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ABSTRACT

In all organisms, transfer RNAs (tRNAs) undergo
extensive post-transcriptional modifications.
Although base modifications in the anticodon are
known to alter decoding specificity or improve
decoding accuracy, much less is known about the
functional relevance of modifications in other pos-
itions of tRNAs. Here, we report the identification of
an A-to-I tRNA editing enzyme that modifies the
tRNA-Ala(AGC) in the model plant Arabidopsis
thaliana. The enzyme is homologous to Tad1p, a
yeast tRNA-specific adenosine deaminase, and it
selectively deaminates the adenosine in the
position 30-adjacent to the anticodon (A37) to
inosine. We show that the AtTAD1 protein is exclu-
sively localized in the nucleus. The tad1 loss-of-
function mutants isolated in Arabidopsis show
normal accumulation of the tRNA-Ala(AGC), sug-
gesting that the loss of the I37 modification does
not affect tRNA stability. The tad1 knockout
mutants display no discernible phenotype under
standard growth conditions, but produce less
biomass under environmental stress conditions.
Our results provide the first evidence in support
of a physiological relevance of the A37-to-I modifi-
cation in eukaryotes.

INTRODUCTION

Transfer RNAs (tRNAs) are highly modified in all
organisms and genetic compartments that have been
investigated. For example, as many as 16.4% of the
residues in cytosolic tRNAs from the yeast
Saccharomyces cerevisiae carry chemical modifications at
distinct sites. The number of modifications per tRNA
species is in the range between 7 and 17 (1). Most of

these modifications are well conserved in other eukary-
otes. Modifications in tRNAs are generally introduced
at the post-transcriptional level, and, in recent years, a
considerable number of tRNA-modifying enzymes have
been identified (2–6).

The roles of many tRNA modifications in both pro-
karyotes and eukaryotes are not fully understood.
Several modifications in and near the anticodon have
been found to exert crucial functions in translation, for
example, by facilitating wobbling (7–10), enhancing
decoding (11) or influencing the propensity to ribosomal
frameshifting (4,12). tRNA modifications remote from the
anticodon loop can also directly influence the translation
process and/or tRNA recognition (2) or can have roles in
tRNA folding and stability (1). However, to date, the
precise functions of many naturally occurring tRNA
modifications have remained unknown. Often, loss of a
modification does not negatively influence cellular viabil-
ity and does not even impair growth under laboratory
conditions (1,13).

A common base modification in tRNAs is the hydrolytic
deamination of adenosine to inosine. This modification is
often referred to as tRNA editing because (i) A-to-I modi-
fications also occur in mRNAs of various eukaryotes, and
(ii) inosine differs in its base pairing potential from adeno-
sine; therefore, A-to-I modifications alter the coding
properties of the affected RNA molecule (14–17). Inosine
in the wobble position of the anticodon is often an essential
tRNA modification, in which loss of the modifying
enzyme is incompatible with cellular viability. For
example, the single A-to-I editing event in tRNA-
Arg(ACG) of Escherichia coli is performed by a dedicated
deaminase (dubbed tadA for tRNA-specific adenosine
deaminase) that is encoded by an essential gene (18).
Essentiality of A-to-I editing in tRNA-Arg(ACG) is most
likely because of the requirement for inosine in the wobble
position to decode the three arginine codons CGU, CGC
and CGA (7). Eukaryotic wobble position-specific A-to-I
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tRNA deaminases have been termed ADATs (adenosine
deaminases acting on tRNA). Similar to tadA, their
deaminase domain comprises three zinc-binding amino
acid residues (Supplementary Figure S1) and a proton-
shuttling glutamate residue (19–21). Closely related to
ADATs are the ADARs (adenosine deaminases acting
on RNA), the family of enzymes catalyzing mRNA
editing by A-to-I conversions in double-stranded transcript
regions (17,22–25).

Plant cells have three genetic compartments: the nucleo-
cytosolic compartment, the mitochondrion and the plastid
(chloroplast). Each of the three compartments has its
own specific set of tRNAs. Although tRNAs in the chloro-
plast and, to a lesser extent, also tRNAs in the mitochon-
drion are relatively well studied (26–32), less is known
about cytosolic tRNAs and their modifications (33).
This is mainly because of the difficulty of purifying indi-
vidual cytosolic tRNA species in sufficient quantities. In
contrast, isolation of cytoplasmic organelles represents a
straightforward procedure that, because of the low com-
plexity of organellar transcriptomes, results in a strong
enrichment of tRNAs. To shed some light on tRNA modi-
fication in the nucleocytosolic compartment of plant cells,
we have begun to identify modifying enzymes based on
structural and sequence motifs that are potentially
highly conserved in all eukaryotes. Here, we report the
identification and functional analysis of a Tad1/
ADAT1-like protein from the model plant Arabidopsis
thaliana that specifically deaminates the adenosine in the
position 30-adjacent to the anticodon of the cytosolic
tRNA-Ala(AGC).

MATERIALS AND METHODS

Plant material, growth conditions and phenotypic assays

All A. thaliana lines used in this study are in the
Columbia ecotype background. Surface-sterilized seeds
were stratified for 3 days, then sown onto half-strength
Murashige and Skoog (MS) medium (34) with 1%
sucrose and grown in controlled environment chambers.
For phenotypic assays, plants were transferred to soil
7 days after germination on synthetic medium and
grown under long-day conditions (16 h light/8 h dark
regime) or short-day conditions (8 h light/16 h dark
regime) at a light intensity of 120 mEm�2 s�1 at 22�C.
For cold stress treatments, plants were transferred, after
20 days of growth under standard conditions, to 4�C for
20 days (at 100 mEm�2 s�1). For heat stress treatments,
plants were transferred after 16 days of growth under
standard conditions to 30�C for 8 days (at
150 mEm�2 s�1). To exclude possible confounding effects
from unequal illumination or temperature, plants from the
various lines were randomly mixed.

Homozygous T-DNA insertion lines from the SALK
(35) and GABI-Kat (36) collections were identified by
polymerase chain reaction (PCR) using genomic DNA
and T-DNA–specific primers (LB-SALK-b1.3 and
LB-GABI, respectively) in combination with gene-specific
primers (Supplementary Table S1). T-DNA insertion sites
were determined by sequencing of PCR products.

Sequencing revealed that the T-DNA was inserted in the
first intron (175 bp downstream of the ATG) in
GABI_826F11. PCR conducted using an RB (right
border) or LB (left border)-derived primer in combination
with a gene-specific primer failed to amplify a product
from genomic DNA in SALK_021164, possibly because
of border sequence deletion during T-DNA insertion.
Failure to obtain a PCR product with the gene-specific
primer pair F1 and R1 (Figure 1), but ready
amplification of a portion of the TAD1 coding region
with the gene-specific primer pair F6 and R6
(Supplementary Table S1) indicated insertion of T-DNA
in the promoter region close to the start codon. PCR with
gene-specific primers (F1 or R1) in combination with a
primer specific for the kanamycin marker gene of the
T-DNA (Pkan; Supplementary Table S1) resulted in amp-
lification of specific PCR products with both the forward
(F1) and the reverse (R1) gene-specific primers, indicating
that the At1g01760 locus in SALK_021164 harbors a
tandem T-DNA insertion in inverted orientation. Further
sequencing analysis revealed that the T-DNA was inserted
16 bp upstream of the start codon of the At1g01760
reading frame, and the T-DNA insertion was accompanied
by the deletion of 52 bp at the insertion site.

Isolation of mitochondria

Seven-day-old seedlings raised on synthetic medium were
transferred to hydroponic growth conditions (liquid
0.5�MS medium supplemented with 1% sucrose) for 2
weeks. Mitochondria were isolated from whole plant
tissue according to Michalecka et al. (37). The purified
mitochondria were frozen in liquid nitrogen and stored
at �80�C until used for RNA isolation (see later in
the text).

Isolation of nucleic acids, hybridization procedures
and cDNA synthesis

Total plant DNA was extracted from fresh leaf tissue by
a cetyltrimethylammoniumbromide-based method (38).
RNA was isolated using a guanidine isothiocyanate/
phenol-based method (peqGOLD TriFast; Peqlab
GmbH) according to the manufacturer’s instructions.
For northern blot analysis, RNA samples (total cellular
RNA or purified mitochondrial RNA) were electro-
phoresed in formaldehyde-containing 2% agarose gels
and blotted onto Hybond XL nylon membranes (GE
Healthcare). To detect the tRNA-Ala(AGC) in northern
blot experiments, an antisense oligonucleotide corres-
ponding to position 1–33 of the tRNA (oligo
antiAlaAGC; Supplementary Table S1) was 50-end–
labeled using T4 polynucleotide kinase (New England
Biolabs). To this end, 20 pmol of the oligonucleotide was
incubated with 10U T4 polynucleotide kinase and 30 mCi
of [g-32P] adenosine triphosphate for 30min at 37�C. To
detect the mitochondrial tRNA-Cys(GCA) and the mito-
chondrial 5S rRNA, PCR products generated by amplifi-
cation with specific primers (Supplementary Table S1)
were used as probe. The probe was labeled with [a-32P]
dCTP using the Multiprime DNA labeling system (GE
Healthcare). Hybridizations were performed at 65�C in
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Rapid-Hyb buffer, and signals were analyzed using a
Typhoon Trio+ variable mode imager (GE Healthcare).
For cDNA synthesis, RNA samples treated with TURBO
DNase (Ambion) were reverse transcribed using
SuperScript III reverse transcriptase (Invitrogen) and
oligo(dT)18 primer or random primer following the manu-
facturer’s protocol.

DNA sequencing and analysis of tRNA editing

For DNA sequencing, amplification products were
separated by electrophoresis on agarose gels and purified
from excised gel slices using a NucleoSpin Extract II kit
(Macherey-Nagel). tRNA purification and tRNA editing
analysis were performed as described previously (39).
Cytosolic tRNA-Ala(AGC), tRNA-Val(AAC) and
tRNA-Thr(AGU) were amplified by reverse transcriptase
(RT)–PCR with specific primers (Supplementary Table
S1), and purified PCR products were directly sequenced.

Mutant complementation and analysis of subcellular
localization

To complement the tad1 mutant and to determine the
subcellular localization of the TAD1 protein, the entire
TAD1 coding sequence (without the stop codon) was
amplified using gene-specific primers (Supplementary
Table S1) and cloned into vector pENTRTM/SD/
D-TOPO (Invitrogen). After sequence verification, the
fragment was transferred into the Gateway binary vector
pGWB5 by an LR recombination reaction, generating a
TAD1–green fluorescence protein (GFP) fusion. The con-
struct was transformed into Agrobacterium tumefaciens
strain GV3101 and introduced into A. thaliana wild-type

plants or tad1 mutant plants by the floral dip method (40).
Transgenic T1 plants were identified by their kanamycin
resistance. More than 20 independent transgenic lines
expressing the TAD1–GFP fusion protein were identified.
Fluorescence was analyzed in 8-day-old seedlings
germinated on half-strength MS medium using a
confocal laser-scanning microscope (TCS SP5; Leica
Microsystems). Fluorescence was excited with the
488-nm line of an argon ion laser. GFP fluorescence was
detected via a 505- to 530-nm band-pass filter and chloro-
phyll fluorescence with a 650- to 710-nm filter.

Quantitative RT–PCR

cDNAs were used as templates for quantitative real-time
PCR with gene-specific primers (Supplementary
Table S1). Real-time PCR was performed using the
StepOnePlus real-time PCR system (Applied Biosystems)
using Absolute SYBR Green ROX mix (Thermo
Scientific) for quantitation. Three biological and three
technical replicates were analyzed. The 2���CT method
was used to determine the relative transcript levels (41).
Reactions for each tested gene in each cDNA sample were
independently repeated at least three times. EF1alpha
(At5g60390) was used as a reference for cDNA quality.

Aminoacylation assays

Aminoacylation of tRNA-Ala(AGC) was analyzed
according to published protocols (42) with minor modifi-
cations. Briefly, samples of frozen leaf tissue were ground
in liquid nitrogen and extracted with ice-cold RNA elution
buffer (0.3M sodium acetate and 10mM ethylene-
diaminetetraacetic acid, pH 4.5). After addition of

Figure 1. Subcellular localization of a TAD1–GFP fusion protein expressed from the CaMV 35S promoter in stably transformed Arabidopsis plants.
Images were obtained by confocal laser-scanning microscopy. Scale bars=10 mm. (A–C) Localization of the TAD1–GFP fusion protein in hypocotyl
cells. (A) GFP fluorescence. (B) Chlorophyll fluorescence. (C) Overlay of GFP and chlorophyll fluorescence. (D–F) Localization of the TAD1–GFP
fusion protein in root tips. (D) GFP fluorescence. (E) Bright field image. (C) Overlay of GFP fluorescence and bright field image.
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phenol/chloroform (pH 4.7), the cells were disrupted by
vortexing, and, after centrifugation, the aqueous layer was
collected. This extraction step was repeated, and the RNA
was subsequently precipitated with ethanol. The RNA
pellet was then resuspended in 0.3M sodium acetate (pH
4.5), precipitated again with ethanol, and the pellet was
air-dried on ice. After re-suspension in 10mM sodium
acetate (pH 4.5) and spectrophotometric quantitation,
samples of 8 mg of RNA were separated by electrophoresis
on a 14% polyacrylamide gel with 0.3M sodium acetate
and 7M urea as gel buffer and 0.3M sodium acetate
(pH 5.0) as running buffer. Gels were run at 60V for
25 h at 4�C, and the electrophoresis buffer was changed
every 6 h to maintain the acidic pH. The RNAs were then
electroblotted onto Hybond XL nylon membranes (GE
Healthcare) in blotting buffer (10mM Tris–acetate,
pH 7.8, 5mM sodium acetate and 0.5mM ethylene-
diaminetetraacetic acid) at 40V for 2 h at 4�C and subse-
quently UV–cross-linked to the membrane. Deacylation
of tRNA samples was performed by incubation for
30min at 70�C after addition of an equal volume of
0.1 M Tris–HCl (pH 9.5) and 0.1M NaCl.

Analysis of total protein content

To determine total protein content in leaves, 2-week-old
plants grown under short-day conditions were transferred
to 4�C and grown under cold stress for 3 weeks. For meas-
urements of total protein contents in roots, 1-week-old
seedlings grown under long-day conditions on half-
strength MS medium were transferred to hydroponic
growth conditions for 1 week at 22�C. Subsequently, the
seedlings were transferred to cold stress conditions at 4�C
for 2 weeks. Total soluble protein was extracted from
100mg of plant tissue ground in liquid nitrogen and sus-
pended in 100 ml extraction buffer (4mM Tris–HCl,
pH 7.5, 5mM NaCl, 6.25 mM MgCl2, 10 mM EGTA,
10 mM DTT, 1% TritonX-100 and protease inhibitor
cocktail). Cell debris were removed by centrifugation at
12 000 r.p.m. for 20min at 4�C. The protein concentration
of the extract was measured with a protein assay kit
(Bio-Rad) using bovine serum albumin as a protein con-
centration standard.

Measurement of respiration activity

Oxygen consumption was measured using a Clark-type
oxygen electrode (Hansatech Instruments). To determine
respiration activity of mutant and wild-type plants, leaves
were cut into small pieces with a sharp blade, and leaf
pieces representing between 15 and 25mg of fresh
weight were placed in the measuring chamber containing
1 ml of incubation medium (10mM MES–KOH, pH 6.5).
Oxygen consumption measurements were performed in
the dark at 25�C.

Bioinformatic analyses

TAD1 homologues were identified in GenBank
searches using the basic local alignment search tool
for proteins (BLASTp; http://www.ncbi.nlm.nih.gov/
BLAST/). Phylogenetic analyses were performed on the
Phylogeny.fr platform (http://www.phylogeny.fr) using

the default settings. Amino acid sequences were aligned
with MUSCLE (43) or ClustalW (44).

RESULTS AND DISCUSSION

Identification of an Arabidopsis protein with sequence
similarity to Tad1p

We have recently described a genome-wide search for can-
didate editing deaminases in the model plant A. thaliana
(39). This Patmatch search (http://www.arabidopsis.org/
cgi-bin/patmatch/nph-patmatch.pl) was based on the con-
sensus sequence motifs in the catalytic domain of all
editing deaminases (21) and revealed several candidate
proteins that were further analyzed by BLAST searches
to identify potential homologues from other species. No
putative genes for ADAR-like proteins could be identified
in the Arabidopsis genome, consistent with the probable
absence of A-to-I conversional editing from plant messen-
ger RNAs. However, we identified a candidate deaminase
(encoded by A. thaliana locus At1g01760) that displayed
some sequence similarity with tRNA editing deaminases
of the Tad1/ADAT family (13,20,21). The putative
At1g01760 protein shows 26% sequence identity to
Tad1p from the yeast S. cerevisiae, 25% to hADAT1
from humans and 30% to dADAT1 from Drosophila
melanogaster (Supplementary Figure S1). Strikingly, the
sequence similarity is particularly high in the catalytic
domain, including the three zinc-coordinating residues
and the proton-shuttling glutamate (Supplementary
Figure S1). Searches of other sequenced plant genomes
revealed putative homologues in all species analyzed
(Supplementary Figure S2), suggesting that the candidate
TAD1 protein is encoded by a conserved single-copy gene
in most, if not all, plants.

The putative AtTAD1 protein localizes to the nucleus

The Tad1/ADAT1 proteins in yeast and animals specific-
ally deaminate the adenosine residue in the position
30-adjacent to the anticodon of the cytosolic tRNA-
Ala(AGC) (13,19). To test whether At1g01760 encodes a
plant tRNA editing deaminase orthologous to Tad1/
ADAT1, we first wanted to determine the subcellular lo-
calization of the protein. To this end, we translationally
fused the full-length reading frame of At1g01760 to the
gene for the GFP. The At1g01760–GFP fusion gene was
inserted into a plant expression vector and stably
introduced into Arabidopsis plants by A. tumefaciens-
mediated transformation. Analysis of GFP fluorescence
in transgenic plants by confocal laser-scanning micros-
copy revealed strong green fluorescence that localized ex-
clusively to the nucleus in both hypocotyl cells and root
cells (Figure 1). The observed nuclear localization would
be compatible with a function of the At1g01760 protein as
tRNA editing enzyme and warranted further investigation
of At1g01760 by reverse genetics.

Isolation of T-DNA–tagged mutants for At1g01760

To test whether the protein encoded by locus At1g01760 is
indeed an editing deaminase acting on tRNA-Ala(AGC),
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we sought to address the gene function by isolating
mutants defective in At1g01760. To this end, we searched
the collection of Arabidopsis T-DNA insertion lines avail-
able at the Nottingham Arabidopsis Stock Centre
(http://arabidopsis.info/) and the GABI-Kat database
(http://www.gabi-kat.de/). Two independent T-DNA in-
sertion lines associated with locus At1g01760 were
identified (Figure 2A and B). In one of the lines, henceforth
referred as the tad1-1 allele, the T-DNA resided 16 bp
upstream of the start codon of the At1g01760 reading
frame. In the second line, referred as tad1-2, the insertion
site was 175 bp downstream of the start codon, disrupting
the first intron in the At1g01760 locus. Therefore, in
contrast to the tad1-1 allele, the tad1-2 allele can reason-
ably be expected to represent a loss-of-function allele.
However, as T-DNA insertions immediately upstream of
the coding region often inhibit gene expression by disrupt-
ing important promoter or 50 untranslated region (50-UTR)

elements, we also included the tad1-1 mutant in all subse-
quent analyses of At1g01760 gene function. To generate
homozygous tad1-1 and tad1-2 mutants, the T-DNA lines
were selfed, and plants homozygous for the T-DNA inser-
tion were identified by PCR (Figure 2B).

Semiquantitative (Figure 2C) and quantitative RT–
PCR (Figure 2D) were used to examine expression of
At1g01760 in homozygous tad1-1 and tad1-2 mutants.
These analyses showed that, as suspected from the
T-DNA insertion site disrupting intron 1, the tad1-2
mutant represents a null allele, with no detectable
residual expression of At1g01760. In contrast, the
T-DNA insertion in the tad1-1 mutant turned out to not
completely abolish At1g01760 expression (Figure 2C and
D). The residual expression level of �10% of the wild-type
level (as determined by qRT–PCR; Figure 2D) made the
tad1-1 mutant a useful mutant to include in our functional
analyses because it can be expected to present an

Figure 2. Identification and characterization of tad1 mutants in Arabidopsis. (A) Exon–intron structure of the putative TAD1 locus and location of
the T-DNA insertions in the tad1-1 and tad1-2 mutants (indicated by open triangles). The arrowheads denote location and orientation of the primers
used in (B). (B) Identification of homozygous T-DNA insertions in the tad1 mutants by PCR using genomic DNA as template. Primer combinations
are indicated at the right. Two independent samples were analyzed for each plant line. Failure to obtain PCR products with gene-specific primer pairs
in the mutants (primers F1 and R1 for tad1-1 and primers F2 and R2 for tad1-2) confirmed homozygosity of the T-DNA insertions in the TAD1
locus. (C) Detection of TAD1 mRNA in the wild-type (WT) and the two tad1 mutants by semiquantitative RT–PCR. The mRNA for an actin
isoform (ACTIN2) served as internal RT–PCR control. Note residual TAD1 expression in the tad1-1 mutant, but virtual absence of transcripts from
the tad1-2 mutant. (D) Quantitation of TAD1 transcript levels in T-DNA mutants by qRT–PCR. mRNA accumulation in the tad1-1 and tad1-2
mutants is shown relative to the wild-type level (set to 100%). (E) Detection of TAD1 transcripts in various tissues of Arabidopsis wild-type plants by
semiquantitative RT–PCR.
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intermediate phenotype between the wild-type and the
tad1-2 null mutant.

Semiquantitative RT–PCR assays were used to com-
paratively analyze expression of the candidate TAD1
gene in different tissues and developmental stages
(Figure 2E). Although relatively high expression was
detected in siliques, expression levels were significantly
lower in all other tissues investigated, including leaves,
stems, roots and flowers. Expression levels in etiolated
seedlings were below the detection limit of our RT–PCR
assays (Figure 2E).

Analysis of tRNA editing in tad1 mutants

The only substrate of the Tad1 enzyme in yeast and
animal cells is adenosine 37 (A37) in the tRNA-
Ala(AGC) of the cytosol (13,19; Figure 3A). A37 is
oxidatively deaminated to inosine by Tad1 and subse-
quently methylated in an S-adenosylmethionine–
dependent reaction to N1-methylinosine (m1I;
Figure 3A; 45). Interestingly, m1I occurs exclusively in
this position and has not been found in any other tRNA
in eukaryotic organisms (but is present in some tRNAs of
extremophile archaea; 45). In addition to the A-to-I
editing site in position 37, tRNA-Ala(AGC) also
undergoes A-to-I editing in position 34, the wobble
position of the anticodon (Figure 3A). The I34 modifica-
tion is not unique to tRNA-Ala(AGC), but it occurs in
altogether eight cytosolic tRNAs in higher eukaryotes
(seven in yeast) and in the tRNA-Ala(AGC) of bacteria
and chloroplasts (18,39,46,47). In yeast, the A-to-I editing
at position 34 is conducted by a complex of two proteins
(TAD2 and TAD3), each of which harbors a canonical
deaminase motif (20,46; Figure 3A). To test whether the
At1g01760 protein is a tRNA editing deaminase and acts
specifically on A37 of the cytosolic tRNA-Ala(AGC) in
Arabidopsis, we used the homozygous tad1 mutant
plants to test for tRNA editing efficiency in the cytosolic
tRNA-Ala(AGC). As inosine is read as G and m1I is read
as T by reverse transcriptases, the editing events in
position 34 and 37 of tRNA-Ala(AGC) can be directly
detected by sequencing of amplified cDNA obtained by
reverse transcription of the tRNA. Sequencing of reverse
transcribed tRNA from wild-type plants confirmed the
presence of the I34 and m1I37 modifications known from
yeast and animals in the Arabidopsis tRNA-Ala(AGC)
(Figure 3B). Interestingly, A37 remained largely unmodi-
fied in both the tad1-1 and the tad1-2 mutants. Presence
of an A in the amplified cDNA population (and not a
G or T) indicates that the modification is blocked at the
deamination step and not at the subsequently occurring
methylation step (Figure 3A and B). This finding repre-
sents strong evidence that the protein encoded by
the At1g01760 locus is indeed a functional homologue of
the yeast Tad1p editing deaminase. Although A37 editing
in the tad1-2 mutant was virtually completely absent,
a small proportion of edited tRNA-Ala(AGC) was repro-
ducibly detectable in the tad1-1 mutant. This is consistent
with the T-DNA insertion in tad1-1 representing a
leaky allele that gives rise to �10% residual expression
(Figure 2C and D).

Figure 3. Analysis of tRNA-Ala(AGC) editing in tad1 mutants.
(A) Cloverleaf structure of the tRNA-Ala(AGC) from Arabidopsis.
Watson–Crick base pairing and UG base pairing are represented by
bars and open circles, respectively. TAD1 deaminates A37 in the anti-
codon loop of the tRNA. I37 undergoes further modification by
S-adenosylmethionine–dependent methylation to N1-methylinosine
(m1I37; 45). m

1I37 is read as T by reverse transcriptases (indicated by
the dotted arrow). In yeast, two other deaminase proteins, TAD2 and
TAD3, form a heterodimer and specifically deaminate A34 (46). Reverse
transcriptases read I as G. (B) Analysis of A-to-I editing at positions
34 and 37 of tRNA-Ala(AGC) in wild-type Arabidopsis plants (WT),
the tad1 mutants, tad1-1 and tad1-2, and the complemented tad1-2 line
(Compl.). The tRNAs were reverse transcribed, the cDNA sequences
amplified by PCR and directly sequenced. Note loss of A-to-I editing
at position 37 in tad1 mutants (as evidenced by presence of the
genomically encoded A instead of the T originating from reverse tran-
scription of m1I-37 in the wild-type), but unaffected editing at position
34 (G indicating presence of inosine in both the wild-type and the
mutants). As a control, two other inosine-containing cytosolic tRNAs
(a threonine and a valine tRNA) were also investigated and, likewise,
turned out to be unaffected in the Arabidopsis tad1 mutants. DNA
indicates genomic DNA; cDNA denotes complementary DNA.
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The presence of a clear A peak at position 37 in the
cDNA sequence of tRNA-Ala(AGC) from the tad1-2
mutant (Figure 3B) also suggests that, in the absence of
A-to-I editing, nucleoside methylation (to m1A instead
of m1I; Figure 3A) cannot occur. Previous research on
reverse transcription of modified tRNAs demonstrated
that m1A base pairs with all four nucleotides (48) during
cDNA synthesis. Presence of an unambiguous A peak
in the tad1-2 knockout mutant, therefore, tentatively indi-
cates lack of adenosine methylation at position 37; thus, it
may suggest that the I37-methylating enzyme is selective
for inosine.
In contrast to A37 editing, A-to-I editing at the wobble

position A34 was unaffected in both T-DNA mutants
(Figure 3B), well in line with the specificity of the
Tad1p/ADAT1 enzyme for position A37 of
tRNA-Ala(AGC) in yeast and animals. This indicates
that I34 is generated by another deaminase that remains
to be identified in plants and may or may not be homolo-
gous to the TAD2/TAD3 editing enzyme conducting this
deamination reaction in yeast (46).
To provide ultimate proof for At1g01760 encoding

the plant Tad1p/ADAT1 enzyme, we complemented the
tad1-2 mutant with the At1g01760–GFP fusion gene using
A. tumefaciens-mediated transformation. Analysis of the
resulting transgenic Arabidopsis plants revealed full restor-
ation of A37 editing in tRNA-Ala(AGC) (Figure 3B).
Taken together, our mutant and complementation

analyses strongly suggest that the At1g01760 gene
encodes a functional homologue of the Tad1/ADAT1
protein that specifically deaminates position A37 in the
cytosolic tRNA-Ala(AGC) of A. thaliana. We, therefore,
suggest to rename the At1g01760 gene AtTAD1 or, alter-
natively, AtADAT1.

Accumulation and aminoacylation of tRNA-Ala(AGC)
in tad1 mutants

Previous work has established that many nucleoside modi-
fications have a role in stabilizing tRNA molecules in vivo,
either by stabilizing their structure and/or by promoting
proper folding (reviewed in 1). To test whether the A37

modification in tRNA-Ala(AGC) of Arabidopsis plants
also has a beneficial effect on tRNA stability, we
investigated tRNA accumulation in the wild-type and
the tad1 mutants by northern blot hybridizations. These
analyses revealed that the unmodified tRNA-Ala(AGC) in
the mutants accumulates to similarly high levels as the
modified tRNA in the wild-type (Figure 4A). This indi-
cates that, unlike many other nucleoside modifications,
the A37 modification in tRNA-Ala(AGC) has no positive
impact on tRNA stability in Arabidopsis.
In flowering plants, several nucleus-encoded tRNA

species are not only involved in translation in the
cytosol but are also imported into the mitochondrial com-
partment, where they participate in mitochondrial protein
biosynthesis (49). In solanaceous plants, the tRNA-
Ala(AGC) is among the tRNA species imported into
mitochondria (50). To distinguish between tRNA-
Ala(AGC) accumulation in the cytosol and the mitochon-
drion, mitochondria were purified from wild-type and

mutant plants, and the effect of the loss of A-to-I
editing at position A37 on the mitochondrial tRNA-
Ala(AGC) pool was analyzed. Unaltered tRNA accumu-
lation in the mitochondrial compartment (Figure 4B)
indicates that loss of A37 editing does not appreciably
impair import of tRNA-Ala(AGC) into the mitochon-
drion and nor does it reduce the stability of the tRNA
inside mitochondria.

To exclude the possibility that the loss of A-to-I editing
at position A37 affects charging of tRNA-Ala(AGC), the
level of aminoacylation of the tRNA was determined in
the wild-type, the tad1-1 and tad1-2 mutants, and the

Figure 4. Accumulation and aminoacylation of tRNA-Ala(AGC) in
wild-type plants (WT), tad1 mutant plants and the complemented
tad1-2 line (Compl.). Northern blot analyses were carried out with
total cellular RNA (A) or purified mitochondrial RNA (B). To
control for loading, the ethidium bromide-stained agarose gels before
blotting are also shown. Accumulation of the mitochondrial encoded
tRNA-Cys(GCA) was analyzed as a control in (B). The 26S and 18S
rRNAs of the mitochondrial ribosome and the tRNA band are
indicated in the ethidium bromide-stained agarose gels. To additionally
control for loading differences visible in the mitochondrial RNA gel
blots, the blots were stripped and re-hybridized to a probe specific to
the mitochondrial 5S rRNA. (C) Analysis of aminoacylation of
tRNA-Ala(AGC) in the wild-type, the tad1 mutant and the comple-
mented tad1-2 line. In the gel system used here (42), the aminoacylated
tRNA migrates slower than its corresponding deacylated species.
To visualize the difference in electrophoretic mobility, aliquots of the
wild-type sample and the tad1-2 sample were deacylated in vitro.
Samples of 8mg of RNA were separated by electrophoresis, blotted
and hybridized to a tRNA-Ala(AGC)-specific probe.
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complemented line. No difference was seen in that the
tRNA pool seems to be fully aminoacylated in vivo in all
plant lines analyzed (Figure 4C).

Phenotype of tad1 mutant plants

Having established that AtTAD1 inactivation in the homo-
zygous T-DNA insertion lines prevents A-to-I editing
at position A37 of tRNA-Ala(AGC), we next wanted to
determine the phenotypic consequences of the loss of this
modification. In E. coli, it has been demonstrated
that tRNA modifications adjacent to the anticodon can
influence translational efficiency and/or accuracy (51).
If this were the case for the modification of A37 in the
Arabidopsis tRNA-Ala(AGC), the tad1 mutants should
display a mutant phenotype under conditions where trans-
lational efficiency limits plant growth or fitness. We, there-
fore, compared tad1 mutant plants with wild-type plants
under a range of different growth conditions (Figure 5).

The tad1 mutants showed no discernible phenotype
when grown under standard growth conditions
(Figure 5A and B). Also, when their biomass was
compared with wild-type plants, no significant difference
was found (Figure 5E and F), suggesting that the A37 modi-
fication is not essential for translation, and fairly high rates
of protein biosynthesis can be sustained even with
tRNA-Ala(AGC) that is fully unmodified in position 37.
However, when the tad1 mutant plants were challenged
with stressful environmental conditions, their growth was
significantly reduced compared with wild-type plants.
Exposure to both heat stress and cold stress resulted in
slower growth and lower biomass accumulation.
Consistent with tad1-1 representing a leaky allele and
tad1-2 representing a complete knockout, this growth
phenotype under stress was more pronounced in tad1-2
plants than in tad1-1 plants (and was not statistically sig-
nificant in tad1-1; Figure 5C, D, G and H). Importantly,
wild-type–like growth was fully restored in the comple-
mented line. These growth phenotypes in the tad1
mutants provide evidence for a functional relevance
of the A37 modification in tRNA-Ala(AGC). Thus,
although the modification is clearly not essential, it seems
to be necessary for efficient translation, at least under
certain environmental conditions. Having observed
growth phenotypes in our tad1mutants under temperature
stress, it seems worth mentioning that the occurrence of A
! I! m1I modifications in non-eukaryotic systems is re-
stricted to extremophile archaea. This may lend further
support to a role of this modification in translational
fidelity under stressful environmental conditions.

As the tRNA-Ala(AGC) is also imported into
mitochondria (50), the effect of the loss of A-to-I editing
at position A37 on mitochondrial function was charac-
terized. To this end, we measured respiration activity in
the dark. The data revealed that respiration rates are
reduced in the tad1 mutants, especially under cold stress,
and, as expected, more strongly in the tad1-2 plants than
in the tad1-1 plants (Figure 6A and B). This finding
indicates that not only cytosolic protein biosynthesis but
also mitochondrial translation may be affected by the
absence of A37 editing.

Finally, we determined total cellular protein contents
under cold stress to test whether the reduced translational
efficiency under stress results in lower protein accumula-
tion in the tad1 mutants. In leaves, most of the cellular
protein is chloroplast protein; therefore, effects on cyto-
solic translation could be masked. To exclude this possi-
bility, we additionally measured protein contents in roots,

Figure 5. Phenotype of tad1 mutant plants in comparison with the
wild-type (WT) and the complemented tad1-2 line (Compl.).
Seven-day-old seedlings raised on synthetic medium were transferred
to soil and grown under different environmental conditions in the
greenhouse. (A) Phenotype after growth for 15 days under long-day
conditions. (B) Phenotype after 21 days under short-day conditions.
(C) Twenty-day-old plants grown on soil under short-day conditions
were cold stressed at 4�C for 20 days. (D) Sixteen-day-old plants grown
on soil under short-day conditions were exposed to heat stress at 30�C
for 8 days. (E) Fresh weight of rosettes from plants grown as in (A).
(F) Fresh weight of rosettes from plants grown as in (B). (G) Fresh
weight of rosettes from plants grown as in (C). (H) Fresh weight of
rosettes from plants grown as in (D). Asterisks indicate statistically
significant differences (P< 0.05) in Student’s t-test. Error bars represent
the standard deviation (n=16 or 17).
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where only low amounts of plastid proteins accumulate
(52,53). However, protein contents were not significantly
different between the wild-type, the mutants and the com-
plemented line (Figure 6C and D). This suggests that,
although editing at position 37 of tRNA-Ala(AGC) is
important for translational efficiency in the cold, it does
not appreciably affect the cellular protein content, pre-
sumably because the tad1 mutants adjust their growth
rate to the reduced translation rate (Figure 5).

Although the functional relevance of the A-to-I deamin-
ation at position 37 of tRNA-Ala(AGC) in other eukary-
otes is currently unknown, an interesting observation
was made in connection with a human autoimmune
disease. Sera from patients suffering from the chronic
inflammatory muscle disorder myositis often contain
autoantibodies directed against the anticodon loop of
tRNA-Ala(AGC), and the A modifications to m1I at
position 37 and I at position 34 seem to play a crucial
role in the recognition of tRNA-Ala(AGC) by the auto-
antibodies (54).

In summary, our work reported here has identified the
gene (AtTAD1) that encodes the enzyme responsible for
site-specific adenosine-to-inosine deamination at position
37 of the cytosolic tRNA-Ala(AGC) of the model plant
A. thaliana. Our data show that the modification (affecting
the position 30-adjacent to the anticodon) is functionally
important in that its loss results in reduced plant growth
under unfavorable environmental conditions. To our
knowledge, this is the first demonstration of the functional
significance of a tRNA modification outside the anticodon
in plants.
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