 Asian Fuzzy Systems Symposium, IEEE, 1996, pp. 320–325, https://doi.org/10.1109/AFSS.1996.583623. 
[41] S. Akbari, S.M. Mahmood, I.M. Tan, H. Hematpour, Comparison of neuro-fuzzy network and response surface methodology pertaining to the viscosity of 

polymer solutions, J. Pet. Explor. Prod. Technol. 8 (3) (2018) 887–900, https://doi.org/10.1007/s13202-017-0375-6. 
[42] K. Pearson, On lines and planes of closest fit to systems of points in space, Philos Manag (1901) 559–572, https://doi.org/10.1080/14786440109462720. 
[43] H. Hotelling, Analysis of a complex of statistical variables into principal components, J. Educ. Psychol. 24 (6) (1933) 417–441, https://doi.org/10.1037/ 

h0071325. 
[44] W.K. Brauers, E. Zavadskas, The MOORA method and its application to privatization in a transition economy, Control Cybern. 35 (2) (2006) 445–469. 

M.N. Sultana and N.R. Dhar                                                                                                                                                                                        

https://doi.org/10.1016/j.ijmachtools.2005.02.003
https://doi.org/10.1016/j.ijmachtools.2005.02.003
https://doi.org/10.1016/j.precisioneng.2021.05.010
https://doi.org/10.1299/jamdsm.2021jamdsm0003
https://doi.org/10.1007/s00170-009-2077-9
https://doi.org/10.1007/s13369-017-2754-1
https://doi.org/10.1007/s13369-017-2754-1
http://refhub.elsevier.com/S2405-8440(23)05790-0/sref10
http://refhub.elsevier.com/S2405-8440(23)05790-0/sref10
https://doi.org/10.1007/s13198-021-01495-z
https://doi.org/10.1007/s00170-015-8057-3
https://doi.org/10.1016/j.eswa.2009.07.033.4
https://doi.org/10.1017/S0890060420000360
https://doi.org/10.1155/2013/932094
http://refhub.elsevier.com/S2405-8440(23)05790-0/sref16
http://refhub.elsevier.com/S2405-8440(23)05790-0/sref16
https://doi.org/10.3390/app7101064
http://refhub.elsevier.com/S2405-8440(23)05790-0/sref18
http://refhub.elsevier.com/S2405-8440(23)05790-0/sref18
https://doi.org/10.1016/j.heliyon.2021.e06136
https://doi.org/10.1007/s40430-020-2256-z
https://doi.org/10.1007/s40430-020-2256-z
https://doi.org/10.1016/j.sajce.2020.12.003
http://refhub.elsevier.com/S2405-8440(23)05790-0/sref22
https://doi.org/10.1080/10426914.2017.1279314
https://dx.doi.org/10.4028/www.scientific.net/JERA.20.19
https://doi.org/10.1016/j.matdes.2012.01.013
https://doi.org/10.1142/S0219686717500068
https://doi.org/10.1080/2374068X.2021.1945302
https://doi.org/10.1007/s10661-012-2723-9
https://doi.org/10.1016/j.matpr.2021.09.178
https://doi.org/10.1016/j.finel.2011.02.016
https://doi.org/10.1016/j.jare.2016.05.004
https://doi.org/10.1007/s00170-018-2026-6
https://doi.org/10.1007/s13369-020-04806-x
https://doi.org/10.1007/s00170-017-0566-9
https://doi.org/10.1007/s42452-020-2083-y
https://doi.org/10.1007/s13198-020-00986-9
https://doi.org/10.1007/s00521-017-3192-4
https://doi.org/10.1016/j.eswa.2010.11.041
https://doi.org/10.1016/j.ijmachtools.2005.02.004
https://doi.org/10.1109/AFSS.1996.583623
https://doi.org/10.1007/s13202-017-0375-6
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1037/h0071325
https://doi.org/10.1037/h0071325
http://refhub.elsevier.com/S2405-8440(23)05790-0/sref44


Heliyon 9 (2023) e18582

21

[45] F. Pusavec, A. Deshpande, S. Yang, R. M’Saoubi, J. Kopac, O.W. Dillon Jr., I.S. Jawahir, Sustainable machining of high temperature Nickel alloy–Inconel 718: 
part 1–predictive performance models, J. Clean. Prod. 81 (2014) 255–269, https://doi.org/10.1016/j.jclepro.2014.06.040. 

[46] G.R. Johnson, A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures, Proc. 7th Inf. Sympo. Ballistics 
(1983) 541–547. 

[47] M. Mia, Multi-response optimization of end milling parameters under through-tool cryogenic cooling condition, Measurement 111 (2017) 134–145, https://doi. 
org/10.1016/j.measurement.2017.07.033. 

[48] M.S. Hossain, N. Ahmad, Surface roughness prediction modelling for commercial dies using ANFIS, ANN and RSM, Int. J. Ind. Syst. Eng. 16 (2) (2014) 156–183, 
https://doi.org/10.1504/IJISE.2014.058834. 

M.N. Sultana and N.R. Dhar                                                                                                                                                                                        

https://doi.org/10.1016/j.jclepro.2014.06.040
http://refhub.elsevier.com/S2405-8440(23)05790-0/sref46
http://refhub.elsevier.com/S2405-8440(23)05790-0/sref46
https://doi.org/10.1016/j.measurement.2017.07.033
https://doi.org/10.1016/j.measurement.2017.07.033
https://doi.org/10.1504/IJISE.2014.058834

	Comparative evaluation and sensitivity analysis of multi-modelling and optimization of milling Ti–6Al–4V alloy with high-pr ...
	1 Introduction
	2 Methodology
	2.1 Machining methods
	2.2 Response surface methodology (RSM)
	2.3 Artificial neural network (ANN)
	2.4 Adaptive neuro-fuzzy inference system (ANFIS)
	2.5 Integrated PCA-MOORA method
	2.6 Sensitivity analysis

	3 Results and discussions
	4 Conclusions and limitations of the study
	Author contribution statement
	Data availability statement
	Declaration of competing interest
	Acknowledgements
	References


