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Abstract: Polyelectrolyte microgels derived from natural sources such as chondroitin sulfate (CS)
possess considerable interest as therapeutic carriers because of their ionic nature and controllable
degradation capability in line with the extent of the used crosslinker for long-term drug delivery
applications. In this study, chemically crosslinked CS microgels were synthesized in a single step
and treated with an ammonia solution to attain polyelectrolyte CS−[NH4]+ microgels via a cation
exchange reaction. The spherical and non-porous CS microgels were injectable and in the size
range of a few hundred nanometers to tens of micrometers. The average size distribution of the
CS microgels and their polyelectrolyte forms were not significantly affected by medium pH. It was
determined that the −34 ± 4 mV zeta potential of the CS microgels was changed to −23 ± 3 mV
for CS− [NH4]+ microgels with pH 7 medium. No important toxicity was determined on L929
fibroblast cells, with 76 ± 1% viability in the presence of 1000 µg/mL concentration of CS−[NH4]+

microgels. Furthermore, these microgels were used as a drug carrier material for rosmarinic acid
(RA) active agent. The RA-loading capacity was about 2.5-fold increased for CS−[R]+ microgels
with 32.4 ± 5.1 µg/mg RA loading, and 23% of the loaded RA was sustainably release for a long-
term period within 150 h in comparison to CS microgels. Moreover, RA-loaded CS−[R]+ microgels
exhibited great antioxidant activity, with 0.45 ± 0.02 µmol/g Trolox equivalent antioxidant capacity
in comparison to no antioxidant properties for bare CS particles.

Keywords: chondroitin sulfate (CS); polyelectrolyte microgels; biocompatible; rosmarinic acid;
antioxidant

1. Introduction

Biological polyelectrolytes (PECs), also called biological polyelectrolyte complexes,
generally comprise strong intermolecular interactions known as Coulomb’s interactions or
electrostatic interactions between oppositely charged groups, e.g., cationic biopolymers
such as chitosan [1], poly-l-lysine [2], poly-L-arginine [3], insulin [4], collagen [5], amino
dextran, and 2-(diethylamino) ethyl dextran [6] with anionic biopolymers such as pectin [7],
alginate [8], xanthan gum [1], dextran derivatives [6], hyaluronic acid [9], carrageenan [1],
neem gum [10], heparin [11], chondroitin sulfate [12], carboxymethyl cellulose [13], humic
substances [14], poly(γ-glutamic acid) [15], DNA [16], and siRNA [17]. Surfactant systems
are generally used to prepare different polymeric systems, including spherically shaped
polymeric particles at different sizes. PECs can be formed without the need for chemical-
crosslinking agents or surfactants, making their synthesis much easier [12]. Apart from this,
some anionic biopolymers can readily interact with three valent metal ions, e.g., Gd(III) and
Fe(III), to prepare biological polyelectrolyte complexes [9]. Some parameters, including
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molecular weights of the complex forming polymers [12], charge-to-charge stoichiometry,
and charge density of anions and cations, as well as pH, ionic strength, and concentra-
tion of the reaction medium, have effects on the formation and stability of the resultant
polyelectrolytes [17].

PEC assemblies have been used in wide range of applications, such as tissue adhesives
and scaffolds for tissue engineering [18], hematostats [19], biosensors [19], implantable
materials [1,17,20], templates for enzyme immobilization [21], antimicrobial agents [22],
and especially, drug delivery devices [1]. The interaction between the opposite components
of PECs also ensures high adherence to biological tissues and, thus, renders mucoadhesive
biological activity [21,23]. PEC-based biomaterials, such as a chitosan-chondroitin sulphate
complex, could exhibit specialized properties for chronic wound healing, providing higher
cell density [12]. Amphiphilic structures of PECs provide various advantages in drug
reservoirs, such as improved encapsulation efficacy of drugs by strong intra- and inter-
chain interactions and the sustainable release of drugs in mucous membranes [1,17,20].
Furthermore, PECs can exhibit antibacterial activities depending on their polyanionic
or polycationic contents and their nature. In a study, a magnesium alloy covered with
lysozyme as polyanionic content and polyethyleneimine as polycationic content was used
to create polyelectrolyte films, and these films showed great antibacterial activity, as well
as antiplatelet adhesion related to the antimicrobial nature of the ionic compounds [24].

Chondroitin sulfate (CS) is an anionic natural polymer that consists of anionic func-
tional sulfate and carboxylic acid groups [23,25]. CS is also known to be found in mam-
malian tissue attached to proteoglycans in the extracellular matrix (ECM) and, thus, possess
properties such as non-toxicity, biocompatibility, and biodegradability [20,26]. CS can take
part in the scaffolding of materials for biomedical purposes due to its many biobeneficial
properties, such as anti-inflammatory, antioxidant, antineoplastic, and anticoagulant ac-
tivities [27]. In addition to these, CS-based coating supports the repairing process of skin
and cartilage tissues [12,20]. Due to its glycosaminoglycan structure, CS-based coatings
have shown growth-factor-binding ability and can be used to stabilize and deliver growth
factors, which regulate wound-healing activities [25–27]. These valuable properties of
CS make its different formulations valuable materials for pharmaceutical and biomedical
applications as significant biomolecules in the design of polyelectrolyte complexes. It has
been reported that CS as an anionic biopolymer interacts with chitosan [12], peptides [28],
pectin [29], and cationic tannin [18] for various biomedical purpose. For example, CS-based
polyelectrolytes have been prepared through the interactions of CS polymer chains with
metal ions, such as Gd(III) ions as a magnetic resonance imaging (MRI) enhancer [30], with
Al(III) ions as a polyphenolic carrier [31], and with Zn(II) ions to provide antibacterial
ability [32].

In this study, a chondroitin sulfate (CS) biopolymer is chemically crosslinked using
divinyl sulfone (DVS) as a crosslinker in a reverse micelle microemulsion system to prepare
CS microgels, which can also be called polymeric particles, in the size range of nanometers
to micrometers. Degradable and non-degradable CS microgels can be prepared by changing
the DVS crosslinker ratio in the polymeric network, as reported by our previously study [33].
CS microgels afford great potential as antibiotic carrier biomaterials for bacterial infections
because of their tunable degradability, good biocompatibility, and especially, long-term
drug delivery capability for antibacterial activities. The goal of this study is to prepare
polyelectrolyte CS−[R]+ microgels through the treatment of CS microgels with ammonia in
an aqueous solution to obtain a microgel system for sustainable and long-term therapeutic
release capability. Most PECs are not stable at broad pH ranges because of the weak physical
interactions between anion and cation moieties that are present in the PEC networks. As
carrier materials, PECs often show burst drug release ability in delivery applications
due to complete degradation at suitable pH conditions [34]. PEC hydrogels that can be
chemically crosslinked with amphoteric materials have recently attracted much attention
as active agent delivery applications [35]. Therefore, CS−[R]+ microgels as a PEC structure
can possess high stability in physiological solutions and offer great potential for higher
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drug-loading capacities and longer delivery times for certain types of drugs. The pH
responsiveness, size distribution, and zeta potential values of CS microgels and CS−[R]+

microgels are also determined in the pH range from 2 to 11. The cytotoxicity of CS and
CS−[R]+ on L929 fibroblasts for 24 h of incubation time, as well as their Fe(II)-chelating
percentages, were investigated. Furthermore, rosmarinic acid (RA) as a therapeutic agent,
a well-known antioxidant and anti-inflammatory agent [36], is loaded onto CS microgels
and CS−[R]+ microgels, and their RA release profiles are investigated at physiological
conditions, in pH 7.4 phosphate-buffered solution (PBS), and at 37 ◦C. The antioxidant
abilities of bare and RA-loaded CS and CS−[R]+ microgels are also investigated using total
phenol content (TPC) and ABTS scavenging assays and compared with RA.

2. Materials and Methods
2.1. Materials

In the synthesis of the CS microgels, chondroitin sulfate A sodium salt (CS, ≥98%;
average MW, 10,000–30,000; Biosynth carbosynth, San Diego, CA, USA) as a linear poly-
mer, divinyl sulfone (DVS, 97%; Merck, Darmstadt, Germany) as a crosslinker, dioctyl
sulfosuccinate sodium salt (AOT, 96%; Acros Organics, Geel, Belgium) as a surfactant for
the emulsion medium, and 2,4-trimethylpentane (isooctane, ≥99.5%; Isolab, Laborgeräte
GmbH, Eschau, Germany) as a solvent for the emulsion medium were used as received.
An ammonia solution (25%; Sigma-Aldrich, Milwaukee, WI, USA) was used to prepare of
polyelectrolyte forms of CS microgels. Potassium nitrate (KNO3; granular, Fisher Chemical,
Waltham, MA, USA) was used for zeta potential and size distribution measurements. For
the cytotoxicity analysis, L929 fibroblast cells (mouse C3/An connective tissue; SAP Insti-
tute, Ankara, Turkey) were used. In the cell culture studies, trypsin (0.25%; EDTA 0.02% in
PBS), Dulbecco’s Modified Eagle’s Medium (DMEM with 4.5 g/L glucose, 3.7 g/L sodium
pyruvate, and 0.5 g/mL L-Glutamine), fetal bovine serum (FBS, heat inactivated), and peni-
cillin/streptomycin (10,000 U/mL penicillin and 10 mg/mL streptomycin) were obtained
from Panbiotech. As an MTT agent, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (98%) was purchased from neoFroxx GmbH (Hesse, Germany). Fe(II) sulfate
heptahydrate (FeSO4 7H2O; Merck; 99.5%) and 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine-
4,4-disulfonic acid disodium salt hydrate (Ferrosine; Alfa Aesar; 99%) were used for the
iron(II) chelation assay. Rosmarinic acid (RA, 96%; Aldrich, USA) was used as an active
agent for the drug-loading study. Folin–Ciocalteau’s phenol reagent (FC; Sigma-Aldrich,
USA), gallic acid (GA, 97.5–102.5%; Sigma-Aldrich, USA), potassium persulfate (KPS, 99%;
Sigma-Aldrich, USA), 2,2′-azino-bis-(3-ethylbenzothioazoline-6-sulfonic acid) (ABTS, >98%;
HPLC-grade; Sigma-Aldrich, USA), and (±)-6-hydroxy-2,5,7,8-tetramethylchromane-2-
carboxylic acid (Trolox, 97%; Aldrich, USA) were used for antioxidant studies. As solvents,
acetone (99%; Birkim, Istanbul, Turkey), dimethyl sulfoxide (DMSO, 99.9%; Carlo Erba,
Val-de-Reuil, France), and ultra-pure deionized water (18.2 M.Ω. cm resistivity; Millipore
Direct-Q 3 UV water purification system) were used as received.

2.2. Synthesis of CS Microgels

The synthesis of CS microgels was carried out via the reverse micelle microemulsion
polymerization technique described by Suner et al. 2022 [33]. Briefly, 0.3 g of CS was
dissolved in 10 mL of 0.2 M NaOH solution and 1 mL of the prepared CS solution was
dispersed into 30 mL of 0.2 M AOT/isooctane solution. After that, as a crosslinker, DVS
at a 50% mole ratio relative to a repeating unit of CS was added into the solution. The
resulting emulsion medium was rapidly vortexed and stirred for 2 h at a 1000 rpm mixing
rate at room temperature to obtain crosslinked CS microgels. After 2 h, CS microgels
were precipitated into excess acetone and kept overnight. The supernatant was carefully
decanted, and the remaining microgels were washed with an acetone:water (50:50, v:v)
mixture once and with acetone twice to remove unreacted chemicals and surfactants by
centrifugation at 10,000 rpm for 10 min. The washed CS microgels were dried with a heat
gun and kept for further use.
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2.3. Preparation of Polyelectrolyte CS−[R]+ Microgels

Polyelectrolyte CS−[R]+ microgels were attained through a cation exchange reaction
with an ammonium hydroxide treatment of CS microgels. Shortly, 0.2 g of CS microgels
were suspended in 50 mL of 6.25% aqueous ammonia solution and stirred at 200 rpm for
an hour. The polyelectrolyte CS−[R]+ microgels were precipitated by centrifugation at
10,000 rpm for 10 min and washed with an acetone:water (50:50, v:v) mixture once and
acetone one time. The obtained CS−[R]+ microgels were dried with a heat gun and kept for
further use.

2.4. Characterization of CS Microgels and Polyelectrolyte CS−[R]+ Microgels

Morphological analysis of the CS microgels was performed with a scanning electron
microscope (SEM; SU70, Hitachi, Japan). Briefly, CS microgels were covered with palladium
and gold to a few µm under a vacuum for 10 s and visualized at 10.0 kV. The swollen
ability of CS microgels and CS−[R]+ microgels at different pH levels ranging between
2 and 11 were analyzed using dynamic light-scattering (DLS; Brookhaven Nanobrook
Omni, Holtsville, NY, USA) measurements. In brief, 1 mg/mL concentration of CS-based
microgels was suspended in 1 mM of KNO3 aqueous solution and filtered with a 5 µm
pore size syringe filter for hydrodynamic average size distribution analysis. Furthermore,
zeta potential was determined using 40 mg of CS-based microgel suspension in 40 mL
of 1 mM KNO3 solution, and the zeta potential was measured against pH using a zeta-
potential-measuring device (Brookhaven Nanobrook Omni, Holtsville, NY, USA). DLS and
zeta potential analyses were repeated ten times, and the results were given with standard
deviations. Fourier-transform infrared (FT-IR) spectra of the CS-based microgels were
recorded in the frequency range of 4000 to 650 cm−1 with 4 cm−1 resolutions using an FT-IR
spectrophotometer (Perkin-Elmer, Spectrum 100, Akron, OH, USA). Thermal gravimetric
analysis (TGA; Seiko, SII TG/DTA 6300, Tokyo, Japan) of 5 mg of CS-based microgels was
examined from a 50 to 700 ◦C temperature range at a heating rate of 10 ◦C/min under a
100 mL/min nitrogen flow rate.

2.5. Biocompatibility of CS Microgels and Polyelectrolyte CS−[R]+ Microgels
2.5.1. Cell Culture

Cytotoxicity analyses of CS microgels and CS−[R]+ microgels were performed for
L929 fibroblast cells via MTT assay according to the procedure described by Suner et al. [33].
L929 fibroblast cells (mouse C3/An connective tissue) were used in the cytotoxicity anal-
ysis. The fibroblast cells were cultured in DMEM supplemented with 10% FBS and 1%
penicillin/streptomycin antibiotics using a 25 cm2 flask at 37 ◦C in a 5% CO2:95% air
atmosphere for 24 h.

2.5.2. Cytotoxicity of CS Microgels and Polyelectrolyte CS−[R]+ Microgels

CS microgels and CS−[R]+ microgels were suspended in DMEM in order to obtain
an initial concentration of 1000 µg/mL. This sample was adjusted to 500, 250, 100, and
50 µg/mL concentrations by diluting with DMEM solution. The stock L929 fibroblast cell
cultures were seeded in 96-well plates with approximately 1 × 105 cells for each well in
0.1 mL of DMEM, and the plates were incubated in a 5% CO2:95% air atmosphere at 37 ◦C
for 24 h. After the incubation time, the media in the well were removed, and various
concentrations from 1000 µg/mL to 50 µg/mL particle suspensions in 100 µL DMEM
were added on the attached cells in the wells and incubated for 24 h. For positive control,
only 100 µL DMEM was added in the wells. Following the incubation period, the culture
media were removed, and cells were washed with phosphate-buffered solution (PBS).
Then, 5 mg/mL of MTT agent was diluted 10-fold in DMEM, and 100 µL of this agent
solution was added to each well. The 96-well plates were kept in the dark for 2 h. Finally,
the media were discarded, and 200 µL of DMSO was added to each well to dissolve of
the formazan crystals. Absorbance values at 590 nm were read using a microplate reader
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(HEALES, MB-530). The analysis was repeated three times, and the values were reported
as the average values with standard deviations.

2.6. Fe(II)-Chelating Capacity of CS Microgels and Polyelectrolyte CS−[R]+ Microgels

In accordance with the literature, CS microgel and CS−[R]+ microgel aqueous solutions
were prepared at 2000 µg/mL concentrations and were diluted to 1000, 500, 250, and
125 µg/mL. Then, 140 µL of CS microgel or CS−[R]+ microgel suspension solution was
added into 96 wells [37]. Then, 20 µL of 1 mM Fe (II) aqueous solution was added to
them, and measurements were obtained using a microplate reader (Thermo Multiskan Go,
USA) at 562 nm. Finally, 40 µL of 2.5 mM ferrozine aqueous solution was added, and the
measurements were performed again. Pure water was used for control. The results were
calculated according to the literature.

2.7. Rosmarinic Acid (RA) Loading and In Vitro RA Release from CS Microgels and
CS−[R]+ Microgels

Rosmarinic acid (RA) as a therapeutic agent was loaded into CS microgels and CS−[R]+

microgels through an adsorption technique. Briefly, 0.03 g of RA was dissolved in 30 mL
of a 1:1 volume ratio of ethanol:water solution, and 0.15 g of CS-based microgels was
added into an RA-solution-containing container. For the loading process, the microgel
suspension was stirred at 300 rpm for 6 h. After this period, the microgels were washed
with a 1:1 volume of ethanol:water mixture by centrifugation at 10,000 rpm for 10 min and
dried by freeze-drying. The RA-loading amounts were determined from the absorbance of
the drug solution before and after the loading process using UV-vis spectroscopy (T80+ PG
Instrument) at 325 nm against the previously created corresponding calibration curves of
RA prepared in ethanol:water mixture.

In the drug release study, 50 mg of RA-loaded CS microgels or CS−[R]+ microgels
was dispersed in 1 mL of phosphate-buffered saline (PBS) at pH 7.4 and transferred
to a dialysis membrane. This particle-containing membrane was placed into 20 mL of
PBS solution at 37 ◦C in a shaker bath. The drug-releasing medium, the PBS solution,
was then sampled and evaluated with a UV-vis spectrometer (T80+ PG Instrument) at
325 nm to measure the amount of RA against the previously determined corresponding RA
calibration curves prepared in PBS, and the released amounts of RA were calculated. The
analysis was repeated three times, and the values were reported as the average values with
standard deviations.

2.8. Antioxidant Properties of Bare and RA-Loaded CS and CS−[R]+ Microgels
2.8.1. Total Phenol Content of Bare and RA-Loaded CS and CS−[R]+ Microgels

The total phenolic contents of the particles were evaluated using the Folin–Ciocalteau
(FC) method according to the literature with some modifications [38]. Briefly, 0.1 mL of
1 mg/mL microgel suspension was reacted with 1.25 mL of 0.2 N solution of FC phenol
reagent for 4 min. Next, 1 mL of 0.7 M sodium bicarbonate solution was added to this
mixture and kept in the dark for 2 h. Then, the total phenol content of the microgels
was measured using a UV-vis spectrophotometer (T80+ PG Instrument) at 760 nm. The
antioxidant activity of the microgels was expressed as µg/mL gallic acid equivalent. The
analysis was repeated three times, and the values were reported as the average values with
standard deviations.

2.8.2. Antioxidant Properties of Bare and RA-Loaded CS and CS−[R]+ Microgels by ABTS
Scavenging Assay

The antioxidant capacities of bare and RA-loaded CS microgels and CS−[R]+ microgels
and RA were evaluated with an ABTS scavenging assay in accordance with the literature
with slight modification [38]. An ABTS radical solution was prepared by mixing 2.5 mL of
2.45 mM potassium persulfate and 7.5 mL of 7 mM ABTS solution in DI water; the mixture
was kept in the dark for 12 h at 4 ◦C to obtain a stock ABTS•+ solution. The stock ABTS•+
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solution was diluted with PBS to adjust to an absorbance of 0.7 ± 0.05 at 734 nm using
a UV-vis spectrophotometer (T80+ PG Instrument). Then, a 1 mg/mL concentration of
each microgel suspension was prepared in 5 mL of PBS solution, and various amounts
of this suspension from 200 to 500 µL were reacted with 3000 µL of ABTS•+ solution
for 6 min. Separately, a 0.1 mg/mL concentration of RA solution in PBS was prepared,
and 25–75 µL of this solution was interacted with 3000 µL of ABTS•+ solution for 6 min.
At the end of this time, the decrease in absorbance value was detected at 734 nm. The
antioxidant materials were determined for the values of 20−80% reduction of the blank
absorbance. Trolox equivalent antioxidant capacity (TEAC) values were determined against
the slope of a Trolox standard curve and expressed as “µmol Trolox equivalent/g”. The
analysis was repeated three times, and the values were reported as the average values with
standard deviations.

2.8.3. Antioxidant Properties of Bare and RA-Loaded CS and CS−[R]+ Microgels by
DPPH Assay

A 2,2-Diphenyl-1-picrylhydrazy (DPPH) assay was performed following the previ-
ously reported protocol described by Panda et al., with some modifications [39,40]. Briefly,
DPPH solution was prepared in ethanol at a 100 µM concentration. Then, 10 mg of CS,
CS−[R]+, RA-loaded CS− or RA-loaded CS−[R]+ microgels was added to 3 mL of DPPH
solution and incubated for 1 h in a dark environment. The absorbance of the DPPH solution
was measured at 517 nm. The radical scavenging activity percentage was determined as
a decrease in the absorbance of DPPH by Equation (1). Asample is the absorbance of the
sample, and Acontrol is the absorbance of the blank (without sample):

DPPH radical scavenging activity % = ((Acontrol − Asample)/Acontrol ) × 100 (1)

3. Results and Discussion

PEC-based hydrogels have great advantages as therapeutic delivery vehicles due to
their higher affinities against cargo molecules with their amphiphilic groups and a more
stable structure that can be attained by their crosslinked networks for a wide range of
pH conditions [35]. In this study, polyelectrolyte CS−[NH4]+ microgels as biopolymeric
PEC hydrogels were designed to carry rosmarinic acid for its sustainable release kinetics.
CS−[NH4]+ microgels were prepared in two-step reactions, including the crosslinking of
linear CS to generate CS microgels and ammonia treatment of the microgels to obtain poly-
electrolyte forms of the microgels, or CS−[R]+ microgels. In the first step, non-degradable
CS microgels were prepared employing a DVS crosslinker at a 50% mole ratio of a CS
repeating unit, as reported previously [33]. Morphological analyses of the CS microgels
were conducted through SEM imaging, as illustrated in Figure 1a.

The SEM images clearly show that the CS microgels were spherical, non-porous, and
about 5 µm to submicron size ranges. To prepare polyelectrolyte forms of CS microgels,
-OSO3

−H+ or -COO−H+ groups of the CS microgels were treated with ammonia solution
for 2 h at room temperature. As can be seen in the schematic representation of this treatment
in Figure 1b, a cation exchange reaction was employed between H+ cations of the -OSO3

−H+

and -COO−H+ groups with NH4
+ cations from the ammonia solution [41]. Consequently,

biological polyelectrolyte CS−[NH4]+ microgels could be prepared, which indicated that
polyelectrolyte CS−[R]+ microgels could be made in a single step using ammonia solution
related to anionic sulfonate groups of the CS microgels.

The chemical structures of CS microgels and CS−[R]+ microgels were investigated
by an FT-IR analysis that corroborated the crosslinking CS chains into CS microgels and
the polyelectrolyte structure of CS−[NH4]+ microgels upon cation exchange, as given in
Figure 2a. A broad peak was observed in the range of 3600–3000 cm−1 due to the O-H and
N-H stretching of CS chains. The small peak at 2901 cm−1 was attributed to C-H stretching
of the CH2 groups of CS. The sharp peak at 1602 cm−1 was assigned to the presence of
an amide band in the CS structure. Additionally, the peak at 860 cm−1 corresponded to
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C-O-S groups of the CS structure in the microgel network. Among these CS peaks, the
characteristic peaks of DVS were obtained at 1223, and 1030 cm−1 stretching vibrations
belonged to S=O groups to confirm of the crosslinker structure of the CS microgels. The
different peaks of polyelectrolyte CS−[R]+ microgels were determined at 3250 cm−1 by a
broad band, and a 1414 cm−1 stretching vibration was attributed to NH4

+ groups into the
polyelectrolyte structure. These results supported that polyelectrolyte CS−[R]+ microgels
were successfully prepared by the ammonia treatment of CS microgels.
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The thermal degradation of CS microgels and CS−[R]+ microgels was acquired by
a thermogravimetric/differential thermogravimetric (TG/DTG) analysis, and the corre-
sponding TG/DTG curves are given in Figure 2b. The first slight degradation was shown
in both thermograms at about 5.0% and 8.8% weight loss values at ~100 ◦C with slight DTG
peaks corresponding to the loss of bound water from the microgel structures of CS and
CS−[R]+ microgels, respectively. In addition, three main degradation steps occurred in the
temperature ranges of 214–260 ◦C with a maximum peak at 250 ◦C and 23.1% weight loss;
260–400 ◦C with a maximum peak at 318 ◦C and 39.4% weight loss; and 620–738 ◦C with a
maximum peak at 714 ◦C and 69.2% weight loss observed for CS microgels. The thermo-
gram of the CS−[R]+ microgels showed three step degradations, and the first degradation
was detected at a slightly lower temperature range of 190–230 ◦C, with a sharp DTG peak at
218 ◦C and 33.0% weight loss. More degradations were observed at the second degradation
interval between 230–445 ◦C with two DTG peaks at ~282 and 422 ◦C with a total of 80.6%
weight loss, and the third degradation step in the 450–560 ◦C range with a maximum peak
at 560 ◦C and 84.8% weight loss. It was clearly seen that polyelectrolyte CS−[R]+ microgels
were thermally more degradable than the CS microgels due to the presence of the ionic
groups within the polymeric networks.
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Polyelectrolyte complexes and their microgels are stimuli-responsive materials against
the pH and ionic strength of solvents and change their sizes and zeta potential values
accordingly. Therefore, size measurements of the CS microgels and CS−[R]+ microgels at
different solution pH levels were carried out with DLS studies. According to Figure 3a,
the dimensions of CS microgels did not change much at different solution pH levels.
The microgel sizes were varied between 534 and 633 nm. The size of the CS microgels
was measured at 633 ± 104 nm at 5.7 pH. The size of the CS−[R]+ microgels also did
not change significantly. As highly crosslinked (50%) particles were used as a tighter
network of CS chains were constructed, the water swelling and ion–ion charge interactions
were suppressed.

The zeta potentials of CS microgels and CS−[R]+ microgels in 1 mM KNO3 versus pH
were measured. As presented in Figure 3b, the isoelectric point could not be detected in
both microgels. The pH value measured in the 1 mM KNO3 solution for the CS microgel
was 10.45, and the zeta potential at that pH value was −33.4 ± 0.7 mV. For the CS−[R]+

microgels, the measured pH was 8.5, and its zeta potential was −24.5 ± 2.1 mV.



Polymers 2022, 14, 4324 9 of 15

Polymers 2022, 14, x FOR PEER REVIEW 9 of 16 
 

 

Polyelectrolyte complexes and their microgels are stimuli-responsive materials 
against the pH and ionic strength of solvents and change their sizes and zeta potential 
values accordingly. Therefore, size measurements of the CS microgels and CS-[R]+ micro-
gels at different solution pH levels were carried out with DLS studies. According to Figure 
3a, the dimensions of CS microgels did not change much at different solution pH levels. 
The microgel sizes were varied between 534 and 633 nm. The size of the CS microgels was 
measured at 633 ± 104 nm at 5.7 pH. The size of the CS-[R]+ microgels also did not change 
significantly. As highly crosslinked (50%) particles were used as a tighter network of CS 
chains were constructed, the water swelling and ion–ion charge interactions were sup-
pressed. 

 
Figure 3. (a) Sizes of CS microgels and CS−[R]+ microgels at different pH values; (b) pH versus zeta 
potential graphics of CS microgels and CS−[R]+ microgels in pH 1–10 range. 

The zeta potentials of CS microgels and CS-[R]+ microgels in 1 mM KNO3 versus pH 
were measured. As presented in Figure 3b, the isoelectric point could not be detected in 
both microgels. The pH value measured in the 1 mM KNO3 solution for the CS microgel 
was 10.45, and the zeta potential at that pH value was −33.4 ± 0.7 mV. For the CS-[R]+ 
microgels, the measured pH was 8.5, and its zeta potential was −24.5 ± 2.1 mV. 

To ensure the safety of the biomaterials, a biocompatibility test, e.g., the effects of 
materials on the viability of healthy cells, such as L929 fibroblasts, needed to be studied. 
Therefore, the cytotoxicity levels of CS microgels and polyelectrolyte CS−[R]+ microgels at 
different concentrations ranging from 50 to 1000 μg/mL were determined on L929 fibro-
blast cells for a 24 h incubation time, and the corresponding results are demonstrated in 
Figure 4a. 

0

200

400

600

800

1000

0 2 4 6 8 10 12

Av
er

ag
e 

siz
e d

ist
ri

bu
tio

n 
(n

m
) 

pH

CS microgels

CS-{R}+ microgels

(a)

CS−[R]+ microgels

CS microgels

-40

-30

-20

-10

0

10

0 2 4 6 8 10 12

Ze
ta

 p
ot

en
tia

l (
m

V
) 

pH

CS microgels

CS-{R}+ microgels
(b)

CS−[R]+ microgels

Figure 3. (a) Sizes of CS microgels and CS−[R]+ microgels at different pH values; (b) pH versus zeta
potential graphics of CS microgels and CS−[R]+ microgels in pH 1–10 range.

To ensure the safety of the biomaterials, a biocompatibility test, e.g., the effects of
materials on the viability of healthy cells, such as L929 fibroblasts, needed to be studied.
Therefore, the cytotoxicity levels of CS microgels and polyelectrolyte CS−[R]+ microgels
at different concentrations ranging from 50 to 1000 µg/mL were determined on L929
fibroblast cells for a 24 h incubation time, and the corresponding results are demonstrated
in Figure 4a.

Cell viability percentages of the fibroblasts in the presence of CS microgels and poly-
electrolyte CS−[R]+ microgels, even at a high concentration, i.e., 1000 µg/mL, were found
as 81 ± 5% and 76 ± 1%, respectively. It is clear that the cell viabilities of both CS-based
microgels were almost similar and not significantly decreased up to a 1000 µg/mL concen-
tration. Moreover, the cell image of the control group, which was non-treated cells, and
the cell images incubated with 1000 µg/mL concentrations of CS microgels or CS−[R]+

microgels for 24 h are demonstrated in Figure 4b. It can be clearly seen that the cells inter-
acting with both types of CS-based microgels were healthy and revealed almost similar cell
viabilities with the control group. Therefore, it could be said that polyelectrolyte CS−[R]+

microgels were biocompatible against fibroblast cells and could be safely used for further
in vivo applications at <1000 µg/mL concentrations.

In the treatment of neurodegenerative diseases, such as Alzheimer’s and Parkinson’s,
iron chelators are generally used as a therapeutic agent. Some polymers provide an
iron-chelating ability and can be used to inhibit iron toxication in the body [38]. The
Fe(II)-chelating capacities of CS microgels and CS−[R]+ microgels were examined in a
DI water solution in the 125–2000 µg/mL concentration range in accordance with the
literature [37]. In our previous work, the Fe(II) chelation ability of CS was not observed,
even at a 2000 µg/mL concentration. However, as shown as Figure 5, it was observed that
the Fe(II)-chelating capacity of CS microgels and CS−[R]+ microgels increased depending
on the concentration.

As shown in Figure 5, CS had a Fe(II)-chelating capacity of 51.8 ± 15.8%, while that of
CS−[R]+ microgels was increased to 64.5 ± 7.7% at the concentration of 1000 µg/mL due
to the high-electrolyte nature of the microgels.

Rosmarinic acid (RA) is a well-known active agent due to its antioxidant, anti-
inflammatory, antimutagenic, antimetastatic, antiangiogenic, neuroprotective, antibacterial,
and antifungal activities and is widely recommended as a supplement in the human diet
for its beneficial effects for various diseases [36]. The prepared CS microgels and poly-
electrolyte CS−[R]+ microgels were used as RA carrier systems to attain a sustainable
RA release and accomplish long-term therapeutic activity. Digital camera images of bare
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and RA-loaded CS microgels and polyelectrolyte CS−[R]+ microgels are demonstrated in
Figure 6a.
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As can be seen from the digital camera images given in Figure 6a, CS and CS−[R]+

microgels were white-colored, whereas RA-CS−[R]+ microgels were light-green-colored.
Additionally, the color of the CS microgels did not change discernably upon RA loading
into CS, as RA-CS microgels were white-colored. The RA-loading capacity of the CS
microgels was measured as 13.5 ± 1.2 µg/mg RA, but almost 2.5-fold of the RA could be
loaded into CS−[R]+ microgels, with a 32.4 ± 5.1 µg/mg RA-loading amount. It could
be said that higher amounts RA could be loaded into CS−[R]+ as RA-CS−[R]+ microgels,
and this provided a slight color change, with light green coming from the RA within the
microgel network.

The RA release profiles from RA-CS microgels and RA-CS−[R]+ microgels at phys-
iological conditions, pH 7.4 (PBS), and 37 ◦C are illustrated in Figure 6b. It is obvious
that RA-CS microgels exhibited burst RA delivery within 20 h, with 10.8 ± 0.8 µg/mg
RA delivery, whereas 7.6 ± 1.7 µg/mg RA was linearly released from RA-CS−[R]+ micro-
gels. The RA release capacity of the polyelectrolyte form of CS microgels was significantly
decreased compare with CS microgels, but sustainable and long-term RA delivery was
provided for 150 h. Therefore, it can be assumed that the ionic structure of polyelectrolyte
CS−[R]+ microgels could present a milieu that provided more interaction ability with the
RA molecules than more negatively charged CS microgels, and sustainable release could be
possible, as only 23% of the loaded RA could be delivered because of the high interaction
between the drug molecules.
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The antioxidant activities of bare and RA-loaded CS microgels and CS−[R]+ microgels
were investigated by ABTS scavenging, FC, and DPPH scavenging assays, as represented
in Figure 7a, 7b and 7c, respectively.
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Figure 7. The antioxidant capacities of bare and RA-loaded CS microgels and polyelectrolyte CS−[R]+

microgels (a) via Trolox equivalent antioxidant capacity (TEAC) test, (b) gallic acid (GA) equivalent to-
tal phenol content (TPC) at 1000 µg/mL concentrations of microgels, and (c) DPPH radical-scavenging
assay for 3.33 mg/mL concentrations of the microgels.

In the ABTS radical-scavenging test, no antioxidant effect was found for bare microgels,
but 0.23 ± 0.03 and 0.45 ± 0.02 µmol/g Trolox equivalent antioxidant capacity (TEAC)
values were measured for RA-loaded CS microgels and CS−[R]+ microgels, respectively.
As a control, the TEAC value of only RA was determined as 10.32 ± 1.01 µmol/g. In the
other antioxidant test, the total phenol contents (TPC) of RA-loaded CS microgels and
CS−[R]+ microgels at 1000 µg/mL concentrations demonstrated an antioxidant capacity
of 26.8 ± 3.4 and a 28.0 ± 1.3 µg/mL gallic acid equivalent, respectively. RA at the same
concentration had a 556± 35 µg/mL gallic acid equivalent TPC value. These results confirm
that RA-loaded CS−[R]+ microgels showed great antioxidant ability, with almost 20-fold
lesser antioxidant capacity of sole RA. In the DPPH scavenging activity test, the inhibition
percentages of 3.33 mg/mL concentrations of bare CS microgels and CS−[R]+ microgels
were measured as 7.0 ± 0.2 and 5.9 ± 2.2%, respectively. On the other hand, the same
amounts of RA-loaded CS microgels and CS−[R]+ microgels showed higher scavenging
ability, with 44.0 ± 1.5 and 26.6 ± 0.7% DPPH inhibition activity, respectively, in about
30 min. The IC50 value of RA, which was defined as the concentration of 50% inhibition
of the DPPH radical, was reported as 1.3 ± 0.1 µg/mL [42]. According to our results, the
highest antioxidant ability in the DPPH assay was determined for CS-RA microgels, with
almost 3.33 mg/mL of IC50 value.

4. Conclusions

Spherical and non-porous CS microgels in the size range of 5 µm to a few hundred
nanometers were treated with aqueous ammonia solution to prepare CS−[NH4]+ microgels
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as polyelectrolyte particles. The zeta potential values of these polyelectrolyte CS−[R]+

microgels were slightly changed to lesser negative values in the pH range of 5–11 because
of the presence of cationic [NH4]+ groups in the microgel polymeric network. The FT-IR
peaks at 3250 and 1414 cm−1 assigned to -NH4

+ groups endorsed the polyelectrolyte nature
of the CS−[R]+ microgels. Additionally, CS−[R]+ microgels demonstrated lesser thermal
stability than CS microgels. The CS-based microgels showed a highly biocompatible
nature according to a cytotoxicity analysis on L929 fibroblast cells. Moreover, CS−[NH4]+

microgels could be utilized as an active agent carrier, e.g., RA with a 32.4 ± 5.1 µg/mg
RA-loading capacity, and could provide sustainable and long-term RA delivery up to 150 h
in PBS. Although RA-loaded CS−[NH4]+ microgels exhibited significant antioxidant ability,
almost 20-fold lower than that of pure RA, they could be used as antioxidant-carrying
particles for some wound-dressing applications, as well as food-packing materials.
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