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Abstract: Endoplasmic reticulum (ER) stress is involved in the pathogenesis of several diseases 

including Alzheimer disease and Parkinson disease. Many recent studies have shown that ER 

stress is related to the pathogenesis of diabetes mellitus, and with the death of pancreatic β-cells, 

insulin resistance, and the death of the vascular cells in the retina. Diabetic retinopathy is a major 

complication of diabetes and results in death of both neural and vascular cells. Because the 

death of the neurons directly affects visual function, the precise mechanism causing the death 

of neurons in early diabetic retinopathy must be determined. The ideal therapy for preventing 

the onset and the progression of diabetic retinopathy would be to treat the factors involved with 

both the vascular and neuronal abnormalities in diabetic retinopathy. In this review, we present 

evidence that ER stress is involved in the death of both retinal neurons and vascular cells in 

diabetic eyes, and thus reducing or blocking ER stress may be a potential therapy for preventing 

the onset and the progression of diabetic retinopathy.

Keywords: endoplasmic reticulum stress, diabetic retinopathy, vascular cell death, neuronal 

cell death

Introduction
Diabetic retinopathy is a major complication in patients with diabetes and it can lead to 

severe visual decrease in a high percentage of diabetic patients (Oshitari 2006; Oshitari 

and Roy 2007). Although the precise mechanism(s) for the onset and progression 

of diabetic retinopathy has still not been determined, recent studies have indicated 

that neuronal and vascular abnormalities are associated with the pathogenesis of 

early diabetic retinopathy (Barber et al 1998; Takano et al 1999; Asnaghi et al 2003; 

Martin et al 2004; Oshitari et al 2005). The neuronal abnormalities in the early stage 

of diabetic retinopathy are diffi cult to observe and evaluate by routine clinical tests, 

but ophthalmologists should consider neuronal abnormalities, including the death of 

retinal ganglion cell (RGCs), when evaluating eyes with diabetic retinopathy. This is 

important because the death of retinal neurons is irreversible and directly affects the 

visual function (Oshitari 2006; Oshitari and Roy 2007).

The endoplasmic reticulum (ER) is a critical intracellular organelle, which has 

several vital functions such as protein synthesis (Chevet et al 2001), protein transport 

(Palade 1975), and acts as a reservoir of Ca2+ (Nielsen and Podolsky 1972). The accu-

mulation of unfolded proteins or an upset in the Ca2+ homeostasis in the ER will activate 

the ER stress response, eg, the unfolded protein response (UPR) and the ER overload 

response (Rao et al 2004; Lindholm et al 2006). Most importantly, ER stress activates 

several cell death pathways including the caspase-12-dependent pathway (Nakagawa 

et al 2000), apoptosis signal-regulating kinase 1 (ASK1) – c-Jun N-terminal kinase 

(JNK) pathway (Nishitoh et al 2002) and the PKR-like endoplasmic reticulum kinase 

(PERK) – C/ERB homologous protein (CHOP) pathway (Ma et al 2002) (Figure 1).
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The results of recent studies have shown that ER 

stress-mediated cell death is associated with the death of pan-

creatic β-cells in patients with diabetes (Oyadomari et al 2001, 

2002; Laybutt et al 2007). In addition, a recent study reported 

that the ER stress-induced apoptosis is related to changes in 

the glucose concentration and results in the death of pericytes 

(Ikesugi et al 2006). Roybal and colleagues (2004) suggested 

that the ER stress-mediated activating transcriptional factor 

4 (ATF4) activation was associated with an over-expression 

of vascular endothelial growth factor (VEGF). In addition, 

recent studies indicate that ER stress-induced apoptosis is 

involved in the death of neurons in the brain and retina under 

different physiological conditions (Guo et al 1997; Tobisawa 

et al 2003; Imai and Takahashi 2004; Larner et al 2004; Tajiri 

et al 2004; Wootz et al 2004; Hayashi et al 2005; Awai et al 

2006; Shimazawa et al 2007).

One therapeutic strategy that might be used to prevent 

the development and progression of type 2 diabetes is the 

inhibition of ER stress. This would then block the ER 

stress-induced pancreatic β-cell death, and may also prevent 

the onset and progression of diabetic retinopathy. We shall 

discuss the possible role of ER stress in the pathogenesis 

of diabetic retinopathy and describe potential therapeutic 

strategies to block the development and the progression of 

diabetic retinopathy.

ER stress-mediated pancreatic 
β-cell death in diabetes
The ER is involved in the maintenance of cellular homeostasis 

by inducing the UPR. The UPR of mammals is mediated by at 

least three types of ER transmembrane proteins; IRE1 (protein 

kinase and site-specific endoribonuclease) (Tirasophon 

et al 1998; Wang et al 1998), PERK (Harding et al 2000), 

and ATF6 (Ye et al 2000). Under diabetic conditions, the 

pancreatic β-cells are continuously exposed to oxidative 

stress, eg, exposure to reactive oxygen species (ROS; 

Kaneto et al 2005) and to nitrous oxide (NO; Oyadomari 

et al 2001). The ER is highly developed in pancreatic β-cells 

Figure 1 Hypothesized scheme of the ER stress-mediated cell death pathways. At least, three major cell death pathways are associated with ER stress-induced cell death. 
Abbreviations: ER, endoplasmic reticulum; TRAF2, tumor necrosis factor receptor-associated factor 2;  ASK1, apoptosis signal-regulating kinase 1; SEK1, SAPK/ERK kinase 1; MKK7, 
mitogen-activated protein kinase kinase 7; JNK, c-Jun N-terminal kinase;  ATF4, activating transcription factor 4; PERK, PKR-like endoplasmic reticulum kinase; elF2α, a subunit 
of translation eukaryotic initiation factor 2; CHOP, C/ERB homologous protein.
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because of the continuous insulin secretion. Thus, it seems 

that even under physiological conditions, a potential ER 

stress is present because there are many unfolded proteins 

and premature proteins in the ER of pancreatic β-cells 

(Harding et al 2001; Weir et al 2001). These unfolded and 

premature proteins can easily become targets of ROS and 

NO (Oyadomari et al 2001; Kaneto et al 2005). Once the ER 

stress is increased in pancreatic β-cells, the JNK- and CHOP-

mediated cell death pathways are activated (Oyadomari et al 

2001, 2002; Kaneto et al 2005). The activation of the JNK 

pathway under diabetic stress is known to induce the serine 

phosphorylation of insulin receptor substance 1, which in 

turn leads to insulin resistance (Özcan et al 2004). When 

the number of pancreatic β-cell is decreased, ER stress is 

increased in the remaining pancreatic β-cells to compensate 

for the reduced insulin secretion leading to pancreatic β-cell 

dysfunction (Weir et al 2001; Poitout et al 2002). Thus, ER 

stress-mediated pancreatic β-cell death is critical and a key 

alteration for the pathogenesis of type 2 diabetes.

ER stress involved in vascular 
abnormalities in eyes with diabetic 
retinopathy
The loss of pericytes from the microvessels in diabetic retinas 

is one of the characteristic pathological changes in the early 

stage of diabetic retinopathy. The results of a recent study 

indicated that the UPR, activated by ER stress, is induced in 

retinal pericytes by the changes in the glucose concentration 

(Ikesugi et al 2006). Thus, ER stress-mediated cell death is 

the common pathology in the death of pancreatic β-cells and 

pericytes in diabetes.

VEGF plays important roles in the pathogenesis of dia-

betic retinopathy (Shweiki et al 1992; Amin et al 1997; Lu 

et al 1998; Ishida et al 2000; Qaum et al 2001; El-Remessy 

et al 2003). The expression of VEGF is increased in dia-

betic retinas by the high-glucose, ischemia, and hypoxia, 

and this leads to the development of neovascularization 

and/or increased vascular permeability (Shweiki et al 1992; 

Amin et al 1997; Lu et al 1998; Ishida et al 2000; Qaum 

et al 2001; El-Remessy et al 2003). Abcouwer et al showed 

that the glutamine deprivation-induced ER stress is associ-

ated with an up-regulation of VEGF expression in human 

retinal pigment epithelial cells (Abcouwer et al 2002). 

Roybal and colleagues (2004) suggested that the homocys-

teine-induced ER stress is related to the over-expression 

of VEGF under the control of ATF4. Hyperglycemia has 

been suggested to increase the intracellular homocysteine 

levels in the retinal pigment epithelium cells. Thus, there 

is good evidence that the diabetic stress-induced ER stress 

is involved in vascular abnormalities such as pericyte loss 

and neovascularization.

ER-stress-mediated neuronal 
cell death
Recent studies have shown that RGCs die at the early stage 

of diabetes (Barber et al 1998; Asnaghi et al 2003; Oshitari 

and Roy 2005). The neuronal abnormalities, such as RGC 

death, are irreversible and may precede the vascular abnor-

malities including the increased vascular permeability in 

diabetic retinas. This is observed even in retinas with a clini-

cal diagnosis of non-diabetic retinopathy, however neuronal 

abnormalities, such as the reduction of retinal nerve fi ber 

thickness, can be detected by optical coherence tomography 

even at this stage (Sugimoto et al 2005).

Guo and colleagues (1997) suggest that an upset of the Ca2+ 

homeostasis in the ER caused by mutations in presenilin-1 is 

associated with the neuronal cell death in Alzheimer’s disease. 

Recently, many studies have reported that the ER stress-

mediated neuronal cell death is related to the pathogenesis of 

various neuronal diseases in the brain and retina, eg, polyglu-

tamine diseases (Nishito et al 2002), Parkinson’s disease (Imai 

and Takahashi 2004), amyotrophic lateral sclerosis (Tobisawa 

et al 2003; Wootz et al 2004), acute brain disorders (Larner 

et al 2004; Tajiri et al 2004; Hayashi et al 2005), and retinal 

ischemia (Awai et al 2006; Shimazawa et al 2007).

Other studies have shown that the PERK-CHOP pathway, 

one of the ER stress-mediated pathways that is induced in 

ischemic retinas, is related to neuronal cell death (Awai et al 

2006; Shimazawa et al 2007). It is well-known that under 

ischemic stress, an increase of intracellular Ca2+ level disturbs 

the ER Ca2+ homeostasis which in turn leads to ER stress-

induced neuronal degeneration (Verkhratsky and Toescu 

2003). Unfolded proteins that accumulate in the ER in ischemic 

retinas become targets of ROS and NO. Thus, it seems 

reasonable that in ischemic retinas, the ER stress-mediated cell 

death pathways are related to the neuronal degeneration.

We have examined the IRE1-JNK pathway to determine 

if it is associated with the neuronal death in ischemic retinas 

using the ischemia-reperfusion injury model (unpublished 

data). Our results suggested that the expressions of IRE1α 

and tumor necrosis factor receptor-associated factor 2 

(TRAF2) were signifi cantly increased in the ischemic retinas 

compared to that in control retinas. In addition, we found 

that the expression of ASK1, SAPK/ERK kinase 1 (SEK1), 

and JNK were expressed in the same degenerating neurons 
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of ischemic retinas (unpublished data). Thus, not only the 

PERK-CHOP pathway but also the IRE1-JNK pathway is 

associated with neuronal death in ischemic retinas.

The exact mechanism leading to the death of RGCs has 

not been conclusively determined especially at the early 

stage of diabetic retinopathy. One possible link between 

vascular abnormalities and neuronal abnormalities may be 

the changes in the glial cells at the early stage of diabetic reti-

nopathy (Figure 2). Glial processes make contact with both 

the blood vessels and neurons, and form the blood-retinal 

barrier (Kim et al 2006) (Figure 2). Glial cells can maintain 

the blood-retinal barrier by expressing VEGF, and there are 

many studies that have shown interactions between glial cells 

and neuronal cells in the retina (Fruttiger et al 1996; Rauen 

et al 1999; Harada et al 2000). During the onset and the pro-

gression of diabetic retinopathy, Müller cells are changed, 

eg, up-regulation of glial fi brillary acidic protein (GFAP) and 

accumulation of gamma-aminobutyric acid (Ishikawa et al 

1996; Lieth et al 1998; Barber et al 2000; Rungger-Brändle 

et al 2000). Pannicke and colleagues (2006) suggested 

that glial abnormalities, eg, swelling of the cell body, may 

lead to the retinal edema detected in diabetic retinas. Thus, 

neuro-glial interactions may be involved at the onset and the 

progression of diabetic retinopathy, and glial changes may 

be related to both neuronal and vascular abnormalities at the 

early stage of diabetic retinopathy (Figure 2).

The glutamate levels are known to be elevated in the 

vitreous of diabetic patients (Ambati et al 1997), which 

could lead to neuronal cell death. Because an over-stimula-

tion of neurons by glutamate upsets the Ca2+ homeostasis in 

the ER, ER stress may be present in degenerating neurons 

under diabetic stress.

Because there is very little evidence of a direct association 

of ER stress and the pathogenesis of diabetic retinopathy, 

ER stress may be an epiphenomenon and/or only one of the 

players, perhaps with a minor role, in the development of 

diabetic retinopathy. Thus, although ER-stress-related factors 

may be promising targets for the prevention and the progres-

sion of diabetic retinopathy, additional studies are needed to 

determine the relationship between ER stress and neuronal 

cell death in diabetic retinas.

Potential therapeutic strategies 
for diabetic retinopathy
An epidemiological study performed by the Japanese Minis-

try of Welfare in 2005 showed that diabetic retinopathy was 

the second most common eye disease to cause blindness in 

the Japanese. Over 3,000 patients with diabetic retinopathy 

Figure 2 Hypothesized scheme of the pathogenesis of early diabetic retinopathy. The characteristic changes of early diabetic retinas may be glial changes, which in turn 
leads to vascular and neuronal abnormalities such as increased vascular permeability or neuronal cell death. The ideal therapies for diabetic retinopathy may be the improve-
ment of both vascular and neuronal abnormalities. 
Abbreviations: GFAP, glial fi brillary acidic protein; GABA, gamma-aminobutyric acid.
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lose their vision each year in Japan. This indicates that the 

current management and therapies for diabetic retinopathy 

are not suffi cient to prevent the progression to blindness in 

patients with diabetic retinopathy. To reduce the number of 

patients who lose their vision from diabetic retinopathy, new 

therapeutic strategies must be established to prevent the onset 

and the progression of the diabetic retinopathy.

At present, the standard treatments for diabetic retinopathy 

include: control of the blood glucose levels and the blood 

pressure (Klein et al 1995; Diabetes Control and Complica-

tions Trial Research Group 1995a, 1995b; UK Prospective 

Diabetes Study (UKPDS) Group 1998; Diabetes Control and 

Complications Trial/Epidemiology of Diabetes Interventions 

and Complications Research Group 2000; Writing Team for 

the Diabetes Control and Complications Trial/Epidemiol-

ogy of Diabetes Interventions and Complications Research 

Group 2002; Matthews et al 2004), focal laser photocoagula-

tion (Early Treatment Diabetic Retinopathy Study Research 

Group 1985, 1987, 1991a), pan-retinal laser photocoagulation 

(Diabetic Retinopathy Study Research Group 1978, 1981), 

and early vitrectomy (Diabetic Retinopathy Vitrectomy Study 

Research Group 1985a, 1985b, 1988a, 1988b, 1990). Although 

the diabetic retinopathy continues to progress in some patients 

in spite of good control of blood glucose and blood pressure, a 

tight control of blood glucose levels and blood pressure is the 

fi rst choice for the treatment of diabetic retinopathy.

Focal laser treatment signifi cantly decreased the risk of 

visual disturbances in diabetic patients with macular edema. 

However, side effects, eg, foveal burns, central visual fi eld 

defects and retinal fi brosis, are not uncommon. Pan-retinal 

photocoagulation also has many side effects such as visual 

field constriction, night blindness, and exacerbation of 

macular edema. However, pan-retinal laser photocoagulation 

signifi cantly decreased the risk of visual disturbances in dia-

betic patients with severe non-proliferative and proliferative 

retinopathy. Early vitrectomy reduced the risk of visual dis-

turbances in diabetic patients with proliferative retinopathy 

and vitreous hemorrhage. Again, there are many side effects 

of vitrectomy including vitreous hemorrhage, retinal detach-

ment, neovascular glaucoma, and infection.

Intravitreal or sub-Tenon injections of triamcinolone 

acetonide (TA) has been recently used to treat the macular 

edema common in diabetic patients, and during the early 

post-TA period, there were improvements in both the macular 

edema and visual acuity (Martidis et al 2002; Avitabile et al 

2005; Sorbin and D'Amico 2005; Jonas et al 2006a). Steroids 

are known to up-regulate the expression of tight junctions 

proteins, eg, occludin and ZO-1, in endothelial cells, and 

this increase reduce the increased vascular permeability in 

the retina (Antonetti et al 2002). Unfortunately, repeated 

injections of TA are frequently required, and there are many 

side effects such as increased intraocular pressure, cataracts, 

and infections (Gillies et al 2004; Jonas et al 2005, 2006b; 

Westfall et al 2005). Although long-term follow-up studies of 

TA must be made, the treatments by TA may be considered 

together with laser treatments and vitrectomy in diabetic 

patients with severe macular edema.

There are many medical therapies that are being tried to 

prevent the development and progression of diabetic retinopa-

thy, eg, aspirin (Early Treatment Diabetic Retinopathy Study 

Research Group 1991b; Chew et al 1995), anti-VEGF agents 

(Cunningham et al 2005; Avery et al 2006; Chun et al 2006; 

Spaide et al 2006), protein kinase C inhibitors (PKC-DRS 

Study Group 2005, 2006; PKC-DMES Study Group 2007), 

growth hormone inhibitors (Kirkegaard et al 1990), and aldose 

reductase inhibitors (Sorbinil Retinopathy Trial Research 

Group 1990). However, Mohamed and colleagues (2007) stated 

that these treatments cannot be recommended for routine use 

because evidence to support their use has not been published.

The most important factor to consider in the management 

and the treatment of diabetic retinopathy is the protection of 

visual function. Because the onset and progression of neu-

ronal and vascular abnomralities lead to visual dysfunction, 

the targets of the therapeutic methods should be the factors 

that are common to both vascular and neuronal abnormalities 

of diabetic retinopathy. Thus, we have stated in an earlier 

review article that two of the candidates common to both 

vascular and neuronal abnormalities in diabetic retinopathy 

are tumor necrosis factor-alpha and Bax (Oshitari 2006). ER 

stress-related factors should also be considered as targets of 

new therapeutic strategies for diabetic retinopathy as well as 

the targets of new therapies for type 2 diabetes because ER 

stress is also related to pancreatic β-cell death and insulin 

resistance in patients with type 2 diabetes.

The results of a recent study showed that oral admin-

istration of chemical chaperones, 4-phenyl butyric acid or 

taurine-conjugated ursodeoxycholic acid, alleviated ER 

stress and improved the action of systemic insulin in diabetic 

animals (Özcan et al 2006). Although the precise mechanism 

involved in the improvement of type 2 diabetes is unclear, 

these chemical chaperones may stabilize protein conforma-

tion and improve the folding capacity of the ER, which in 

turn would reduce the ER stress in these diabetic animals. 

These chemical chaperones may become a standard treatment 

for type 2 diabetes because of their safety profi les in vivo 

(Maestri et al 1996; Kaplan and Gershwin 2005).
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Recently, a Bax inhibitor-1 (BI-1) was identifi ed to be an 

anti-apoptotic protein in mammals (Chae et al 2003), and this 

is relevant because BI-1 can regulate a cell death pathway 

involved in ER stress (Chae et al 2004). In addition, an over-

expression of BI-1 can protect against the neuronal cell death 

induced by ER stress (Dohm et al 2006). Although the mecha-

nism for this protective effect was not determined, a recent 

study showed that BI-1 can inhibit ER stress proteins such as 

CHOP, IRE1α, or phospho-JNK (Lee et al 2007). The activity 

of BI-1 may provide clues on developing new ways to regulate 

the ER stress-induced apoptosis. For example, brain-derived 

neurotrophic factor (BDNF), which is known to reduce the neu-

ronal degeneration of diabetic retinas in vivo (Seki et al 2004), 

prevents ER stress-mediated neuronal cell death by suppressing 

caspase-12 activation in vitro (Shimoke et al 2004).

Although these neuroprotective therapies may be prom-

ising, the prevention of neuronal cell death under chronic 

diabetic stress may have limitations. Even if one major cell 

death pathway is blocked, another cell death pathway may 

become activated. Even when apoptosis can be blocked, 

other types of cell death such as necrosis or autophagy 

may be induced (Koh et al 1995; Hartmann et al 2001; 

Vandenabeele et al 2006). Thus, even if we can establish 

neuroprotective therapies for diabetic retinopathy, the fi rst 

choice of the treatment for diabetic retinopathy must still be 

the standard treatment of controlling blood glucose levels and 

blood pressure to reduce the causes of diabetic stress.

In conclusion, ER stress is involved in the pathogenesis 

of type 2 diabetes and diabetic retinopathy. The reduction of 

ER stress by chemical chaperones such as 4-phenyl butyric 

acid or taurine-conjugated ursodeoxycholic acid may become 

one of the standard treatments for type 2 diabetes. Such 

treatments may be helpful in preventing the development 

of diabetic retinopathy. Additional studies are required to 

determine the optimal methods to reduce ER stress in patients 

with diabetic retinopathy.
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