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Cancer subtype identification using somatic mutation data
Marieke Lydia Kuijjer 1,2, Joseph Nathaniel Paulson1,2,3, Peter Salzman4, Wei Ding5 and John Quackenbush1,2,6

BACKGROUND: With the onset of next-generation sequencing technologies, we have made great progress in identifying recurrent
mutational drivers of cancer. As cancer tissues are now frequently screened for specific sets of mutations, a large amount of
samples has become available for analysis. Classification of patients with similar mutation profiles may help identifying subgroups
of patients who might benefit from specific types of treatment. However, classification based on somatic mutations is challenging
due to the sparseness and heterogeneity of the data.
METHODS: Here we describe a new method to de-sparsify somatic mutation data using biological pathways. We applied this
method to 23 cancer types from The Cancer Genome Atlas, including samples from 5805 primary tumours.
RESULTS: We show that, for most cancer types, de-sparsified mutation data associate with phenotypic data. We identify poor
prognostic subtypes in three cancer types, which are associated with mutations in signal transduction pathways for which targeted
treatment options are available. We identify subtype–drug associations for 14 additional subtypes. Finally, we perform a pan-cancer
subtyping analysis and identify nine pan-cancer subtypes, which associate with mutations in four overarching sets of biological
pathways.
CONCLUSIONS: This study is an important step toward understanding mutational patterns in cancer.

British Journal of Cancer (2018) 118:1492–1501; https://doi.org/10.1038/s41416-018-0109-7

INTRODUCTION
Cancer is a heterogeneous disease that can develop in different
tissues and cell types. Even within one cancer type, the disease
may manifest itself in multiple subtypes, which are usually
distinguished based on different histology, molecular profiles or
specific mutations, and which may lead to different clinical
outcomes. Identifying new cancer subtypes can help classification
of patients into groups with similar clinical phenotypes, prognosis
or response to treatment. As an example, breast cancer is typically
classified into four primary molecular subtypes based on the
expression of HER2, hormone receptors and tumour grade, and
these different subtypes have different prognosis and respond
differently to hormone therapy.1 While these subtypes are used to
manage patient treatment, even here we know that individual
subtypes themselves represent a diversity of smaller groups.
Since the onset of large-scale genomic experiments, cancer

subtypes have been identified in multiple cancers, using mRNA2,3

and microRNA expression levels,2 methylation data,2,4 copy
number alterations and combinations of different ‘omics data
types,5 but few studies have subtyped patients based on somatic
mutations. Somatic mutations play a large role in cancer
development and disease progression, and mutational profiling
is used far more commonly than other ‘omics analyses in clinical
practice because most clinical guidelines are based on single gene
mutations. Consequently, classification based on patterns of
mutation could be particularly informative for identification of
subgroups of patients who might respond to specific targeted
treatment regimens and of those who are unlikely to respond.

However, subtype classification using somatic mutations in
cancer is challenging, mainly because the data are very sparse:
many tumours only have a handful of mutations in coding regions
yet the total number of mutations within a population is typically
substantial. Often, frequent cancer drivers—such as TP53—are
mutated, as well as so-called “passenger” events that are
considered mutational noise yet which may still influence tumour
properties. And even within the same cancer type, tumours often
exhibit very different mutational patterns, including drivers and
passengers—as well as mutations that may fall somewhere in
between.
To classify sparse somatic mutation data into subtypes,

published methods generally first de-sparsify the data. Some
methods use a gene-gene network as “prior” knowledge to de-
sparsify the data.6–9 Hofree et al.,7 for example, use network
propagation to “fill in” the mutational status of neighbouring
genes (in protein–protein interaction networks) of mutated
drivers, while Le Morvan et al.9 use networks from Pathway
Commons to normalise a patient’s mutational profile by adding
“missing” or by removing “non-essential” mutations.
Data de-sparsification using gene–gene networks has been

helpful in identifying subnetworks involved in cancer,8 as well as
in identifying genes associated with patient survival.9 However,
gene–gene networks depend on a set of known “prior” interac-
tions, but these priors may or may not be “correct” in the sense
that they may not be relevant to the tissue or tumour under study.
This reliance on “canonical” networks might overemphasise genes
that are connected to mutational drivers through such
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interactions, as well as overemphasise highly connected genes,
even though some studies do correct for this.8

In addition, genes belonging to the same biological pathway do
not necessarily have to be closely linked in a gene–gene
(protein–protein interaction) network—they do not always inter-
act physically, and their functional interactions may be indirect.
However, having multiple mutations in the same biological
pathway is likely disruptive to the pathway’s function and likely
more so than only having one gene mutated in that pathway.
Thus, to classify somatic mutation data into meaningful subtypes,
we believe it is important to take all genes in a pathway into
account when de-sparsifying the data.
Finally, because somatic mutation data are very heterogeneous,

pan-cancer studies may help understanding the biological
processes that play a role in cancer. The inclusion of multiple
cancer types in an analysis both increases the sample size and
allows for the discovery of mutation subtypes across cancer types.
Large consortia, including The Cancer Genome Atlas (TCGA) and
International Cancer Genome Consortium, have performed
comprehensive pan-cancer analyses of somatic mutations.10,11

Hoadley et al.12 used pathway scores to integrate somatic
mutations with other ‘omics data types to perform a multi-
platform classification of 12 cancer types, while Leiserson et al.8

identified pan-cancer subnetworks across the same 12 types of
cancer. While these studies have improved our understanding of
the genes and pathways that are recurrently mutated in cancer,
data are now available for many more samples and cancer types,
increasing the power to detect new mutational patterns and
cancer subtypes.
In this study, we describe SAMBAR, or Subtyping Agglomerated

Mutations By Annotation Relations, a method to de-sparsify
somatic mutation data by summarising these data into pathway
mutation scores. We applied SAMBAR to data from 5805 primary
tumours from TCGA, including 23 different cancer types. We used
the de-sparsified data to associate mutational patterns with
phenotypic data, to identify prognostic subtypes and to identify
potential drug targets associated with subtypes in each of the
cancer types. In addition, we performed a pan-cancer analysis to
identify mutation subtypes across multiple cancers and describe
the mutational patterns associated with these subtypes.

METHODS
Curation of clinical data
We used RTCGAToolbox13 to download clinical data for 23 cancer
types from TCGA. We curated these data by combining data from
all available Firehose versions (accessed July 17, 2015) for each
cancer type consecutively as to retain all clinical information, with
the most up-to-date information for data present across different
Firehose versions (Supplemental Methods, Supplemental Table 1).

Processing of mutation data
We downloaded .maf files (n= 47) containing mutation informa-
tion for 6406 samples from 23 cancer types from the TCGA
website (accessed March 17–18, 2014). We removed silent
mutations and only retained genes with hg18/19 annotations
(19,065 genes). We divided the number of non-silent mutations Nij

in a sample i and gene j by the gene’s length Lj, defined as the
number of non-overlapping exonic base pairs, calculated on either
hg18 or hg19, depending on the annotation the sample was
mapped to. We next removed samples that were not obtained
from primary tumours. Finally, we merged replicate tumour
samples that were derived from the same patient by taking the
maximum mutation score for each gene, so that we retained all
mutations that were observed in the tumour. The resulting data
set contained gene mutation scores for 5992 patients.
We further subsetted these data to 2219 cancer-associated

genes from COSMIC14 and Supplemental Table 3 from Östlund

et al.15 For each patient, we calculated the overall cancer-
associated mutation rate by summing up mutation scores in
these genes j’. We removed samples with a rate of 0 (n= 108). For
the remaining samples, we divided the mutation scores by these
mutation rates, resulting in mutation rate-adjusted scores (G,
Eq. 1). We also removed samples that did not have mutations in
the de-sparsified data (see below).

Gij ¼ Nij=Lj
P

j0 Nij0=Lj0
� � (1)

De-sparsifying mutation data using biological pathways
We downloaded the file “c2.cp.v5.0.edges.gmt” from MSigDb,
which included 1135 canonical pathway gene signatures (q). We
converted this file into a binary matrix M, with information of
whether a gene j belongs to a pathway q. We calculated pathway
mutation scores (P) by correcting the sum of mutation scores of all
genes in a pathway for the number of pathways q’ a gene belongs
to and for the number of cancer-associated genes present in that
pathway (Eq. 2). We removed samples without mutations in any
pathway (n= 79) and pathways without mutations in cancer-
associated genes (n= 69), leaving us with 5805 patients and 1066
pathways for our subtyping analysis.

Piq ¼
P

j2q Gij=
P

q0 Mjq0
P

j Mjq
(2)

Selecting the most variable distance metric
We used 12/16 distance metrics from the vegdist function in R
package vegan16 on both gene and pathway mutation scores to
determine the metric that best separated patients. We excluded
the “cao”, “chao”, “mountford” and “morisita” metrics, because
these are intended to be used on count data (integers) only. For
each data set and cancer type, we removed columns and rows
that did not have any mutations prior to calculating distances
between the samples.

Correlating clinical variables to principal components
We calculated distance matrices of individuals within each cancer
type using the binomial dissimilarity index on pathway mutation
scores. We regressed each of the top five principal coordinates
(PCs) from the Principal Component Analysis (PCA) on these
distance matrices with each clinical variable that had ≥2 different
entries. We generated word clouds using https://www.
wordclouds.com/. As input, we included parameters associated
(nominal p < 0.01) with a top five principal component. We
normalised this list to the number of times a variable was available
across the 23 cancer types. We adjusted for multiple testing using
Benjamini and Hochberg’s method17 across each cancer and
principal component to report significant associations in Supple-
mental Table 2.

Association of pathway mutation scores with survival data
For each cancer type, we clustered the pathway mutation scores
using hierarchical clustering with binomial distance. We cut the
dendrogram at k= 2–4, removing clusters of size <10. We used the
log-rank test (p < 0.01) to identify significant differences between
overall survival profiles, choosing the lowest k if multiple k’s resulted
in significant prognostic subtypes for the same cancer type.
We ran 10,000 sample label permutations for each of the

prognostic subtypes, fixing k and subtype sample sizes to
correspond to those of the subtypes we had identified. We then
estimated the permutation p-value, defined as the fraction of
permutations with p-values smaller than that from the log-rank
test on the actual prognostic subtypes. We assigned a p-value of
≤1/10,000 to subtypes for which all permutation p-values were
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higher than that of the original log-rank test. We corrected these
p-values for multiple testing using the Benjamini–Hochberg
method.17

To determine what biological pathways drive the poor
prognostic subtypes, we selected pathways that were mutated
in >90% of samples in the poor prognostic subtype and in <50%
in the subtypes with better prognosis.

Integration of subtypes with drug targeting information
We scanned each tumour type for 2–4 subtypes, as described
above. We selected signatures mutated in >95% of samples
belonging to a particular subtype and in <10% of samples
belonging to the remaining subtypes. We then selected all genes
belonging to these signatures and, for each gene, calculated the
fraction of samples with mutations in the subtype of interest and
the same fraction in the remaining samples. We selected those
genes that were more frequently mutated in the subtype of
interest.
We downloaded drugs and their target genes from Connectivity

Map (CMap)18 (accessed October 17, 2017). For each drug, we
calculated how many of its known targets overlapped with this list
of more frequently mutated, pathway-associated genes. We
removed interactions with <2 subtype-specific drug targets. Next,
we calculated an “observed” score based on the number of
subtype-specific targets divided by the total number of known
targets for that drug. We also calculated an “expected” score
based on the number of cancer-associated genes present in all
1066 pathways that were also present as drug targets in CMap (a
total of 290 genes). We defined significant subtype–drug
associations as those interactions that had enrichment scores
(the observed/expected ratio) >3.
Finally, we filtered this set of subtype–drug interactions by

removing redundant subtypes—subtypes identified using a larger
k that included the exact same set of patients as identified using a
lower k.

Identification of pan-cancer subtypes
We used binomial distance to cluster pathway mutation scores of
all 5805 samples. We cut the clustering dendrogram at k=
2–1000, filtering out clusters of size <50. We observed several
breakpoints which the largest subtype was split into new
subtypes. We selected the highest k at such a breakpoint, for
which >90% of all samples were assigned to subtypes (k= 169),
resulting in 9 pan-cancer subtypes. We used Fisher’s exact test to
identify whether these subtypes were enriched (estimate >4 and
Bonferroni-adjusted p-value <0.05) for particular cancer types.
We defined significantly mutated signatures as those signatures

that were mutated in at least 95% of all samples in a pan-cancer
subtype. We visualised average mutation scores of these pathways
in a heatmap and identified four sets of pathways by row
clustering (binomial distance) these data.
To make word clouds for these pathways, we identified the

frequency of all 1356 unique words (separated by underscores in
MSigDb) occurring in the 1066 pathways. We removed words that
occurred <3 times (1051 words). We then selected words
belonging to one of the four sets of pathways and calculated
their observed frequency by dividing the number of times the
word occurred in the set of pathways by the total number of
words in that set. Next, we calculated the expected frequency by
dividing the number of times the specific word occurred in all
pathways by the total number of words in all pathways. We
multiplied the observed/expected ratio by 10, rounded the
number to an integer and used that number of words as input
for https://www.wordclouds.com/.

Validation of pathway activation using protein abundance data
We validated our pan-cancer subtypes using orthogonal evidence
on pathway activation. We downloaded Reverse Phase Protein

Array (RPPA) data from TCGA using R package RTCGA.RPPA19

(accessed February 21, 2018) and filtered these data for primary
tumours (5790 patients, including 3814 patients which we had
subtyped based on mutation data) and proteins that were
available across all samples (121 proteins). We curated a protein
activation signature for our “Set 1” subtype by selecting all
available protein products (n= 15) of genes in the “Reactome
PI3K/AKT activation” pathway and a protein activation signature
for our “Set 2” subtype based on protein products (n= 6) of genes
in the “Reactome p53-Dependent G1 DNA Damage Response”
pathway. We next calculated protein activation scores by
summing up protein abundance levels for each of these
signatures. We then performed a t-test between protein activation
scores of “Set 1” in patients belonging to “Set 1” subtypes (S1–2)
and other patients (S3–9) and between scores of “Set 2” pathways
in patients belonging to “Set 2” subtypes (S4, S6, S8) and other
patients (S1–3, S5, S7, S9) to identify significant differences (p-
value < 0.05) in protein activation between the pan-cancer
subtypes.

Validation of pan-cancer subtype drug response
We downloaded variants detected using Whole Exome Sequen-
cing from the Cancer Genome Project (CGP) (file “WES_variants.
xlsx” from http://www.cancerrxgene.org/downloads, accessed
February 21, 2018). This file included non-silent mutations for
1001 cell lines and 19,100 genes. We de-sparsified these data
using SAMBAR, as described above. We next downloaded
IC50 scores for drugs targeting “Set 1” pathways by selecting
the target pathway “PI3K/MTOR signalling” (21 unique drugs) and
for drugs targeting “Set 2” pathways by selecting the target
pathway “DNA replication” (11 drugs) using CGP’s “Data down-
load” tool https://www.cancerrxgene.org/translation/drug/
download#ic50, accessed March 26, 2018.
We divided the cell lines into two groups: those that had

mutations in all 94 “Set 1” pathways (n= 156), and those that did
not (n= 845), and performed a t-test to identify significant
differences in response to drugs targeting phosphoinositide-3
kinase/mammalian target of rapamycin (PI3K/MTOR) signalling
(Benjamini–Hochberg adjusted p-values <0.05). We note that, for
some of the drugs acting on PI3K/MTOR, replicate measurements
were available. For those drugs, we pooled data from the
replicates. We repeated this analysis on cell lines that had
mutations in all 38 “Set 2” pathways (n= 681) and those that did
not (n= 320) and drugs targeting DNA replication. We note that
we identified a relatively high number of cell lines with mutations
in all “Set 2” pathways compared to the number we identified in
primary tumours. We believe this number is high because cell lines
have more mutations (median number of mutations in cell lines is
158 compared to 91 in primary tumours). In addition, genes
involved in DNA replication pathways are often mutated in cell
lines to help immortalisation.

RESULTS
De-sparsification of cancer mutation data
We aimed to identify subgroups of cancer patients that might
benefit from specific targeted therapies. We hypothesised that we
could identify cancer subtypes both within specific cancers and
across all cancer types, using information on gene mutation status.
We curated clinical data for 23 cancer types from TCGA (Methods
and Supplemental Methods), and preprocessed mutation data
from 5805 primary tumours comprising 23 cancer types from
TCGA (Methods and Supplemental Fig. 1).
We calculated gene mutation scores by normalising the number

of non-silent mutations in a gene to the gene’s length. Even
though silent mutations can potentially be cancer drivers,20–22 we
assumed that most are passenger mutations caused by the
background mutation rate and thus removed such mutations to

Cancer subtype identification using somatic mutation data
ML Kuijjer et al.

1494

https://www.wordclouds.com/
http://www.cancerrxgene.org/downloads
https://www.cancerrxgene.org/translation/drug/download#ic50
https://www.cancerrxgene.org/translation/drug/download#ic50


control for this. To further control for mutational noise, we
subsetted these data to 2219 genes with either known roles in
cancer or with functional connections to such genes (cancer-
associated genes). We found that the filtered data were very
sparse and difficult to assign to subtypes (see Supplemental
Fig. 2).
We hypothesised that summarising the gene mutation scores

into biological pathway scores would help to de-sparsify the data,
as well as help identifying subgroups of patients who might
respond to specific drugs targeting those pathways. We therefore
used SAMBAR to de-sparsify the data by calculating mutation
scores for 1135 canonical pathways from MSigDb.23 In short, for
each pathway, we summed up mutation scores of all genes
belonging to that pathway and corrected for the pathway’s gene
set size and the number of times a gene was represented in the
full set of pathways (Methods). We then corrected these scores for
the sample’s mutation rate, as our goal was to identify subtypes
independent of mutation rate.
As reported previously by other groups,24 we observed large

variations in the number of mutated cancer-associated genes in
each sample, ranging from 1 to 1003, with a median of 91
mutated genes per sample (Fig. 1a). We also observed differences
between the cancer types, with a median of 2 mutated cancer-
associated genes for chromophobe renal cell carcinoma (KICH)
and papillary thyroid carcinoma (THCA) and 27 for pancreatic
adenocarcinoma (PAAD). As expected, we observed a larger
number of mutated pathways than of mutated cancer-associated
genes across all samples (median= 103). Acute myeloid leukae-
mia (LAML) had the lowest (12) and uterine corpus endometrial
carcinoma (UCEC) the highest (238.5) median of mutated
pathways.
Apart from these differences, we did observe fairly similar

numbers of pathways that were mutated in at least one sample in
each of the 23 cancer types, indicating that the data were
sufficiently de-sparsified. On average, 84.2% of all pathways were
mutated in at least one sample of each cancer type, ranging from
43.4% in KICH to 93.8% in UCEC. These percentages were lower for

mutations in cancer-associated genes, with an average of 54.8% of
all cancer-associated genes being mutated in a cancer type
(minimum of 6.1% for KICH, maximum of 95.1% for UCEC). While
these numbers do depend on sample size for the gene mutation
data (Pearson R= 0.49, p= 0.017, Fig. 1c), the correlation of the
fraction of mutated pathways with the number of samples
available per cancer type is not significant (p= 0.099, Fig. 1d).
This again confirms that the data de-sparsification was successful
(see also Supplemental Fig. 2).

Exhaustive search of dissimilarity metrics to inform subtype
classification
We next wanted to identify a dissimilarity metric that would result
in the best separation of the mutation data into subtypes. For
each cancer type, we calculated the average distance between all
patients on both the gene mutation and pathway mutation scores,
using 12 dissimilarity metrics.16 Binomial and Mahalanobis
dissimilarities (see Supplemental Methods) best separated sam-
ples based on gene mutation scores, while the pathway mutation
scores were best separated by the binomial dissimilarity index
(Fig. 2). We observed larger distances when using pathway
mutation scores, with a median distance of 108 using binomial
distance on pathway mutation scores compared to 21 when using
Mahalanobis distance on gene mutation scores. This confirmed
that de-sparsification of the data into pathway mutation scores
helped in separating the samples. We therefore used the binomial
distance on pathway mutation scores for the subtyping analyses
we present in the following paragraphs.

Biological signatures encode histopathological information
We performed PC regression on the pathway mutation data to
explore whether phenotypic or clinical information was retained in
the most variable components of the data (see Methods). For each
cancer, we reported the clinical parameters that were associated
with the top five principal components (p < 0.01) and visualised
these in a word cloud (Fig. 3a). The most significant variables
included age (nominally significant for 12/23 cancer types)
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followed by tumour grade (for 2/4 cancer types for which the
variable was available) and histological type (6/13 cancer types).
This was not unexpected—with age cells may build up somatic
mutations, while high-grade tumours divide faster, which may
lead to more replication errors.
In Fig. 3b, we show the PCA plot for UCEC, coloured by

histological type. We observe a separation of serous endometrial
adenocarcinoma samples from most endometrioid endometrial
adenocarcinoma samples. Heatmaps of the PC regression helps
inform this particular visualisation, as we see several associations

for the top five components and various phenotypic and clinical
variables in the UCEC samples (Fig. 3c). The first principal
component, which explains most of the variance in the data, did
not significantly associate with any clinical variable in UCEC.
However, after inspecting the heatmaps in Supplemental Fig. 2C-
D, we thought this component might associate with a sample’s
mutation rate. To test this, we investigated the mutation rates of
the 13 samples that cluster separately from the rest and found
significantly higher mutation rates in these tumours (t-statistic=
13.4, p-value= 1.27e-08). This means that, while we correct for a
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sample’s mutation rate, it is not completely filtered out and still
dominates some of the clustering in UCEC. However, in our
subtyping analyses described below, we further corrected for
mutation rate by removing samples that clustered separately
(<10 samples in the tumour-specific subtyping analysis, and
<50 samples in the pan-cancer analysis) from most other samples.
After correcting for multiple testing, we identified a number of

statistically significant (adjusted p < 0.05) variables (Supplemental
Table 2). Multiple variables, including age, histological type, race
and variables, associated with follow-up and patient survival were
significant in several tumour types. Additionally, technical
variability (batch number) appears to associate with pathway
mutation scores in a number of cancers. We also identified
variables that were relevant for specific cancer types, including
smoking history and “years stopped smoking” for lung adeno-
carcinoma (LUAD), and Gleason score for prostate adenocarci-
noma (PRAD).

Identification of prognostic mutation subtypes
We explored whether we could identify subtypes associated with
cancer survival. We used the binomial dissimilarity index to cluster
the de-sparsified mutation data of each cancer type. We split the
cluster dendrograms in 2–4 groups (see Methods). We identified
significant prognostic subtypes (log-rank test p < 0.01) for three
cancer types—adrenocortical carcinoma (ACC), LAML and low-
grade glioma (LGG). Pathways associated with these prognostic
subtypes are listed in Supplemental Table 3.
Clustering ACC samples in two groups produced subtypes of 74

and 12 patients. The smaller subtype was associated with poor
survival (log-rank test p= 0.0027, Fig. 4a). Twenty two pathways
were associated with this subtype (see Methods), including
pathways involved in apoptosis and cell cycle, both of which are

known hallmarks of cancer,25 and Wnt and Notch signalling, both
known cancer drivers. Protein expression levels of Notch pathway
genes have previously been associated with clinical outcome in
ACC26 and Wnt signalling has been reported to play a role in
differentiation of the zone glomerulosa of the adrenal cortex.27

While Wnt/β-catenin signalling has been reported by the TCGA as
frequently altered in ACC,28 this pathway had not previously been
reported to be associated with survival. In addition to these
known cancer-driver pathways, we identified mutations in
neurotrophin signalling, which plays a role in neuron develop-
ment and differentiation,29 in the poor prognosis subtype.
Splitting the LAML samples in three clusters produced a poor

survival subtype of 14 patients (log-rank test p= 1.4e-4),
compared to two larger clusters including 23 and 144 patients
(Fig. 4b). Thirty eight pathways were associated with this poor
survival cluster, of which 11, with roles in apoptosis, cell cycle and
Notch and Wnt signalling, were a subset of the pathways we
identified in the poor survival subtype of ACC. Expression of both
Notch and Wnt signalling genes has been implicated in LAML,30,31

but mutational patterns of these pathways had not been reported
to be associated with patient survival. In addition to these
pathways, DNA damage response pathways, which included p53
and ATM signalling, were mutated in the poor prognostic subtype
of LAML.
Finally, splitting the LGG data into three clusters resulted in a

subtype of 232 patients, a subtype with somewhat worse
prognosis including 36 patients and a poor prognosis subtype
of 17 patients (log-rank test p= 1.3e-13, Fig. 4c). Tumours
assigned to this subtype had higher mutation scores in multiple
epidermal growth factor receptor (EGFR) family pathways, in
cell–cell contact and cellular structure (“adherens junction”, “gap
junction”), the immune system (“cytokine–cytokine receptor
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interaction”) and in brain tissue-associated pathways (including
“gonadotropin-releasing hormone signalling”). Mutations in
cell–cell contact genes could be important for metastasis, and
immune cells are known to play a critical role into transforming
low-grade glioma into glioblastoma.32 EGFR is a known glioma
driver.33 However, while this gene was mutated in 15/17 patients,
other genes belonging to EGFR family pathways, including EGF,
GNAS and PTRB, were also mutated in tumours belonging to this
subtype and might not have been detected if we had focussed on
EGFR alone.
Because the sample sizes of the poor prognostic subtypes were

small in comparison to the subtypes with relatively better
prognosis, we wanted to make sure these subtypes were not
identified owing to random selection of a small group of patients
with poor prognosis. For each of the significant cancer types, we
performed 10,000 sample label permutations and found that the
original log-rank tests were more significant than those on the
permuted null background (Benjamini–Hochberg adjusted p-
values p < 0.01), indicating that the poor prognostic subtypes
were not identified by chance but were detected based on
mutations in specific biological pathways (see Supplemental
Fig. 3). We would like to note that, even though we did not
identify any associations in the permuted data, the poor prognosis
subtypes could still be confounded with specific clinical char-
acteristics. We assessed whether the LGG subtype was con-
founded by indication of radiation therapy but did not find a
significant association (Chi-squared test p-value= 0.123). For ACC
and LAML, unfortunately, no detailed information on treatment
status was available. While the numbers of patients in the
identified poor prognosis subtypes are small, and while these
subtypes might be associated with certain patient characteristics,
we believe that treating these patients with personalised therapy
regimens that specifically target the subtype-specific signalling
pathways could dramatically improve prognosis in these patients.

Integration of cancer-type-specific subtypes with drug targeting
information
While somatic mutations have been analysed in the context of
actionable drug targets,34 to our knowledge, mutation subtypes of
multiple cancer types have not been integrated with drug
targeting databases. To identify therapies targeting pathways
that are specifically mutated in cancer subtypes, we performed an
enrichment analysis using CMap.18 In short, we identified subtypes
using the analysis described above, identified pathways that were
frequently mutated in these subtypes and selected genes
belonging to these pathways that were more frequently mutated
in the subtype of interest. We matched these genes against CMap
to identify drugs with targets enriched for these genes (Methods).
We identified 251 subtype–drug interactions for a total of 15/23
cancer types. For each cancer type, we selected interactions with
the highest enrichment scores and reported these in Table 1.
For the poor prognostic subtype in ACC that we described

above, we observed an enrichment of targets of MDM2 inhibitors
(idasanutlin and nutlin-3). This was not unexpected, as we found
specific mutations in p53 pathways in this subtype. We did not
identify any enriched drug targets for the poor prognosis subtypes
of LAML and LGG. However, only two Notch inhibitors are
available in CMap, and both are listed without any targets. While
many EGFR inhibitors are available in CMap, EGFR was the only
gene from the EGFR pathways that overlapped with EGFR drug
targets. Since we only considered drug–subtype interactions for
subtypes with at least two mutated drug targets, these drugs were
not included in our analysis. However, the subtypes with
intermediate survival were enriched for lonafarnib—a farnesyl-
transferase inhibitor—in LAML, and atiprimod—an angiogenesis
inhibitor—and JAK inhibitors in LGG. Lonafarnib was also enriched
in a large subtype of THCA tumours, while Janus-activated kinase
(JAK) inhibitors were enriched in BLCA, HNSC, KIRC and LUSC. In

addition to these drugs, we identified multiple receptor tyrosine
kinase inhibitors associated with subtypes in BLCA, GMB and
HNSC. We also identified a PI3K inhibitor (wortmannin) to be
enriched in mutated targets in a UCS subtype, a proteasome
inhibitor (bortezomib) in KIRP and OV subtypes and a CREBBP/
EP300 inhibitor (SGC-CBP30) in a small subgroup of BRCA and
PRAD patients.
In total, the subtypes that were enriched for mutations in drug

targets from CMap account for 12% (689/5805) of all primary
tumours from TCGA. This is a substantial number of patients,
considering the strict thresholds we used for this analysis. We
believe that, as more drug target information becomes available,
we may find additional subtype–drug associations that might help
identify subgroups of patients who could benefit from targeted
treatment of their tumour’s mutational profile. This also suggests
that a pathway-based analysis might provide a window into new
therapeutic options for cancer patients.

A pan-cancer analysis identifies nine mutation subtypes
Finally, using the clustering technique described above, we
performed a subtyping analysis across all 23 cancer types. Because
of the large number of samples (n= 5805), and because the
number of potential pan-cancer mutation subtypes is unknown,
we divided the cluster dendrogram into k subtypes, ranging k
from 2 to 1 000, removing clusters of size <50. We selected the
largest k for which we observed a “breakpoint” in the sample size
of the largest cluster (Supplemental Fig. 4) that had ≥90% of all
samples assigned to a subtype (belonged to a cluster of size ≥50).
This returned 9 pan-cancer subtypes, with an average sample size
of 581, ranging from 74 (subtype S8) to 2194 (S5) (Fig. 5a, b and
Supplemental Fig. 5A).

Table 1. Drug targets enriched for mutations in cancer-specific
subtypes

Cancer k Patients Enr. Drugs

ACC 2 12/90 41.4 Idasanutlin, nutlin-3

BLCA 2 25/130 6.6 Amuvatinib, BMS-817378, cabozantinib,
golvatinib, OSI-930, PD-153035, PLX-4720,
ZM-39923

BRCA 2 16/956 7.6 SGC-CBP30

GBM 2 62/280 5.4 Amuvatinib, BMS-817378, cabozantinib,
golvatinib, lestaurtinib, OSI-930, PLX-4720

HNSC 2 69/305 4.7 Amuvatinib, AS-703026, atiprimod, AZ-628,
AZD1480, baricitinib, CEP-32496, curcumol,
DCC-2618, LY2784544, LY3009120, MEK162,
PD-198306, peficitinib, refametinib, Ro-
5126766, ruxolitinib-(S), TG-101209,
trametinib, vemurafenib, XL019, ZM-39923

KIRC 2 19/419 9.2 AG-490

KIRP 2 16/164 4.8 Bortezomib

LAML 2 23/181 13.2 Lonafarnib

LGG 2 36/287 12.6 Atiprimod, LY2784544, TG-101209

LUSC 2 28/177 6.4 ZM-39923

OV 3 13/445 3.3 Bortezomib

PRAD 2 13/239 20.7 SGC-CBP30

READ 2 49/116 7.4 PD-153035

THCA 2 284/357 5.6 Lonafarnib

UCS 2 24/57 4.3 Wortmannin

k: the level at which the subtyping dendrogram was cut, Patients: the
number of patients in a subtype, versus the number of patients of that
cancer type in our data set, Enr.: enrichment, or the observed over
expected ratio, Drugs: drugs of which targets were enriched for mutations
in the subtype
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The nine pan-cancer subtypes were all heterogeneous with
respect to cancer type—each subtype included samples from at
least 7/23 and on average 18/23 different cancer types (Fig. 5a). In
addition, all cancer types were represented in at least 4/9 and on
average in 7/9 subtypes (Fig. 5b). Some cancer types were over-
represented in particular subtypes (Fig. 5c). For example, S1 was
enriched for UCEC, uterine carcinosarcoma (UCS) and BLCA, which
are anatomically close cancers. S2 was enriched for UCEC and
BRCA, both cancers associated with the female reproductive
system. S5, the largest of the nine subtypes, was enriched for ACC,
kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell
carcinoma (KIRP), LAML, PRAD and THCA. S6 was enriched for lung
cancers (LUAD, lung squamous cell carcinoma (LUSC)), as well as
UCS. S7 was enriched for four types of adenocarcinoma (colon
adenocarcinoma (COAD), LUAD, PAAD and rectum adenocarci-
noma (READ)), and S8 was enriched for LUAD and PAAD.
To identify whether these nine pan-cancer mutation subtypes

associated with a high mutation rate in specific biological
pathways, we selected pathways with mutations in >95% of all
samples in a specific subtype. This resulted in a total of 202
pathways (Supplemental Fig. 5B). All of the subtypes, except S5,

which had no subtype-specific pathway mutations, had frequent
mutations in Kyoto Encyclopedia of Genes and Genomes “path-
ways in cancer”. Some subtypes (S1 and S2, S4 and S6) had exactly
the same sets of pathways mutated but with different average
mutation rates. Higher mutation rates were observed in S2 and S4
compared to S1 and S6, respectively (t-statistic= 5.66, p= 3.56e-8
for S2 versus S1, t-statistic= 3.10, p= 2.73e-3 for S4 versus S6).
This may indicate that patients belonging to these subtypes might
benefit from (additional) immunotherapy.
Using hierarchical clustering (binomial distance) on average

mutation scores in these 202 pathways, we identified four
overarching “sets” of pathways that were differentially mutated
in the pan-cancer subtypes (see Fig. 5d, e and Supplemental
Fig. 5B). The first set of pathways was highly frequent in subtypes
S1 and S2 and was enriched for PI3K/Akt/MTOR signalling and
immune system pathways (including T-cell receptor and
CD28 signalling). The second set was frequent in S4, S6 and S8
and involved DNA damage pathways, apoptosis and Notch
signalling. The third set was highly mutated in 5/9 subtypes
(S1–2, S7–9) and included immune system and metabolism
pathways and several growth factor receptor pathways (fibroblast
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growth factor receptor (FGFR), erb-b2 receptor tyrosine kinase 2/4
(ERBB2/4), vascular endothelial growth factor (VEGF)). Finally, the
fourth set of pathways was highly mutated in S7–9 and included
neuronal pathways, signalling via SHC family adapter proteins, B-
cell receptor pathways and pathways related to cell–cell contacts.
These four sets of pathways highlight important processes that

are highly recurrently mutated in large subgroups of patients
across different cancer types. Interestingly, there does not seem to
be a dependency between these four sets of highly recurrent
processes. Most of the sets are either mutated alone (such as Set 2
in pan-cancer subtypes S4 and S6) or in combination with other
sets (for example, Sets 2–4 in pan-cancer subtype S8). An
exception to this is Set 1, which does not co-occur with Sets 2
and 4, indicating a possible mutual exclusive relationship between
PI3K/Akt/MTOR on the one hand and p53 and certain growth
factor receptor pathways on the other. These results could
indicate that patients assigned to certain subtypes may benefit
from targeting specific pathways in selecting therapies, while
others may need combinations of targeted treatment approaches
to target multiple processes that are disrupted. Finally, subtypes
S3 and S5 do not have any recurrently (>95%) mutated pathways,
indicating that treating these patients may require individualised
analysis of their unique mutational patterns in deciding on a
precision medicine strategy.

Pan-cancer mutational patterns correspond to pathway activation
levels and response to drug inhibition
We validated the pan-cancer subtypes we identified in two ways.
First, we wanted to make sure that the signalling pathways we had
identified as highly mutated in the different pan-cancer subtypes
were active. To do this, we integrated these results with RPPA data
from TCGA. We calculated pathway activation scores for Akt
signalling and DNA damage response pathways, corresponding to
the “Set 1” and “Set 2” pathways we had identified in Fig. 5e
(Methods). We did not calculate activation scores for Sets 3–4,
because the RPPA data did not include enough proteins corre-
sponding to genes that belonged to these sets of pathways. We
identified significantly higher protein activation scores in tumours
from patients belonging to the subtypes that had higher levels of
mutations in these pathways. We identified a mean Akt pathway
protein activation score of 0.459 in patients belonging to “Set 1”
subtypes (S1–2), compared to a mean score of 0.0756 in other
patients (two-sample t-test t-statistic= 2.34, p= 0.0198) and a mean
DNA damage response protein activation score of 0.283 in patients
belonging to “Set 2” subtypes (S4, S6, S8) compared to 0.158 in
other patients (t-statistic= 2.45, p= 0.0146). This indicates that the
pan-cancer subtypes we had identified based on pathway mutation
scores also corresponded to higher protein levels in these pathways.
Second, we wanted to determine whether cell lines with

mutations in the overarching sets of pathways we had identified
in the pan-cancer subtypes were more sensitive to drugs targeting
those pathways. We downloaded mutation and drug response
data from the CGP. Again, we focussed on pathways identified in
Sets 1–2, for which drug targeting information was available in
CGP. We identified which cell lines had mutations in all “Set 1”
pathways and compared how these cells responded to PI3K/MTOR
inhibitors compared to other cell lines (Methods). We identified
significant differences (False Discovery Rate <0.05) in response to
5/24 PI3K/MTOR inhibitors. Most of which (4/5) had significantly
lower IC50s (median t-statistic=−3.13, largest effect observed for
Pictilisib), indicating that these cell lines were more responsive to
PI3K/MTOR inhibition (see also Supplemental Table 4). We
repeated this analysis for cell lines with mutations in all “Set 2”
pathways and compared how these cell lines responded to drugs
interfering with DNA replication. We identified significant differ-
ences for 7/11 of these drugs, all of which showed significantly
higher IC50s (median t-statistic= 4.401), indicating that these cell
lines were less responsive to drugs interfering with DNA replication

(see also Supplemental Table 4). While this result may seem
counterintuitive at first, it is known that tumours with impaired
DNA damage response may become resistant to chemotherapy.35

In summary, by identifying pan-cancer subtypes, we were able
to uncover processes that play a role in large subgroups of cancer
patients who are (to a degree) independent of cancer type. These
subgroups indicate that core pathways are often mutated,
independent of the tissue of origin and may indicate specific
targets for therapeutic intervention that should be explored.

DISCUSSION
Even though exome sequencing data are now available for large
numbers of tumours, identifying mutation subtypes in cancer is
still a challenge due to the sparseness and heterogeneity of the
data. We developed SAMBAR, a de-sparsification method that
summarises somatic mutations in genes into pathway-level
mutation scores. We showed that SAMBAR helps identifying
mutational patterns associated with clinical phenotypes and
prognosis and potential targeted treatment options for cancer-
specific subtypes, as well as mutational patterns that are
manifested across multiple cancer types.
Some of the pathways we identified in the prognostic subtypes,

including cell cycle, apoptosis and DNA damage response, are
frequently mutated in cancer. However, subgroups of patients may
still benefit from specific targeted treatment options that can be
found through a pathway-level analysis and through developing
methods to interrogate diverse data resources. For example, we
identified MDM2 inhibitors as potential targets for treatment of the
poor prognosis subtype in ACC by integrating subtype-specific
mutations with a drug-targeting database. In addition, several signal
transduction pathways for which targeted treatment options are
available are specifically mutated in the poor prognosis subtypes we
identified. These pathways include Notch signalling in ACC and
LAML and EGF receptor family pathways in LGG. Thus, by
considering mutations in all of the genes associated with subtype-
specific mutation of signalling pathways, we may find additional
patients who could benefit from targeted treatment options.
The results from this analysis suggest that, rather than only

focussing on well-known “driver” genes, we should also include
genes associated with particular biological pathways when
profiling patients to search for personalised treatment options.
By generating patient-specific “pathway mutation profiles”, we
may not only identify patients who could benefit from specific
targeted therapeutics but we will also obtain a clearer picture of
the cellular processes that are altered through mutation in a
specific tumour. This expanded pathway- and process-based
approach may help identify combination therapies that target
multiple pathways that are altered in a patient’s tumour.
In our pan-cancer analysis, we identified four overarching types

of mutational patterns. The first set included PI3K/Akt/MTOR
signalling pathways. This means that, likely, a large number of
patients will benefit from targeted inhibition of this signal
transduction pathway. In addition, one of the pan-cancer
mutational patterns we identified was enriched for several growth
factor pathways, including EGF receptor family genes, and FGFR
and nerve growth factor signalling. Targeted treatment options
are available for each of these pathways. Because these pathways
are mutated in a large set of the primary tumours we analysed, we
believe that these treatment options are worthy of further
investigation and may lead to better treatment options for a
large numbers of patients.
Recently, large hospitals have started to include mutational

profiling as a standard procedure to characterise tumours and to
assign patients to available targeted treatment options or ongoing
clinical trials targeting specific mutations.36 However, therapeutic
decisions are typically tied to examining single gene mutations.
Our framework to classify cancers based on mutational patterns in
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biological pathways could help expand precision medicine
applications both by identifying groups of patients who may or
may not respond to particular therapies and by identifying
pathways that might be useful targets for therapeutic intervention.
Finally, while we concentrated on identifying subtypes that

include relatively large numbers of patients, the pace at which we
are collecting mutational data continues to accelerate. As more
data become available, we can fine-tune our subtyping analysis,
identifying not only the largest but also smaller groups of patients
for which targeted treatment options may be available. Analysis of
larger sample sizes will also improve our understanding of the
biological pathways that are important in driving cancer. Future
research may focus on combining our pathway mutation scores
with previously published network propagation methods to
further fine-tune classification of pathway mutation profiles.
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