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ABSTRACT The exocrine protein rat anionic trypsinogen has been expressed and is secreted 
from the murine anterior pituitary tumor cell line AtT-20. We examined which secretory 
pathway trypsinogen takes to the surface of this endocrine-derived cell line. The "constitutive" 
pathway externalizes proteins rapidly and in the absence of an external stimulus. In the 
alternate, "regulated" pathway, proteins are stored in secretory granules until the cells are 
stimulated to secrete with 8-Br-cAMP. On the basis of indirect immunofluorescence localiza- 
tion, stimulation of release, and subceltular fractionation, we find that trypsinogen is targeted 
into the regulated secretory pathway in ART-20 cells. In contrast, laminin, an endogenous 
secretory glycoprotein, is shown to be secreted constitutively. Thus it appears that the transport 
apparatus for the regulated secretory pathway in endocrine cells can recognize not only 
endocrine prohormones, but also the exocrine protein trypsinogen, which suggests that a 
similar sorting mechanism is used by endocrine and exocrine cells. 

The intraceUular pathway of secretory proteins from the rough 
endoplasmic reticulum through the Golgi apparatus and to 
the cell surface is well established (26). Specialized secretory 
cells, for example pancreatic acinar cells, concentrate and 
store one or a few secretory products in large organelles, the 
secretory granules. Release of these products by exocytosis is 
triggered by a physiological stimulus and has been described 
as regulated secretion (31 ). In contrast to this regulated secre- 
tion, other types of cells, for example fibroblasts, which lack 
visible secretory granules, do not store or concentrate their 
secretory products but rather secrete proteins continuously in 
a secretagogue-independent or nonregulated fashion. 

The pituitary cell line AtT-20 synthesizes proopiomelano- 
cortin (POMC).~ After POMC is glycosylated and proteolyti- 
cally processed, the AtT-20 cells store the peptide hormone 
product, ACTH, in dense core secretory granules. ACTH is 
secreted from these cells in response to stimulation with 
secretagogues (22). Thus, these endocrine-derived cells behave 
as regulated secretory cells in culture. In addition, AtT-20 
cells externalize the endogenous type C retroviral membrane 

Abbreviations used in this paper: Cys, cysteine; DME, Dulbecco's 
modified Eagle's medium; gp 70, glycoprotein 70; Met, methionine; 
MTp, human metallothionein I1A promoter; N-det, buffer of 1% 
Nonidet P-40, 0.4% deoxycholate, 66 mM EDTA, and 10 mM Tris- 
HCI, pH 7.4; POMC, proopiomelanoeortin: Sac, Staphylococcus au- 
r e t t s  cells. 
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glycoprotein, gp 70, and some POMC by a pathway that is 
not stimulated by secretagogues and does not involve the 
classical dense core secretory granules (11, 12). These findings 
suggest that regulated and consitutive secretion, originally 
described by Tartakoff and Vassalli (31) for different cell 
types, can co-exist in the same cell. The mechanism by which 
the AtT-20 cell can target proteins into two secretory pathways 
may occur via recognition of sorting signals present in the 
secreted molecules (4). Candidates for such sorting signals 
include various posttranslational modifications, as well as the 
amino acid sequence, the secondary or even tertiary structure 
of the secretory protein. 

To determine whether there is a common mechanism of 
recognition and targeting of endocrine prohormones to dense 
core secretory granules, several heterologous prohormone 
genes have been introduced into the murine AtT-20 cells. 
Human proinsulin is expressed and apparently correctly proc- 
essed to mature insulin in these ceils and is released by the 
regulated pathway (25). Furthermore, when human growth 
hormone is expressed in these cells, it is targeted into dense 
secretory granules as efficiently as the endogenous POMC/ 
ACTH. 2 These data suggest that these endocrine proteins use 
a common sorting mechanism. 

Since the storage in dense core secretory granules and 

2 Moore, H.-P. H., and R. B. Kelly. Manuscript submitted for publi- 
cation. 
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regulated secretion of proteins are properties shared by en- 
docrine and exocrine cells, we asked if an exocrine protein 
can be properly targeted to the secretory granules of  endo- 
crine-derived AtT-20 cells. We used the DNA coding for rat 
anionic trypsinogen to transfect ART-20 cells, and stable cell 
lines were established that heterologously expressed trypsino- 
gen. In these cells, the exocrine protein trypsinogen is targeted 
into secretory granules as efficiently as the endogenous en- 
docrine protein POMC/ACTH. 

Since all of  the heterologous proteins thus far expressed in 
the AtT-20 cells are secretory proteins, and our marker protein 
for the constitutive pathway, gp 70, is a membrane protein, 
we have examined the question of secretory protein external- 
ization via the consitutive pathway. We find that the secretory 
glycoprotein laminin (32) is secreted constitutively, it is not 
stored intracellularly, and its release is not stimulated by the 
secretagogue 8-Br-cAMP. The data presented here indicate 
that regulated endocrine and exocrine secretory proteins can 
be selectively sorted by the same endocrine cell, perhaps by a 
mechanism involving a common sorting signal. 

MATERIALS AND METHODS 

Materials: Restriction endonucleases and T-4 ligase were from New 
England Biolabs (Beverly, MA). DNA polymerase I (Klenow) was from Boeh- 
ringer-Mannheim Biochemicals (Indianapolis, IN). Na~251, [3~S]cysteine ([35S]- 
Cys), and [aSS]methionine ([3~S]Met) were from Amersbam Corp. (Arlington 
Heights, IL). IgG fraction goat anti-rabbit and fluorescein-conjugated IgG 
fraction goat anti-rabbit antibodies were from Cappel Laboratories (Cochran- 
ville, PA). G418 (Geneticin) was purchased from Gibeo Laboratories Inc. 
(Grand Island, NY). Trypsinogen standards and rabbit anti-rat anionic trypsin- 
ogen were kindly provided by Corey Largman (Martinez Veterans Administra- 
tion Medical Center, Martinez, CA). Rabbit anti-ACTH was prepared and 
affinity purified as described by Mains and Eipper (21). Rabbit anti-laminin 
and purified laminin were kind gifts from Janet Winter and John Bixby 
(University of California, San Francisco). 0.45 u-pore nitrocellulose was from 
Sartorius Filters, Inc. (Hayward, CA). Fixed Staphylococcus aureus (Pansorbin) 
was from Calbiochem-Behring Corp. (La Julia, CA). 

Cell Culture and Transfection: AtT-20/D-16 cells were grown in 
Dulbecco's modified Eagle's medium (DME) H-21 (4.5 g glucose/L) supple- 
mented with 10% fetal calf serum and penstrep, under a 15% CO2 atmosphere. 
50 ,~M ZnSO4 was added to the culture medium 24 h before and during sample 
collection for induction of the human metallothionein IIA, promoter (MTp). 
Transfections of ART-20 cells was by a calcium phosphate precipitation protocol 
as described by Moore et al. (25). Since the plasmids used here for trypsinogen 
expression also contained the selectable neo gene (28), co-transfection was not 
required, in brief, calcium phosphate-DNA precipitates formed using 100 #g 
plasmid DNA were added to 3 x l0 s ART-20 cells per 10-cm dish. After 40 
min at room temperature, 12 ml DME H-21 containing 10% fetal calf serum 
was added, and the cells were incubated 7 h at 37"C under 15% CO2. Cells 
were then glycerol-shocked and returned to 37"C for 48 h. Trypsinized cells 
were split 1:2 into new dishes containing 0.24 mg/ml G418 (actual drug 
concentration). After 2 wk under G418 selection, individual clonal colonies 
were picked and grown for screening as described in the text. 

We s te rn  Blots: 35-ram confluent dishes of AtT-20 cells were washed 
with phosphate-buffered saline (PBS), and the secreted proteins were collected 
into DME H-21 (without serum) for 2 h at 37°C. Proteins were concentrated 
by trichloroacetic acid (TCA)-precipitation (20 min at 0*C in 10% TCA plus 
0.5 mg/ml deoxycholate as carrier), then rinsed with cold acetone. Pellets were 
resuspended into final sample buffer with 5 min of boiling and were immedi- 
ately run on a 12% polyacrylamide SDS gel as described by Laemmli (17). 
Proteins were electrophoretically transfered to a nitrocellulose sheet for 12 h at 
50 V. The nitrocellulose was incubated with 5% bovine serum albumin (BSA) 
and then probed with anti-trypsinogen antibodies as described by Burnette (7). 
An ~2~l-labeled goat anti-rabbit antibody prepared using Iodo-gen (Pierce Chem- 
ical Co., Rockford, IL), was used to detect the trypsinogen/antibody complex 
on the bloL 

Metabolic Labeling of Cells and Immunoprecipitation: Ceils 
were labeled with both [35S]Met and [35S]Cys in DME H-21 that lacked Cys 
and Met. The medium was supplemented with 1/20 normal medium and 1.5% 
fetal calf serum. After the labeling period, the cells were rinsed with PBS and 
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either chased with normal medium; detergent-extracted in 1% Nonidet P-40, 
0.4% deoxycholate, 66 mM EDTA, and 10 mM Tris-HCl, pH 7.4, (N-det 
buffer) (27); or harvested with EGTA, after which secretory granules were 
purified (11). Four 15-cm dishes of AtT-20/tryp-7 cells were labeled with 2 
mCi [3~S]Met and 2 mCi [J~S]Cys for 7 h before the purification of secretory 
granules. To assay secretagogue-stimulated release of proteins (Fig. 4), three 10- 
cm dishes of AtT-20/tryp-7 cells were labeled with 1.5-3 mCi [35S]Met and 
1.5-3 mCi [35S]Cys for 16 h. This medium was replaced with an aliquot of 
identical label-containing medium, and the labeled proteins secreted over the 
next hour were collected. One dish of cells was harvested in N-det buffer at this 
point to quantify the total amount of labeled protein present at the beginning 
of the chase protocol. Three successive 3-h chases into DME H-21 were collected 
from the remaining two dishes of cells. During the final chase interval, 5 mM 
8-Br-cAMP was added to one dish to stimulate regulated secretion. Detergent 
cell extracts were made after this final chase. 80-100% of the labeled material 
initially present could be recovered in the chase media and cell extracts. 

Immunoprecipitations from media samples, detergent cell extracts, and 
secretory granule gradient fractions were performed as follows. The sample was 
diluted 10-fold into N-det buffer or concentrated detergent, and EDTA stock 
solutions were added to the sample to obtain N-det buffer final concentrations. 
SDS was then added to 0.3%. The samples were preincubated with fixed 
Staphylococcus aureus cells (Sac) for 15 min at room temperature. The Sac and 
debris were pelleted and the appropriate rabbit antibodies were added to the 
supernatants. After an overnight room temperature incubation the immune 
complex was recovered with Sac. The Sac was pelleted through a 30% sucrose 
pad in N-det plus 0.3% SDS, washed twice in N-det buffer plus SDS and once 
in water; tubes were changed at each step. The immune complex was eluted 
from the Sac by boiling in SDS PAGE final sample buffer. Immune precipitates 
were analyzed by SDS PAGE (18). Gels were impregnated with I M sodium 
salicylate for 30 min, dried down, and fluorographed at -70"C. Quantitation 
of the gels was by scanning of the autoradiogram with an LKB soft laser 
densitometer (LKB Instruments, Inc., Gaithersburg, MD). 

Immunofluorescence: pSV2-neo::MTp trypsinogen-transformed 
and untransformed ART-20 cells were plated onto poly-D-lysine-coated cover- 
slips and grown in 2 mM 8-Br-cAMP for 4-6 d to make them become large 
and extend processes (16). Ceils were rinsed with PBS and fixed at room 
temperature in 10% formalin for 20 min. Cells were permeabilized by incuba- 
tion in 3% BSA, 0.1% Triton X-100 in PBS. Primary antibodies were diluted 
1:200 (trypsinogen) or 1:2 (ACTH) in 1% BSA 0.1% Triton X-100 in PBS 
buffer and incubated with the fixed cells at room temperature for 30 min. 
Fluorescein-eonjugated goat anti-rabbit antibody was diluted 1/200 in 0.1% 
Triton X-100 in PBS buffer and used to detect the primary antibody/antigen 
complex. Cells were visualized and photographed using a Zeiss photomicro- 
scope III. To allow direct comparison of the micrographs, exposure conditions 
were identical for each antigen: i.e., the exposure times for Fig. 3, C and D 
were identical. 

D N A  Construct ions:  For expression of trypsinogen in AIT-20 cells 
(see Fig. 1), the Hind Ill-Barn HI DNA fragment containing MTp (15) was 
ligated to the Hind llI-Sal I fragment of the trypsinogen gene/cDNA fusion (9) 
after the Bam HI (MTp) and Hind IIl (trypsinogen) ends were blunt-ended by 
filling in with deoxynucleotides using DNA polymerase I (Klenow fragment). 
The MTp-trypsinogen hybrid was then subcloned into the Hind II1 and Sal t  
sites of the pBR322 derivative, pML-2 (19), to create pML::MTp-trypsinogen. 
The Eco R1-Nru I fragment from pML::MTp-trypsinogen, containing the 
trypsinogen gene and metallothionein promoter, was subeloned into the Eco 
RI site of pSV2-neo (28). Plasmids were constructed and screened using 
standard recombinant DNA techniques as outlined in reference 23. Plasmids 
were purified by alkaline-SDS lysis (3) and CsCl-ethidium bromide equilibrium 
sedimentation (23). 

RESULTS 

Construction of a Selectable Plasmid Coding for 
Rat Anionic Trypsinogen 

The isolation and sequence characterization of the rat tryp- 
sinogen II eDNA and gene that encode anionic trypsinogen 
have been described elsewhere (8, 20). A full-length copy of 
the trypsinogen coding sequence, including the signal peptide 
and an intervening sequence at amino acid 2 (which were not 
present in the cDNA clone), was constructed by fusing the 5' 
portion of the trypsinogen II gene to the 3' portion of the 
trypsinogen II cDNA (9). To obtain expression oftrypsinogen 
in AtT-20 cells (see Fig. 1), the DNA fragment containing the 
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FIGURE 1 pSV2-neo::MTp-trypsinogen. A selectable trypsinogen 
expression vector, pSV2-neo::MTp-trypsinogen, was constructed as 
described in the text. A few restriction sites are shown to orient the 
reader; sites in paretheses were lost during the construction, pSV2- 
neo is ~5,500 base pairs, the insert -2,800 base pairs. Various 
regions of the insert are labeled. The signal peptide is removed 
before trypsinogen is secreted. The processing site refers to the 
zymogen activation site where proteolyt ic cleavage occurs extra- 
cellularly in vivo. The direction and approximate location of neo 
transcription are shown by the arrow. 

human metallothionein IIA promoter (MTp) (15) was ligated 
to the trypsinogen gene/cDNA fusion. The MTp--trypsinogen 
hybrid was then subcloned into the pBR322 derivative, pML- 
2 (19), to create pML::MTp-trypsinogen. 

To facilitate the isolation of AtT-20 cells that express tryp- 
sinogen, the gene for the selectable marker neo was included 
in the plasmid carrying the MTp-trypsinogen mini-gene. The 
fragment from pML::MTp-trypsinogen containing the tryp- 
sinogen gene and metallothionein promoter was subcloned 
into the Eco RI site of pSV2-neo (28) to make pSV2- 
neo::MTp-trypsinogen. Plasmids with the MTp-trypsinogen 
hybrid gene in both orientations, relative to pSV2-neo, have 
been used in this study. 

shown in Fig. 2. A purified mixture of rat anionic trypsinogen 
(70%) and activated trypsin (30%) was run as a standard in 
an adjacent lane. Comparison of the protein secreted by the 
transformed AtT-20 cell lines with the rat standard revealed 
that expressing clones secreted trypsinogen but not trypsin. 
Notably, no intra- or extracellular processing to give active 
trypsin had occurred. 

The level of trypsinogen made by the transformed cells was 
examined by Western blot analysis. By comparing the amount 
of trypsinogen made by the transformed cells to purified 
trypsinogen standards on Western blots, we estimated that 
several clones contained as many as 2 x 105 molecules of 
trypsinogen per cell. This level of expression could be en- 
hanced three- to fivefold by adding Zn ++ to the culture 
medium. Northern blot analysis showed that this induction 
occurred at the transcriptional level as expected for the me- 
tallothionein promoter (10, 14) (data not shown). However, 
because the Zn ÷÷ concentration used for induction of expres- 
sion caused detachment of the ART-20 cells from the culture 
dish after prolonged treatment, experiments were usually 
carried out in the absence of heavy metals. The orientation 
of the MTp-trypsinogen fusion within the pSV2-neo plasmid 
did not affect the level of expression. 

Trypsinogen and ACTH Are 
Co-localized Intracellularly 

If the exocrine protein trypsinogen is recognized by the 
endocrine sorting apparatus of ART-20 cells, one would expect 
it to be stored intracellularly in secretory granules and to show 
a distribution similar to endogenous ACTH. AtT-20 cells 
show a characteristic immunofluorescent staining pattern for 
ACTH with predominant staining in the juxtanuclear region 
and in the cell periphery (16). This staining pattern is partic- 
ularly distinct if the ART-20 cells are first grown in 8-Br-cAMP 
(1, 16). The cells extend long processes, cease dividing, and 
become "giant cells." Under these conditions, anti-ACTH 
staining localizes POMC/ACTH both in the juxtanuclear 
region and at the tips of some but not all processes. The 
juxtanuclear staining is presumably due to POMC/ACTH in 
the Golgi region. The process tips have been shown to contain 

ART-20 Cells Transformed with pSV2neo:: 
MTp-Trypsinogen Express and Secrete Rat 
Anionic Trypsinogen 

To study the secretion of an exocrine protein from an 
endocrine cell line, we established stable AtT-20 cell lines 
expressing trypsinogen. AtT-20 cells were transfected with 
pSV2-neo::MTp-trypsinogen by a calcium phosphate precip- 
itation protocol described previously (25). G418-resistant 
clones were isolated and expanded into mass cultures, and 
the media from these clones were screened for trypsinogen 
expression by Western blot analysis (7). Proteins from samples 
of culture media, separated by SDS PAGE, were electropho- 
retically transferred to a nitrocellulose flter. The filter was 
probed with a specific polyclonal rabbit anti-rat anionic tryp- 
sinogen serum followed by a second t25I-labeled goat anti- 
rabbit antibody. Approximately 50% of the clones expressed 
detectable amounts of trypsinogen. A Western blot of culture 
medium from the transformed cell line AtT-20/tryp-10 is 

RGURE 2 Western blot of se- 
creted trypsinogen. Lane 1, 
purified rat anionic trypsino- 
gen (10 ng) which contains 
30% activated trypsin. Lane 2, 
culture medium from AtT-20/ 
tryp-10. The blot was probed 
first with a specific rabbit anti- 
rat anionic trypsinogen serum, 
and then with 12Sl-labeled goat 
anti-rabbit antibody. The au- 
toradiogram shown was ex- 
posed for 4 d. Trypsinogen 
(T'gen) and trypsin (T) migrate 
with apparent molecular 
weights of ~30,000 and 
29,000, respectively. 
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large numbers of dense core secretory granules (16), which 
probably account for the presence of ACTH. Examples of 
anti-ACTH immunofluorescence staining of giant AtT-20 
cells are shown in Fig. 3, A and B. To determine whether 
ACTH and trypsinogen share the same intracellular distribu- 
tion, anti-trypsinogen antibodies were used to stain both 
transformed and untransformed AtT-20 cells that had been 
grown in 8-Br-cAMP. The results are shown in Fig. 3, C and 
D. Only the AtT-20/tryp-7 cells (Fig. 3 C) showed the char- 
acteristic juxtanuclear and tip staining for trypsinogen. Un- 
transformed cells showed only a uniform background staining 
(Fig. 3D). When AtT-20 cells are stained for the endogenous 
consitutive membrane marker, gp 70, cell surface staining is 
seen but process tip staining is not detected (Schroer, T. A., 
and R. B. Kelly, unpublished observations). 

Trypsinogen Secretion Is Enhanced 
by Secretagogues 

If trypsinogen behaves as a regulated secretory protein in 

the AtT-20 pituitary cell line, its secretion should be enhanced 
by the secretagogue 8-Br-cAMP. AtT-20/tryp-7 cells were 
labeled with [35S]Met and [35S]Cys for 16 h to approach a 
steady state labeling condition. The steady state rate of secre- 
tion was determined by immunoprecipitating the protein 
released into the medium during the last hour of the labeling 
incubation. The ratio of signal to background was enhanced 
by taking advantage of the rapid secretion through the con- 
stitutive pathway relative to the regulated pathway (12). Two 
3-h chases were carried out in the absence of label or secre- 
tagogues to chase constitutive secretory proteins out of the 
cell. To assay secretagogue dependent secretion, 8-Br-cAMP 
was added during a third 3-h chase. Trypsinogen, ACTH, and 
laminin, immunoprecipitated from media samples, were 
quantified by densitometric scanning of SDS PAGE autora- 
diograms. The combined results of two independent immu- 
noprecipitations from AtT-20/tryp-7 media samples (Fig. 4) 
demonstrate that the secretions of trypsinogen and ACTH 
were indistinguishable. Trypsinogen, like ACTH, was stored 

FIGURE 3 Indirect immunofluorescence of giant AtT-20 cells. AtT-20/tryp-7 and untransformed AtT-20 cells were permeabilized 
as described in Materials and Methods. A and B are stained for ATCH, C and D for trypsinogen. A and C are transformed AtT-20/ 
tryp-7 cells; B and D are untransformed AtT-20 cells. Bar, 50 #m. x 310. 
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FIGURE 4 Kinetics of laminin, ACTH, and trypsinogen 
secretion. Cells were labeled with [3SS]Met and [3sS]Cys 
for 16 h to approach steady state labeling conditions. 
Three consecutive 3-h chases were carried out after the 
labeling period. The numbers 1, 2, and 3 refer to these 
3-h collections. The amounts of ACTH, trypsinogen, and 
laminin secreted from AtT-20jtryp-7 during the three 3- 
h chase periods, normalized to the rate of release before 
the chase, are shown. During the final chase the secre- 
tagogue 8-Br-cAMP was added to one of two identical 
dishes of cells as indicated. Error bars are shown where 
several samples were analyzed. The number of samples 
is shown at the top right of each bar. Since there are 
mult iple forms of ACTH, the sum, corrected for the 
number of methionines in each form of ACTH and 
POMC, is presented. However,  the ratio of forms is not 
constant throughout the chases. POMC is prevalent in 
the early chases, whereas ACTH exclusively is stimu- 
lated by 8-Br-cAMP. 

within the transformed cells for long intervals and could be 
released upon stimulation with the secretagogue, 8-Br-cAMP. 
The control for this experiment was the secreted glycoprotein 
laminin. Laminin was released from AtT-20 cells with a t,/~ of 
120 min without intracellular storage and without any stim- 
ulation of release by 8-Br-cAMP. In a similar manner we 
recently showed that a secreted form of vesicular stomatitis 
virus G protein introduced into AtT-20 cells via transfection 
is also released without stimulation by secretagogues. 2 Thus, 
the exocrine protein trypsinogen behaves as a regulated secre- 
tory protein when expressed in the endocrine-derived AtT-20 
cell line. 

Trypsinogen Co-purifies with Mature ACTH in 
Dense Core Secretory Granules 

The immunofluorescence data (Fig. 3) imply that the tryp- 
sinogen stored in the transformed ART-20 cell line has the 
same intracellular distribution as ACTH. To confirm bio- 
chemically that trypsinogen was present in the dense core 
secretory granules, they were isolated from AtT-20/tryp-7 cells 
by a published procedure (11), using ACTH as a marker for 
secretory granule content. 

AtT-20/tryp-7 cells were labeled with [35S]Met and [35S]- 
Cys. The cells were harvested and dense core secretory gran- 
ules were isolated. Immunoprecipitations for either ACTH or 

trypsinogen were performed on individual gradient fractions 
(Fig. 5). As expected, mature ACTH (Fig. 5, open circles) but 
no POMC (triangles) was found in the secretory granule peak 
(fractions 3-5); POMC was recovered in the major membrane 
peak (fractions 13-17). Trypsinogen (closed circles) co-puri- 
fied with the mature ACTH. Labeled material was analyzed 
by immunoprecipitation at each step of the purification, and 
the purification table for granules containing ACTH and 
trypsinogen is shown in Table I.'The specific activity of these 
two antigens increased in parallel, and a final purification of 
-70-fold was achieved, in good agreement with the published 
purification of secretory granules (11). Thus, ACTH and 
trypsinogen co-segregate, indicating that trypsinogen was lo- 
calized in granules, as was the endogenous peptide hormone 
ACTH. 

DISCUSSION 

We have introduced and expressed the DNA encoding rat 
anionic trypsinogen in the mouse pituitary cell line AtT-20 
to determine whether the sorting apparatus present in an 
endocrine cell can recognize and target an exocrine secretory 
protein to the secretory granules. We conclude that ART-20 
cells target trypsinogen to ACTH-containing secretory gran- 
ules based on our findings that trypsinogen co-localizes intra- 
cellularly with ACTH (Fig. 3), shows an enhanced rate of 
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Fraction 

Secretory Granule Purification 

I 

15 

Specific activity 

Trypsinogen ACTH 

Homogenate 0.08 2.5 
P2-pellet 0.32 11.0 
Peak (pool) 6.1 175.0 

Increase in specific activity 
(peak/homogenate) 

76 70 

These results were calculated from the experiment shown in Fig. 5. ACTH 
and POMC are combined here to indicate the total amount of ACTH- 
containing molecules. The specific activity was calculated by dividing the 
total peak area (arbitrary units) from the densitometric scan of the immuno- 
precipitation gel by the total TCA-precipitated radioactivity present in the 
sample. 

secretion in the presence of secretagogues (Fig. 4), and can be 
co-purified with ACTH in dense core secretory granules (Fig. 
5 and Table I). The behavior of trypsinogen and ACTH can 
be contrasted with that of the endogenous secretory protein 
laminin. Laminin is secreted from AtT-20 cells without intra- 
cellular storage and in a secretagogue-independent manner 
(Fig. 4). 

Trypsinogen expression, under control of the metallothi- 
onein promoter in stably transformed AtT-20 cells, was found 
to be induced three- to fivefold by heavy metals. The level of 
trypsinogen expression was 5 to 10 times higher than the 
insulin expression level obtained using an SV40-proinsulin 
construction in these mouse cells (25). The difference in 
expression level does not appear to be due to differences in 
the stability of the two proteins (Moore, H.-P. H., and T. L. 
Burgess, unpublished observation). It may reflect the copy 
number of the insulin and trypsinogen genes in the trans- 
formed lines studied or may be the result of differences in the 
strength of the SV40 and MTp's in these murine ceils. This 
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FIGURE 5 2HzO/FicoII gradient profile of secre- 
tory granule purification. The bottom of the gra- 
dient is to the left, the lighter fractions to the right. 
ACTH (~O---) and POMC (--A--) are plotted as 
separate antigens to emphasize their different dis- 
tribution. The trypsinogen ( - - -O-- - )  profile is sim- 
ilar to that of ACTH. Fractions 3-5 contain the 
dense core secretory granule peak. All three anti- 
gens were quantified by immunoprecipitation of 
labeled proteins from the gradient fractions and 
densitometry scanning of the SDS PAGE autoradi- 
ograms. 

I 

20 

latter possibility seems likely, as we find the SV40 promoter 
to be extremely weak in quantitative comparisons of promoter 
strength in transient expression assays in AtT-20 cells. 2 The 
orientation of the MTp-trypsinogen mini-gene fusion within 
pSV2-neo does not seem to influence the level of expression. 

Intracellular proteolytic processing is common among reg- 
ulated endocrine secretory proteins. In the AtT-20 cell line 
POMC is proteolytically processed at several dibasic amino 
acid sequences into smaller peptides, including ACTH. When 
the DNA encoding proinsulin is expressed in these cells, 
proinsulin is processed to peptides that co-migrate with ma- 
ture insulin on SDS gels (25). The endocrine protein human 
growth hormone, which has a potential Arg-Lys cleavage site 
(24), is not processed in normal pituitary nor when expressed 
in AtT-20 cells. 2 Furthermore, the trypsinogen processing site 
that is cleaved extraceUularly in vivo by enteropeptidase (2) 
is not recognized in AtT-20 cells. Presumably the ART-20 
protease(s) cannot recognize the Asp-Asp-Asp-Asp-Lys cleav- 
age site in trypsinogen, a site that is recognized by trypsin. 
These observations suggest that the AtT-20 protease(s) is not 
indiscriminate; it will not cleave at all dibasic sequences (e.g., 
growth hormone), and it does not cleave all proteolytic proc- 
essing sites (e.g., trypsinogen). It can however process certain 
heterologously expressed prohormones (e.g., proinsulin). 

What signal(s) might be responsible for targeting of regu- 
lated secretory proteins? Since several proteins that are not 
proteolytically processed can be correctly localized into ArT- 
20 secretory granules, e.g., trypsinogen (this report) and hu- 
man growth hormone, 2 it is unlikely that proteolysis per se is 
required for targeting proteins to the regulated pathway. It is 
also unlikely that N-linked glycosylation serves as the only 
signal for regulated secretory proteins as many regulated 
secretory proteins are not glycosylated, e.g., growth hormone, 
trypsinogen, and proinsulin. Furthermore, the N-linked gly- 
cosylation (16) and sulfation of N-linked oligosaccharides 



(Moore, H.-P. H., and R. B. Kelly, unpublished observation) 
of POMC in AtT-20 cells can be blocked with the drug 
tunicamycin with no discernable change in the efficiency of  
POMC/ACTH sorting or in the constitutive secretion of  gp 
70. Sulfated proteoglycans and glycoproteins have frequently 
been implicated in the process of  concentration and sorting 
of  secretory proteins (26, 30). However, when chondroitin 
sulfate glycosaminoglycan side chains are inhibited from at- 
taching to their protein core by the use of  a ~-D-xyloside, 
POMC/ACTH sorting is again unaltered (6). These findings 
and our observations of the common secretory granule local- 
ization of  ACTH, insulin, growth hormone, and trypsinogen 
in AtT-20 cells (proteins that do not share any known com- 
mon posttranslational modification), led us to suspect that 
the proposed common sorting domain lies in the protein 
structure of  regulated secretory proteins. We consider it un- 
likely that the N-terminal signal peptide serves this signaling 
role since it is removed very early in the intracellular secretory 
pathway (e.g., 18). The possibility remains, however, that the 
proteins acquire a posttranslational modification of  unknown 
nature, which is recognized by the sorting apparatus. 

An experimental approach combining gene transfer and in 
vitro mutagenesis should reveal the putative common sorting 
signal. Because the three-dimensional structures of both in- 
sulin (5) and trypsin (13, 29) have been determined, we will 
use this information to help design deletion and hybrid pro- 
tein mutants with minimal perturbation of  structure. Analysis 
of  the secretion properties of  such mutant and hybrid proteins 
should provide insight into the sorting domain required for 
intracellular targeting of proteins. 
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