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The High Drinking in the Dark (HDID-1) line of mice has been selectively bred
for achieving high blood alcohol levels (BALs) in the Drinking in the Dark task, a
model of binge-like drinking. Recently, we determined that glucocorticoid receptor
(GR) antagonism with either mifepristone or CORT113176 (a selective GR antagonist)
reduced binge-like ethanol intake in the HDID-1 mice, but not in their founder
line, HS/NPT. Here, we examined whether the selection process may have altered
glucocorticoid functioning by measuring (1) plasma corticosterone levels and (2)
expression of the genes encoding GR (Nr3c1) and two of its chaperone proteins
FKBP51 and FKBP52 (Fkbp5 and Fkbp4) in the brains (nucleus accumbens, NAc)
of HDID-1 and HS/NPT mice. We observed no genotype differences in baseline
circulating corticosterone levels. However, HDID-1 mice exhibited a greater stimulated
peak corticosterone response to an IP injection (of either ethanol or saline) relative to
their founder line. We further observed reduced basal expression of Fkbp4 and Nr3c1
in the NAc of HDID-1 mice relative to HS/NPT mice. Finally, HDID-1 mice exhibited
reduced Fkbp5 expression in the NAc relative to HS/NPT mice following an injection of
2 g/kg ethanol. Together, these data suggest that selective breeding for high BALs may
have altered stress signaling in the HDID-1 mice, which may contribute to the observed
selective efficacy of GR antagonism in reducing binge-like ethanol intake in HDID-1,
but not HS/NPT mice. These data have important implications for the role that stress
signaling plays in the genetic risk for binge drinking.

Keywords: ethanol, binge drinking, HDID, glucocorticoid, FKBP5

INTRODUCTION

Stress is a critical factor in alcohol use and misuse and has been shown to contribute to the
development of alcohol use disorders (AUDs) as well as to the risk of relapse in individuals with
an AUD (Blaine and Sinha, 2017). Acute alcohol activates the hypothalamic-pituitary-adrenal
(HPA) axis, the body’s main neuroendocrine stress response, and chronic alcohol use can cause
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dysregulation of the HPA axis (Richardson et al., 2008). HPA
activation culminates in the release of glucocorticoids (cortisol in
humans and corticosterone in rodents) from the adrenal glands.
Individuals who engage in binge/heavy drinking and those with
an AUD often exhibit higher basal cortisol levels and a blunted
cortisol response to stress or alcohol exposure (Sinha et al.,
2009; Blaine et al., 2016). These effects can also be observed
in rodents and non-human primates (Cippitelli et al., 2014;
Jimenez and Grant, 2017; Somkuwar et al., 2017). This altered
glucocorticoid output with chronic alcohol use is thought to
contribute to craving for alcohol and promote further intake and
relapse (Junghanns et al., 2005; Blaine et al., 2019).

As glucocorticoid levels rise, they bind to glucocorticoid
receptors (GR) in the hypothalamus to terminate further
glucocorticoid release. However, GR is also located throughout
the brain, and activation of GR in extrahypothalamic brain
regions may be particularly important for alcohol use (Edwards
et al., 2015). Chronic alcohol use leads to dysregulated GR
expression in extrahypothalamic brain regions that changes
dynamically across the acute withdrawal and protracted
abstinence periods, although the direction of these effects
is not always consistent and is likely brain-region-specific.
In rats made dependent on alcohol via exposure to chronic
intermittent ethanol (CIE) vapor, elevated GR during the acute
withdrawal period and reduced GR during protracted abstinence
have been observed in the medial prefrontal cortex (mPFC)
(Somkuwar et al., 2017), a brain region thought to be critical
for alcohol relapse (Lu and Richardson, 2014). In contrast, in
brain regions involved in stress and reward processing such
as the nucleus accumbens (NAc, a major component of the
ventral striatum) and the central nucleus of the amygdala, the
reverse is seen: GR expression patterns in rats exposed to the
CIE model show reductions during the acute withdrawal period
followed by elevation during protracted abstinence (Vendruscolo
et al., 2012). Finally, in postmortem brain tissue of individuals
with an AUD, GR expression levels are reduced across several
extrahypothalamic brain regions, including the prefrontal cortex,
amygdala, and striatum (Gatta et al., 2021), as well as in the
hippocampus (McClintick et al., 2013). These dynamic changes
in GR expression may contribute to the elevated alcohol intake
observed with chronic alcohol use and dependence. Indeed,
pharmacological antagonism of GR has been shown to reduce
alcohol intake in rodents, non-human primates, and humans,
across a range of drinking paradigms and access periods (Koenig
and Olive, 2004; Vendruscolo et al., 2012, 2015; Repunte-
Canonigo et al., 2015; Jimenez et al., 2020; Savarese et al., 2020;
Benvenuti et al., 2021; McGinn et al., 2021), suggesting that
GR activation promotes alcohol intake. Genetic studies also
support a role for GR in risk for AUD. Polymorphisms in the
gene encoding GR, NR3C1, are associated with both age of
onset of drinking and drinking to intoxication in adolescents,
factors which are each strong predictors of developing an AUD
(Desrivieres et al., 2011).

There are several extrahypothalamic brain regions that are
likely important for glucocorticoids and GR, and one region
where glucocorticoids may mediate the reinforcing effects of
alcohol is the NAc (Spanagel et al., 2014). Glucocorticoids

themselves exert positive reinforcing effects and potentiate
dopamine release from the mesolimbic dopaminergic neurons
(Piazza and Le Moal, 1997). Further, GR activation within the
NAc enhances both appetitive and aversive learning (Wichmann
et al., 2012), and administration of a GR antagonist directly
into the NAc can decrease alcohol intake in alcohol-dependent
rats (Repunte-Canonigo et al., 2015). Taken together, these data
suggest the NAc is a critical area for the actions of glucocorticoids
and GR in regulating alcohol intake.

Recently, we investigated the effects of GR antagonism on
binge-like ethanol intake in the first replicate line of the High
Drinking in the Dark (HDID-1) mice (Savarese et al., 2020).
These mice were selectively bred for high blood alcohol levels
(BALs) in a binge-like ethanol intake task, Drinking in the
Dark (DID) (Crabbe et al., 2009), which utilizes a limited-access
drinking paradigm during the circadian dark cycle and reliably
produces intoxicating BALs (Rhodes et al., 2005). As such,
HDID mice serve as unique genetic models of risk for binge-like
ethanol intake. Because selective breeding principally changes
the frequencies of genes affecting the targeted trait, any other
differences between the selected line and its non-selected founder
line may reflect coordinate genetic influences on the two traits.
Thus, comparisons between HDID-1 and the founder HS/NPT
lines have successfully been used to investigate the genetic
and molecular determinants of high-risk drinking and identify
potential pharmacotherapies for AUD (Cozzoli et al., 2012, 2016;
Iancu et al., 2013, 2018; Crabbe et al., 2017, 2020; Ferguson et al.,
2018, 2019; Grigsby et al., 2020; Ozburn et al., 2020; Pozhidayeva
et al., 2020; Robinson et al., 2020; Savarese et al., 2020). To test the
effects of GR antagonism within this selectively bred line, HDID-
1 mice were given both mifepristone, a non-selective steroid
hormone receptor antagonist, and CORT113176, a specific GR
antagonist. Both compounds produced reductions in ethanol
intake and BALs in DID in the HDID-1 mice (Savarese et al.,
2020). Interestingly, the founder line of these mice, HS/NPT, did
not show reductions in either ethanol intake or BALs in DID
with GR antagonism, suggesting the selection process altered
sensitivity to GR antagonism, perhaps through changes in either
GR expression or activity.

Here, our goal was to begin to understand the mechanism
driving increased sensitivity to GR antagonism in the HDID-
1 mice by examining plasma corticosterone levels and mRNA
expression of GR and its related chaperone proteins in the NAc
of HDID-1 and HS/NPT mice. In Experiment 1 we evaluated
plasma corticosterone levels at baseline or at varying timepoints
(30, 60, or 120 min) after an injection of either saline or
2 g/kg ethanol, to capture stimulus-induced peak and recovery
levels. We predicted that HDID-1 mice would have higher basal
corticosterone levels than HS/NPT mice at baseline, suggestive
of a dysregulation of HPA output after selection. In Experiment
2, we measured basal gene expression of GR (Nr3c1) in the
NAc of HDID-1 and HS/NPT mice, as well as expression of
two chaperone proteins of GR, FKBP51 (Fkbp5), and FKBP52
(Fkbp4). FKBP51 and FKBP52 are immunophilins that act in
opposing ways to regulate GR transcriptional activity. When
GR is bound to FKBP51, it is retained in the cytoplasm and
prevented from translocating to the nucleus (Gray et al., 2017).
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When glucocorticoids rise and pass through the cell membrane
to bind to GR, a conformational change leads to the shedding
of FKBP51 and binding of FKBP52, which allows translocation
into the nucleus. GR activation also leads to increased Fkbp5
expression, resulting in negative feedback of GR transcriptional
activity (Vermeer et al., 2003). The amounts of FKBP51 and
FKBP52 in the cell can therefore have a profound effect on GR
activity. In Experiment 2, we predicted elevated Nr3c1 expression
and/or reduced Fkbp5 expression in the NAc of HDID-1 mice
relative to HS/NPT mice, evidence of hyperactive GR activity
in HDID-1 mice. In Experiment 3, we measured expression of
these same genes in the NAc of HDID-1 and HS/NPT mice
after either a saline or 2 g/kg ethanol injection. We predicted
higher overall expression of Nr3c1 and blunted Fkbp5 expression
after ethanol in HDID-1 mice, suggesting a dysregulation of the
negative feedback loop that regulates GR activity.

MATERIALS AND METHODS

Animals
Adult mice of both sexes of the HDID-1 line and of the genetically
diverse founder stock, HS/NPT, were bred and maintained in
the Veterans Affairs Portland Health Care System Veterinary
Medical Unit (Crabbe et al., 2009, 2014). For age ranges and
numbers of mice, see individual experiments below. Mice were
bred and housed on a reverse light/dark schedule (12 L:12 D,
lights off at 8:30 a.m.) and experimental rooms were maintained
at a temperature of 21 ± 1◦C. The light cycle remained
unchanged for Experiments 2 and 3 (information on the light
cycle for Experiment 1 is described below). Water and Purina
5 LOD chow (PMI Nutrition International, Brentwood, MO,
United States) were provided ad libitum. Mice were housed
in standard polycarbonate cages with stainless steel wire tops
and Bed-o’cobs R© bedding (The Andersons, Inc., Maumee, OH,
United States). All procedures were approved by the local
Institutional Animal Care and Use Committee of the VA Portland
Health Care System and were conducted in accordance with NIH
Guidelines for the Care and Use of Laboratory Animals.

Experiment 1: Measurement of Plasma
Corticosterone Levels in High Drinking in
the Dark and HS/NPT Mice
Two hundred and forty-nine HDID-1 and HS/NPT mice were
used to measure corticosterone levels. Mice were 89–171 days
of age and of generations S44.G48 (HDID-1) and G99.V31
(HS/NPT). At least 2 weeks prior to testing, mice were moved
to a separate room and acclimated to a new light schedule
(lights on at 1 p.m. and off at 1 a.m.). Mice remained group-
housed with littermates throughout the experiment. Mice were
pseudorandomized to condition and timepoint, and were split
into five cohorts (n = 43–50/cohort) that were tested on
separate days. Each combination of sex, genotype, condition, and
timepoint were represented within a given cohort. A between-
subjects design was employed for corticosterone measurements
across timepoints in order to avoid sampling-induced stress

responses (each animal was only sampled at one time).
A schematic of experimental groups and timeline is shown in
Figure 1A.

On the day of testing, mice were weighed at 12 p.m., 1 h before
the lights on. Beginning 3 h into the light cycle, mice received
either a 2 g/kg ethanol injection (20% v/v) or an equivalent
volume of 0.9% saline (n = 5–9/line/sex/condition/timepoint).
Either 30, 60, or 120 min following the injections blood
samples were collected. Each mouse only provided a single
blood sample. Sampling timepoints were designed to capture
peak corticosterone levels (30 min), falling levels (60 min), and
recovery (120 min) (Zgombick and Erwin, 1988). A separate
group of mice that were being sampled for baseline corticosterone
levels (n = 11–16/line/sex) received no injection and had blood
samples collected 6 h into the light cycle. Blood samples were
collected during the light cycle when corticosterone levels are
low in rodents, to be able to detect stimulated corticosterone
responses to ethanol.

To obtain tail bloods, mice were taken from their home
cages and briefly restrained in Plexiglas restrainers. Tails were
nicked approximately 2 mm from the tip, and 30 µl of blood
was collected into heparinized capillary tubes which were then
sealed with clay. Tail blood samples were kept on ice until testing
was completed. Animals that received an ethanol injection had
an additional periorbital blood sample taken immediately after
the tail blood sampling for analysis of BALs. Periorbital blood
samples were frozen at −20◦C until gas chromatography was
performed (Finn et al., 2007). All samples were taken within
2 min of cage disturbance.

Following testing, tail blood samples were centrifuged
(3,000 rpm for 5–6 min) at 5◦C to separate plasma. Plasma
samples were then frozen at −20◦C until radioimmunoassays
were performed. Corticosterone concentrations were measured
using a commercially available radioimmunoassay kit
(ImmuChem Double Antibody Corticosterone for rodents,
MP Biomedicals, Santa Ana, CA, United States), as described in
Cozzoli et al. (2014). In brief, corticosterone concentration in
plasma samples (5 µl) was single-determined via interpolation
from a standard curve containing six standards that ranged from
25–1,000 ng/mL (i.e., 2.5–100 µg/dl).

Experiment 2: Measurement of Baseline
Gene Expression of Glucocorticoid
Receptor and Chaperone Proteins in the
Brains of High Drinking in the Dark and
HS/NPT Mice
Forty-seven HDID-1 and HS/NPT mice (n = 11–12/line/sex)
were euthanized for collection of whole brains. Mice were
69–80 days of age and of generations S41.G43 and S42.G44
(HDID-1) and G94.V26 (HS/NPT). Mice remained group-
housed with littermates throughout the experiment. Because we
were interested in measuring gene expression at the time of
day that these mice typically consume ethanol, tissue collection
began 7 h into the dark cycle to coincide with the end of
a traditional 4-h DID binge-ethanol drinking session (Rhodes
et al., 2005). Animals were removed from their home cage,
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FIGURE 1 | HDID-1 mice exhibit greater stimulated corticosterone response than HS/NPT founders. (A) Separate groups of HDID-1 and HS/NPT mice were given
either a 2 g/kg ethanol injection or an equivalent volume of saline and blood samples were collected at either 30, 60, or 120 min after injections to measure
corticosterone levels. (B) In mice that received ethanol injections, BALs were similar across time in the two genotypes. (C) At 30-min post-injection there was a
significant effect of condition (ethanol > saline), genotype (HDID-1 > HS/NPT), and sex (females > males, data collapsed across sex in figure for ease of viewing).
(D,E) At 60- and 120-min post-injection, the condition effect remained, but the sex and genotype effects were no longer evident. These data suggest that HDID-1
mice exhibit a greater stimulated response to injection. Means ± SE shown. ∗p < 0.05; ∗∗p < 0.01.

cervically dislocated, and rapidly decapitated. Whole brains were
removed and immediately put into dry ice for several minutes
for rapid freezing. Brains were then stored at −80◦C until tissue
processing occurred.

Experiment 3: Measurement of
Stimulated Gene Expression of
Glucocorticoid Receptor and Chaperone
Proteins in the Brains of High Drinking in
the Dark and HS/NPT Mice
98 HDID-1 and HS/NPT mice (n = 12–13/line/sex/condition)
were injected intraperitoneally with either 2 g/kg ethanol or an
equivalent volume of saline and were euthanized for collection
of whole brains 4 h later. Mice were 60–105 days of age and of
generations S43.G47 (HDID-1) and G98.V30 (HS/NPT). Because
we were interested in measuring gene expression at the time of
day that these mice typically consume ethanol, injections were
administered in a staggered manner 2–4 h into the dark cycle
to coincide with the start of a traditional DID binge-ethanol
drinking session (Rhodes et al., 2005) and tissue collection
coincided with the end of a 4-h DID session. One week prior
to testing, mice were singly housed (as they would be during
DID). On the day of collection, mice were weighed approximately

30 min prior to lights off. For brain collection, animals were
removed from their home cage, cervically dislocated, and rapidly
decapitated. Whole brains were removed and immediately put
into dry ice for several minutes for rapid freezing. Brains were
then stored at −80◦C until tissue processing occurred.

Quantitative Real-Time Polymerase
Chain Reaction
Brains from Experiments 2 and 3 were processed in the
same manner. Whole brains were mounted on a cryostat and
sectioned into 200 µm-thick coronal sections at −18◦C onto
slides. The NAc was punched from sections using a 1 mm
tissue puncher and tissue was placed into 1.5 mL centrifuge
tubes. Tissue was stored at 80◦C until it was sent to the
Gene Profiling Shared Resource at Oregon Health & Science
University for RNA isolation. For pre-processing, tissue samples
were collected in 400 µl RLT Plus buffer and transferred to
RB tubes (QIAGEN). All samples were mechanically disrupted
with the TissueLyser at 30 Hz for 2 min. Lysates were then
transferred to 2 mL Sarstedt screw-top tubes that were compatible
with the QIAsymphony instrument. RNA was isolated using the
QIAsymphony RNA Kit (QIAGEN) following the manufacturer’s
recommended protocol and utilizing the QIAsymphony isolation
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robot, which includes an in-solution DNase step. RNA was
eluted in 100 µl nuclease-free water. RNA concentration and
yield were determined by UV absorption (using a NanoDrop
8000 spectrophotometer). RNA samples were then stored at
−80◦C and transferred back to our lab for cDNA synthesis.
RNA (100 ng) was processed to cDNA using the BioRad iScript
cDNA synthesis kit (Bio-Rad Laboratories, Inc., Hercules, CA,
United States) according to the manufacturer’s protocol, as in
Pozhidayeva et al. (2020). Quantitative real-time PCR was used
to measure expression of GR (Nr3c1), FKBP51 (Fkbp5), FKBP52
(Fkbp4), and 18s (Rps18) using iQ Multiplex Powermix (Bio-Rad
Laboratories, Inc.). The following PrimePCRTM Probe Assays
were used (Bio-Rad Laboratories, Inc.): Nr3c1 (Mouse, TEX 615,
qMmuCIP0033656), Fkbp5 (Mouse, Cy5, qMmuCEP0054766),
Fkbp4 (Mouse, HEX, qMmuCIP0028610), and Rps18 (Mouse,
FAM, qMmuCEP0053856).

Data Analysis
The primary dependent variable in Experiment 1 was plasma
corticosterone levels (µg/dl), at baseline and following
intraperitoneal injections. A 2-way ANOVA (genotype × sex)
was conducted to analyze baseline corticosterone levels. A 3-way
ANOVA (genotype × sex × condition) was conducted within
each timepoint to determine group differences in corticosterone
levels following either a saline or ethanol injection. A 2-way
ANOVA (genotype × timepoint) was conducted to evaluate
group differences in blood ethanol levels across time.

For Experiments 2 and 3, the dependent variable of interest
was normalized expression levels of each gene of interest.
Normalized expression levels were calculated using a slightly
modified version of the protocol published in Taylor et al. (2019).
In brief, average quantification cycle (Cq) values in HS/NPT
mice of both sexes (or in Experiment 3, HS/NPT mice that
received saline) were obtained for each gene and were then used
to calculate individual deltaCq scores (average Cq-individual Cq).
Relative quantities (RQ) were then obtained for each individual
gene (2ˆdeltaCq) and 18s was used as a reference gene to calculate
normalized expression (RQ of gene of interest/RQ of 18s). A 2-
way ANOVA (genotype × sex) of normalized gene expression
values was conducted for each gene of interest in Experiment 2.
A 2-way ANOVA (genotype × sex × condition) of normalized
gene expression values was conducted for each gene of interest in
Experiment 3. Pairwise comparisons of interaction effects used a
Sidak’s correction.

All statistical analyses, as well as the creation of all graphs, were
completed in GraphPad Prism 9. BioRender was used to create
illustrations of experimental schematics.

RESULTS

High Drinking in the Dark Mice Exhibit
Greater Stimulated Corticosterone
Response Than Founders, HS/NPT
In order to investigate whether the selection process altered
HPA axis output in the HDID-1 mice, we measured basal and

stimulated blood plasma corticosterone levels in independent
groups of adult HDID-1 and HS/NPT mice. In mice that received
no injection (baseline samples), an overall sex effect was found
[F(1, 49) = 4.692; p = 0.035], with female mice having greater
corticosterone levels than male mice, but there was no effect of
genotype or interaction (values in Table 1).

Separate groups of mice received intraperitoneal injections
of either saline or ethanol, and plasma corticosterone levels
were measured at different time points following injection in
independent groups of mice (Figure 1A). In mice that received
ethanol injections, BALs did not differ between genotypes [F(1,
81) = 0.943; p = 0.335], as seen in Figure 1B. In mice that
had blood samples taken at the 30-min timepoint designed to
capture peak corticosterone levels, a 3-way ANOVA revealed a
significant main effect of condition [F(1, 48) = 5.288; p = 0.026;
ethanol > saline], a main effect of sex [F(1, 48) = 20.80;
p < 0.0001; female > male], and a main effect of genotype
[F(1, 48) = 6.684; p = 0.013; HDID-1 > HS/NPT], but no
significant interactions, as shown in Figure 1C (data is shown
collapsed across sex for ease of viewing). At the 60-min timepoint
that was designed to capture falling corticosterone levels, a 3-
way ANOVA revealed a significant main effect of condition
[F(1, 50) = 8.463; p = 0.005], with ethanol producing greater
corticosterone levels than saline, but no other significant effects,
as shown in Figure 1D. Finally, within mice that were sampled
at the 120-min timepoint that was designed to sample recovery
corticosterone levels, a 3-way ANOVA once again revealed a
significant main effect of condition [F(1, 51) = 9.919; p = 0.003],
with ethanol levels being greater than saline levels, but no other
significant effects, as shown in Figure 1E.

Overall, we observed a greater stimulated corticosterone
response from ethanol than saline, as expected. Our data
also suggest that the selection process did not alter basal
corticosterone levels in HDID-1 mice, but it did alter stress
sensitivity, such that HDID-1 mice exhibited a greater peak
corticosterone response to injection than the HS/NPT mice.

High Drinking in the Dark Mice Have
Reduced Basal Nr3c1 and Fkbp4 NAc
Gene Expression Relative to Their
Founders, HS/NPT
Basal gene expression of GR (Nr3c1) and its chaperone proteins
FKBP51 (Fkbp5) and FKBP52 (Fkbp4) were analyzed in the NAc
of HDID-1 and HS/NPT mice (n = 11–12/line/sex) to determine
whether selection may have altered GR expression or activity.
A two-way ANOVA (sex × genotype) revealed no significant

TABLE 1 | Baseline corticosterone levels (µg/dl) in HDID-1 and HS/NPT mice.

HDID-1 HS/NPT

Male 10.42 (3.70) 13.91 (2.40)

Female* 28.32 (8.39) 18.28 (3.79)

Overall (both sexes) 20.12 (5.11) 16.32 (2.35)

Means (SEMs) shown.
*Signifies a main effect of sex.
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effects on Fkbp5 expression (p’s > 0.078), as shown in Figure 2A.
However, we observed reduced expression of both Fkbp4 and
Nr3c1 in the NAc of HDID-1 mice relative to HS/NPT mice
[Fkbp4: F(1, 43) = 5.560; p = 0.023; Nr3c1: F(1, 43) = 4.544;
p = 0.039], as shown in Figures 2B,C. No other significant effects
(i.e., sex or interaction) were observed (p’s > 0.110), so data are
shown collapsed across sex. Together, these results suggest that
selection for high BALs exerted changes in mRNA levels of GR
and one of its chaperone proteins in the NAc of HDID-1 mice,
such that these high drinking mice exhibit both reduced GR
(Nr3c1) expression and reduced expression of Fkbp4, the gene
encoding the chaperone protein responsible for translocating GR
into the nucleus, relative to their founders.

High Drinking in the Dark Mice Fail to
Exhibit Ethanol-Induced Increase in
Fkbp5 Expression
We next examined gene expression of Nr3c1, Fkbp5, and Fkbp4
following ethanol exposure (via intraperitoneal injection of
2 g/kg ethanol vs. saline) in the NAc of HDID-1 and HS/NPT
mice (Figure 3A). Here, analysis of Fkbp5 expression resulted
in a significant main effect of condition [F(1, 89) = 4.747;
p = 0.032], genotype [F(1, 89) = 5.292; p = 0.024], sex
[F(1, 89) = 4.542; p = 0.036], and a condition by genotype
interaction [F(1, 89) = 7.620; p = 0.007]. Overall, ethanol
induced greater Fkbp5 expression compared to saline, male
mice had greater expression of Fkbp5 than female mice, and
HS/NPT mice had greater Fkbp5 expression than HDID-1 mice.
Probing the condition by genotype interaction, however, revealed
that ethanol induced an increase in Fkbp5 expression in the
HS/NPT mice (p = 0.002) that was not evident in HDID-1 mice
(p = 0.903), as shown in Figure 3B. However, we observed no
significant effects of group (genotype, sex, or condition) on gene
expression of either Fkbp4 or Nr3c1 (p’s > 0.089), as shown
in Figures 3C,D. Together, these data suggest that selection in

HDID-1 mice blunted the ethanol-induced increase in Fkbp5
expression observed in HS/NPT mice.

DISCUSSION

Glucocorticoids and GR have been shown to be important
regulators of alcohol intake across species (Koenig and Olive,
2004; Junghanns et al., 2005; Vendruscolo et al., 2012, 2015;
Repunte-Canonigo et al., 2015; Blaine et al., 2019; Jimenez et al.,
2020; Savarese et al., 2020; Benvenuti et al., 2021; McGinn et al.,
2021). Recently GR antagonism was shown to reduce ethanol
intake in the selectively bred HDID-1 mice, but not in their
founders HS/NPT, suggesting that selective breeding for high
BALs enhanced sensitivity to GR antagonism, a finding that
may have important implications for the genetic determinants
of high-risk ethanol intake (Savarese et al., 2020). Here, we
examined HPA axis responses and GR gene expression in the
HDID-1 mice in order to begin to understand the mechanism
underlying this enhanced sensitivity to GR antagonism. HDID-1
mice exhibited a higher peak corticosterone response to a mild
stressor (intraperitoneal injection) than HS/NPT mice, which
may suggest a more sensitive stress response in these mice.
Contrary to our expectations, HDID-1 mice also had reduced
basal mRNA expression of both GR (Nr3c1) and FKBP52 (Fkbp4)
in the NAc relative to HS/NPT mice. Finally, while HS/NPT
mice displayed an increase in Fkbp5 expression after ethanol
injection, HDID-1 mice did not. Together these data suggest that
selection for genes leading to high BALs in the HDID-1 mice
led to alterations in multiple aspects of the stress system, both
peripherally (with circulating corticosterone levels) and centrally
(with gene expression in the NAc). Given the reductions in binge-
like drinking observed in HDID-1 mice with administration of
GR antagonists (Savarese et al., 2020), these alterations in the
physiological stress system may contribute to the elevated ethanol
intake observed in these mice.

FIGURE 2 | HDID-1 mice have reduced basal Nr3c1 and Fkbp4 NAc gene expression relative to their HS/NPT founders. Baseline gene expression of GR (Nr3c1),
FKBP51 (Fkbp5), and FKBP52 (Fkbp4) was analyzed in the NAc of HDID-1 and HS/NPT mice (n = 11–12/sex/line). (A) No group differences were observed in Fkbp5
expression. (B,C) HDID-1 mice have reduced expression of Fkbp4 and Nr3c1 relative to their founders, HS/NPT. Means ± SE shown. ∗p < 0.05.
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FIGURE 3 | HDID-1 mice fail to exhibit ethanol-induced increase in Fkbp5 expression. (A) Separate groups of HDID-1 and HS/NPT mice were given either a 2 g/kg
ethanol injection or an equivalent volume of saline and brains were collected 4 h later for gene expression analysis in the NAc. (B) Ethanol injection produced an
increase in Fkbp5 expression in the HS/NPT mice that was not evident in HDID-1 mice. (C,D) No group differences were observed in either Fkbp4 or Nr3c1
expression. Means ± SE shown. ∗p < 0.01.

In Experiment 1, we examined circulating corticosterone
levels at baseline and following a saline or ethanol injection
in an effort to identify potential changes in HPA output
that may have occurred as a result of the selection process.
Individuals with an AUD have been shown to exhibit higher
basal cortisol levels and a blunted cortisol response to stress,
and this hyporesponsiveness of the HPA axis to stress is thought
to drive relapse behavior (Adinoff et al., 2005; Junghanns et al.,
2005; Blaine et al., 2019). Blunted cortisol responses to stress and
alcohol cues can also be observed in individuals who engage in
binge or heavy drinking relative to moderate drinkers, suggesting
these changes in HPA output predate the development of an
AUD (Blaine et al., 2019). Here, we observed no differences
in basal corticosterone levels in animals that have a genetic
risk for high ethanol intake compared to their lower-drinking
founders. However, the HDID-1 mice had a greater stimulated
corticosterone response than the HS/NPT mice, suggesting a
greater sensitivity to stress. Although our results differ from
those found in individuals after chronic alcohol use, they are
similar to studies in individuals with a genetic risk for high
alcohol intake. Male individuals with a positive family history
of AUD were found to exhibit a heightened HPA reactivity [as
measured by elevated cortisol as well as adrenocorticotrophin
hormone (ACTH)] in response to a psychosocial stressor (the
Trier Social Stress Test, TSST) relative to family history negative

subjects (Zimmermann et al., 2004). Elevated cortisol levels in
response to the TSST were also observed in Caucasian subjects
with an AUD-positive family history relative to controls in a
separate study (Uhart et al., 2006). These data would suggest
that genetic risk factors for high alcohol use linked to HPA
output are distinct from the changes observed in HPA output
as a consequence of alcohol use, where a blunted response
to stress can be observed. Further, high cortisol reactivity has
also been associated with increased alcohol consumption. In
rhesus macaques that underwent a series of stressful social
separation challenges, subjects that responded to these stressors
with high cortisol levels consumed more alcohol in subsequent
access periods than subjects that had low cortisol responses
(Fahlke et al., 2000). Genetic predisposition to high alcohol
intake may interact with cortisol output to drive alcohol intake.
Individuals with a positive family history of AUD who were high
cortisol responders to the TSST drank more alcohol than control
subjects who were high cortisol responders (Brkic et al., 2015).
Interestingly, although binge/heavy drinkers exhibit blunted
cortisol responses to alcohol cues relative to moderate drinkers,
they show a greater cortisol response to alcohol itself in the 30-
min following consumption (Blaine et al., 2019). The discrepancy
in cortisol responses of high-risk drinkers to different stimuli
suggests that dysregulation of HPA output with alcohol use is not
necessarily a linear process.
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Glucocorticoids are not only released in response to stress or
alcohol exposure, but are also dynamically released throughout
the circadian cycle (Gray et al., 2017). Abstinent individuals
with an AUD demonstrate blunted cortisol awakening responses
and decreased cortisol pulse amplitude at night compared to
age-similar controls (Adinoff et al., 2005). Further, total cortisol
release correlated inversely with craving in individuals with a
positive family history of AUD (Adinoff et al., 2005), supporting
a role for low cortisol levels in promoting alcohol intake. These
data might suggest that HDID-1 mice would have reduced
total corticosterone output across the circadian cycle. While
we did not observe any differences between the genotypes in
basal corticosterone levels, one limitation of our study design
is that we only sampled corticosterone levels during a small
portion of the day, and were therefore unable to track circadian
and ultradian fluctuations. Blood sampling occurred during the
light cycle when corticosterone levels are lower in rodents, in
order to be able to observe stimulated corticosterone responses
with ethanol exposure. It remains unknown whether HDID-1
mice have similar basal levels during the dark cycle (rodents’
active phase) and total corticosterone output across the circadian
cycle compared to HS/NPT mice, or whether the selection
process may have altered circadian or ultradian rhythms of
corticosterone as well.

It is also important to note that corticosterone levels in the
blood do not always correlate with brain corticosterone levels.
Chronic alcohol consumption followed by a withdrawal period
can lead to elevated brain glucocorticoid levels in rodents that are
region-dependent, and these changes are not mirrored in plasma
concentrations (Little et al., 2008). However, the withdrawal
period was necessary to induce changes in brain glucocorticoid
levels, as continued alcohol exposure did not result in these
regional differences, nor did short-term alcohol consumption
followed by abstinence. Given the experiment conducted here
with HDID-1 and HS/NPT mice evaluated corticosterone levels
in the blood after a single acute exposure to 2 g/kg alcohol, there
is no evidence to suggest that these corticosterone levels would
not be representative of brain glucocorticoid levels. Nevertheless,
because we do not fully understand how the selection process may
have altered the glucocorticoid system in the HDID-1 mice, it is
possible that the corticosterone levels we measured in blood could
be distinct from regional brain concentrations.

HPA activation is regulated by an extensive extrahypothalamic
network, including limbic and prefrontal cortical inputs to the
hypothalamus. It is within these extrahypothalamic brain regions
that chronic alcohol use is thought to sensitize GR signaling
(Edwards et al., 2015). Male Wistar rats made dependent on
alcohol via CIE vapor exposure display reductions of GR
mRNA during the acute withdrawal period and elevations in
GR mRNA during protracted abstinence in several of these
extrahypothalamic stress- and reward-related brain regions,
including the NAc (Vendruscolo et al., 2012). Further, GR
antagonism, delivered directly into the NAc, can reduce the
elevated alcohol consumption observed in dependent rats
(Repunte-Canonigo et al., 2015). Because the role of GR in the
NAc seemed to be particularly important for regulating alcohol
intake, in Experiments 2 and 3 we sought to examine whether

the selection process altered expression of GR and its regulator
proteins in the NAc of HDID-1 mice.

Experiment 2 evaluated baseline gene expression in the
HDID-1 mice and their founders, HS/NPT. Reduced expression
of Nr3c1 (GR) and Fkbp4 (FKBP52) were observed in the HDID-
1 mice. Given the sensitivity of HDID-1 mice to GR antagonists,
we had hypothesized that HDID-1 mice would have elevated GR
expression or activity (which could be inferred from reduced
Fkbp5 expression). Interestingly, although GR antagonism has
been shown to effectively reduce drinking during the protracted
abstinence period when expression of GR is elevated, the same
antagonist can also be administered prior to the onset of alcohol
dependence and prevent escalated intake, when presumably no
changes in GR expression have yet taken place (Vendruscolo
et al., 2012). This would suggest that the effectiveness of
GR antagonism in reducing alcohol intake is not dependent
on enhanced GR expression. Indeed, GR antagonism may be
effective at reducing alcohol intake when GR is actually reduced
in expression. Mifepristone administration in non-treatment
seeking individuals with AUD reduced both alcohol craving
and consumption (Vendruscolo et al., 2015), and evidence from
postmortem tissue of individuals with AUD without protracted
abstinence from alcohol suggests reduced Nr3c1 (GR) expression
throughout the brain would be evident (McClintick et al., 2013;
Gatta et al., 2021). Because glucocorticoids are released with
alcohol exposure, decreased GR expression might be expected
after chronic alcohol use. Repeated stress or corticosterone
administration has been shown to reduce the number of
glucocorticoid receptors in the rat brain in a region-specific
manner, with reductions found in extrahypothalamic brain
regions but not in the hypothalamus or pituitary (Sapolsky et al.,
1984). There is also evidence that decreased GR expression in
the NAc could increase risk for elevated alcohol intake, even
without a history of alcohol use. Increased alcohol consumption
and motivation was observed in mice that had experienced early
life stress (maternal separation) and exhibited reduced expression
of Nr3c1 in the NAc (Garcia-Gutierrez et al., 2016).

In Experiment 3, we evaluated expression of these same
genes after ethanol injection, at a time of day when these mice
are known to consume enough alcohol to become intoxicated.
Here, we found no significant effects for either Nr3c1 or Fkbp4
expression, but we observed a significant increase in Fkbp5
expression in the HS/NPT mice after ethanol exposure that was
not evident in the HDID-1 mice. Fkbp5 expression increases
with glucocorticoid receptor activation, an effect that helps to
regulate GR transcriptional activity (Vermeer et al., 2003; Gray
et al., 2017). Acute ethanol exposure induces glucocorticoid
release and has also been shown to induce Fkbp5 expression in
mice (Treadwell and Singh, 2004). The failure of HDID-1 mice
to exhibit this ethanol-induced increase in Fkbp5 expression,
particularly when the same dose of ethanol produced a robust
glucocorticoid response in these mice (in Experiment 1), might
suggest a maladaptive response to ethanol in the HDID-1 mice
which leads to prolonged activation of GR transcriptional activity
(without elevations in FKBP51 to inhibit GR) and/or a shifting
in transcriptional targets in these mice away from Fkbp5, at least
in the NAc. Interestingly, although administration of an FKBP51
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(Fkbp5) inhibitor, SAFit2, reduced alcohol consumption in a two-
bottle choice test in mice (Konig et al., 2020), the same inhibitor
was ineffective at reducing alcohol intake in the HDID-1 mice
in DID (Savarese et al., 2020). Although two-bottle choice and
DID drinking are distinct, and it is still unknown whether SAFit2
would reduce two-bottle choice alcohol intake in the HDID-1
mice, it may be that the lack of ethanol-induced Fkbp5 expression
in the HDID-1 mice contributed to the failure of SAFit2 to reduce
binge-like ethanol intake in these mice. However, it is important
to acknowledge that the effects on gene expression of an ethanol
injection (as in Experiment 3) may be quite distinct from those
that would be observed with ingestion of ethanol (as in DID).
We chose to examine gene expression after an ethanol injection
rather than DID to ensure that the dose of ethanol would not
vary between mice, as the two lines differ drastically in amount
of ethanol consumed in DID. Nonetheless, it is possible that
drinking ethanol may induce different gene expression responses
in these mice than that of an ethanol injection. Further, thousands
of genes are regulated by GR, and gene targets can be dependent
on cell type, GR isoform, posttranslational modifications of GR,
and dimerization patterns of GR (Oakley and Cidlowski, 2011).
It may be that selection for high BALs modified GR protein levels
and/or functioning in a manner we were unable to capture in this
study design by examining mRNA expression.

The experiments herein were designed to explore whether
there were differences in aspects of the stress system involved in
the pharmacological actions of GR antagonists that may suggest
a mechanism for the increased sensitivity of HDID-1 mice to
GR antagonism. The results suggest that selection for high BALs
led to both peripheral and brain changes in the physiological
stress response system that may contribute to the elevated
binge-like consumption in HDID-1 mice, but much remains
unknown. Although our results demonstrated differences in
mRNA expression of GR and the immunophilins FKBP51 and
FKBP52, it is not known whether these translate to differences in
protein levels. Further, GR has two primary isoforms, GRα and
GRβ, that can have opposing effects on transcriptional activity
(Oakley and Cidlowski, 2011). A history of ethanol intake can
alter GR isoform expression within stress- and reward-related
circuitry, and these changes can occur prior to the adaptive HPA
changes observed with chronic ethanol consumption (Alhaddad
et al., 2020). It is possible that the GR isoform expression of
HDID-1 mice differs from that of HS/NPT mice and contributes
to the elevated ethanol intake in HDID-1 mice. Alternatively,
there may be differences in the cellular localization patterns of GR
in the HDID-1 mice. Although GR is traditionally thought of as a
transcription factor, it can also localize at the cellular membrane
where it signals via rapid, non-genomic mechanisms (Oakley and
Cidlowski, 2013). Membrane-bound GR can induce signaling
cascades that culminate in transcription of genes distinct from
that of cytoplasmic GR, adding to the complexity of factors
involved in GR signaling (Rainville et al., 2019). Interestingly,
the effect of GR antagonism on ethanol intake in HDID-1 mice
occurred more rapidly than might be expected if the actions were
due to genomic signaling of GR (2-h after drug administration)
(Savarese et al., 2020), suggesting that the GR antagonist may
have been acting on membrane-bound GR in the HDID-1 mice.

It is possible that the lack of effect in HS/NPT mice vs. HDID-
1 mice observed with GR antagonism was due to differences in
GR localization within the cell and therefore differences in the
downstream effects of drug administration.

We chose to evaluate expression levels of GR and the
immunophilins FKBP51 and FKBP52 in these experiments,
but there are many other proteins that regulate GR activity
within the cell. Heat shock protein 90 (Hsp90) is another
chaperone protein of GR which helps to bind glucocorticoids
to GR (Kaziales et al., 2020), and two Hsp90 inhibitors
(geldanamycin and alvespimycin) recently emerged as
candidate drugs predicted to reduce alcohol consumption
in HDID-1 mice using a transcriptome-based drug discovery
paradigm (Ferguson et al., 2018). Another potentially relevant
protein involved in GR regulation is the mineralocorticoid
receptor (MR), which glucocorticoids preferentially bind at
low levels and can heterodimerize with GR and influence
downstream transcriptional targets (Gray et al., 2017). Levels
of aldosterone, a ligand for MR, increase with chronic alcohol
exposure in monkeys and are associated with craving and
alcohol intake in alcohol-dependent patients (Aoun et al.,
2018). Antagonizing MR also effectively reduced alcohol self-
administration when administered systemically or directly
into the central amygdala (CeA) of rats (Makhijani et al.,
2020). Steroid receptor co-activator 1 (SRC-1), a histone
acetyltransferase, also regulates GR activity and may be
an important epigenetic factor in the response of GR to
alcohol (Edwards et al., 2015). Finally, 11β-hydroxysteroid
dehydrogenases (11β-HSD) convert glucocorticoids into
active and inactive forms and are therefore integral to the
downstream effects of glucocorticoids. Carbenoxolone, a
non-selective 11β-HSD inhibitor reduced alcohol intake in
male mice and rats in multiple drinking paradigms (Sanna
et al., 2016). Expression levels of any of these GR-related
proteins could be altered in the HDID-1 mice and contribute
to alcohol intake.

We also chose to only evaluate gene expression within a single
brain region, the NAc. Although the reasoning for exploring
GR activity within the NAc was sound, there are multiple brain
regions that have been implicated in GR-induced alcohol intake
that would be reasonable targets for future study. Administering
a GR antagonist directly into the CeA was sufficient to reduce
alcohol consumption in dependent rats, suggesting a critical
role for GR on alcohol intake in this brain area (Vendruscolo
et al., 2015). Similarly, GR levels change with chronic ethanol
exposure in the mPFC in both rats and humans (Somkuwar et al.,
2017; Gatta et al., 2021), and may contribute to the transition to
problematic alcohol intake (Lu and Richardson, 2014).

Ideally, future studies would examine additional brain regions
in the HDID-1 mice and begin to address whether HDID-1
mice have altered expression of additional GR-related proteins
or differences in GR isoforms or cellular localization. However,
the HDID-1 mice are no longer being selectively bred. Instead,
the HDID-1 mice were recently inbred to create the iHDID-
1 line, a more genetically stable mouse line that still captures
the unique genetic risk profile of the HDID-1 mice. These
iHDID-1 mice have begun to be characterized and have retained
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the attenuated ethanol conditioned taste aversion that was a
persistent phenotype in the HDID-1 mice (Crabbe et al., 2019).
The iHDID-1 mice will be integral for future studies expanding
on the findings here.

Taken together, our results herein suggest a potential
physiological mechanism underlying the increased sensitivity to
GR antagonism exhibited by the selectively bred HDID-1 mice.
Selection for high BALs after a binge-drinking session in these
mice was associated with alterations in HPA responsivity and
gene expression of GR and its chaperone immunophilins in
the NAc relative to the founder line, HS/NPT. Although future
studies are needed to determine how these changes are associated
with the elevated ethanol intake of HDID-1 mice, they suggest
that the physiological stress system is an important genetic
determinant of high-risk binge-like ethanol intake.
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