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At the dawn: cell-free DNA fragmentomics and gene regulation
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Epigenetic mechanisms play instrumental roles in gene regulation during embryonic development and disease progression.
However, it is challenging to non-invasively monitor the dynamics of epigenomes and related gene regulation at inaccessible
human tissues, such as tumours, fetuses and transplanted organs. Circulating cell-free DNA (cfDNA) in peripheral blood provides a
promising opportunity to non-invasively monitor the genomes from these inaccessible tissues. The fragmentation patterns of
plasma cfDNA are unevenly distributed in the genome and reflect the in vivo gene-regulation status across multiple molecular
layers, such as nucleosome positioning and gene expression. In this review, we revisited the computational and experimental
approaches that have been recently developed to measure the cfDNA fragmentomics across different resolutions comprehensively.
Moreover, cfDNA in peripheral blood is released following cell death, after apoptosis or necrosis, mainly from haematopoietic cells
in healthy people and diseased tissues in patients. Several cfDNA-fragmentomics approaches showed the potential to identify the
tissues-of-origin in cfDNA from cancer patients and healthy individuals. Overall, these studies paved the road for cfDNA
fragmentomics to non-invasively monitor the in vivo gene-regulatory dynamics in both peripheral immune cells and
diseased tissues.
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MAIN
Multidimensional epigenetic layers play instrumental roles in
mammalian gene regulation [1–3]. During cancer initiation and
progression, embryonic development and organ transplantation,
epigenomes vary across different time points and impact gene
expression and biological function [4–9]. In animal models, the
variations of the epigenome and transcriptome across different
time points can be characterised through high-throughput
sequencing technologies, such as ATAC-seq and RNA-seq, by
sacrificing the animals with the same genetic background [10–12].
In cultured human cells still alive, the epigenome dynamics can be
visualised by fluorescence live imaging [13–15]. However, in
human subjects still alive, especially for the inaccessible human
tissues, such as solid tumours, fetuses during pregnancy and
transplanted organs, how to non-invasively monitor the dynamics
of their epigenomes and transcriptomes is still largely unexplored.
Circulating cell-free DNA (cfDNA) in the peripheral blood offers

a promising and non-invasive approach to monitoring the
genome dynamics from the inaccessible human tissues [16–18].
CfDNA molecules from the tumours, foetus and transplanted
organs can be separated out based on the allelic status of
mutations or single-nucleotide polymorphisms (SNPs) within
fragments measured through deep whole-genome sequencing
(WGS). Thus, part of or the whole genome in these inaccessible
tissues can be reconstructed across different time points [19–21].
However, most of the current cfDNA WGS studies only focus on
the genetic aberrations in the cfDNA, such as SNPs or copy
number variations (CNVs) [22–24], but not epigenomes. Since the
cfDNA fragments are outside the cells and highly fragmented, it is

challenging to directly characterise the epigenomes, except for
covalent DNA modifications and very few other cases [25–31].
Interestingly, the fragmentation patterns of cfDNA are not uniform
across the genome [32, 33]. Several studies suggested a tight
correlation between cfDNA-fragmentation patterns and in vivo
gene-regulatory maps within the cells, such as nucleosome
positioning and gene expression [32–34]. These correlations
raise the possibility of inferring back the epigenome and
transcriptome within the cells from the cfDNA-fragmentation
patterns. In this review, we will first go through the major
milestones of cfDNA-fragmentation studies in the pre-omics era,
which inspired many studies in the later-omics era. Further, we will
summarise the state-of-art high-throughput methods, mostly
computational, on the measurement of cfDNA fragmentation
(Table 1). Finally, we will go through the approaches for the tissue-
of-origin analysis using cfDNA fragmentation.

THE PRE-OMICS ERA OF CFDNA-FRAGMENTATION STUDIES
Early in 1948, the presence of cell-free nucleic acids in the
circulation was first described by Mandel and Metais in human
blood from healthy individuals and patients with different
diseases [35]. In the beginning, circulating cell-free DNA (cfDNA)
was demonstrated to be predominantly double-stranded [36].
Later in 1973, single-stranded cfDNA fragments were also
characterised in the serum from systemic lupus erythematosus
(SLE) patients [37]. The variations of strandness and sizes of cfDNA
fragments altered the clearance kinetics and mechanism of
DNA in the circulation [38]. Stroun et al., in 1987, showed that
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cfDNA from cancer patients was double-stranded primarily with
the size of 0.5–21 kb and revealed that cfDNA from cancer patients
is smaller than genomic DNA with fragmented status [39]. Later,
several studies suggested that cfDNA is mainly released from
apoptotic or necrotic cells [40, 41], which is further proved by
multiple subsequent studies [42, 43]. In 2002, Lui et al. first
demonstrated that the cfDNA from healthy individuals mostly
comes from the haemopoietic cells by estimating the percentage
of cfDNA from the Y chromosome in the plasma from sex-
mismatched bone marrow transplantation patients [44]. In 2003,
Deligezer et al. suggested a significant correlation between the
fragmentation status in cfDNA and DNA methylation, as well as
the nucleosomes, at the 1st exon of the p16 gene in lymphoma
patients [45]. Further, the study of variations in cfDNA-fragment
sizes was expanded to other fields, such as prenatal test [46].
Before the development of next-generation sequencing (NGS)

technology, quantitative PCR (qPCR) was applied to study the
fragmentation in cfDNA. By using qPCR, Diehl et al. discovered
that mutant sequences are enriched in small DNA fragments
(<180 bp) but not in long fragments [40, 47, 48]. Further, by
optimised qPCR and xenografted model, Mouliere et al. first
indicated that cancer-derived cfDNA showed higher fragmenta-
tion as compared with healthy controls highlighting higher
fragmentation as a hallmark of cancer cfDNA (circulating tumour
DNA, ctDNA) [49]. Sanchez et al. systematically compared the
distribution of cfDNA-fragment sizes with cfDNA WGS in both
double-stranded and single-stranded cfDNA by qPCR and
discussed the association of mononucleosomes and chromato-
somes with cfDNA [50].
Moreover, Meddeb et al. quantified the influence of several pre-

analytical and demographic parameters on the overall variations
of fragmentation in nuclear and mitochondrial circulating cfDNA
[51]. Recently, droplet digital PCR (ddPCR) was combined with
bisulfite treated by Shemer et al. to accurately quantify the tissues-
of-origin in cfDNA [52]. Other approaches, such as sophisticated
capillary electrophoresis, electron microscopy, Raman microscope,
3D laser-scanning confocal microscope and atomic force micro-
scopy, were also utilised to study the cfDNA fragments besides
NGS [53–55]. However, due to the limitation of technologies,
cfDNA-fragmentation studies at the pre-omic era were mostly
limited to the summary statistics or limited loci in the genome.
The correlation between genome-wide fragmentation patterns in
cfDNA and gene regulation within the cells is still not explored.

THE CFDNA-FRAGMENTOMICS ERA AND GENE REGULATION
Thanks to the advances in NGS, it is possible to measure the
fragmentation patterns in millions of cfDNA molecules across
different genomic locations in a high-precision and high-
throughput way. Due to the overall short-fragment sizes in cfDNA,
WGS library construction on cfDNA does not require the mechanic
sonication step, which was widely used for the traditional WGS
library construction on genomic DNA and will significantly affect
the measurement of fragmentation patterns in cfDNA. Moreover,
instead of a single summary-statistic score or characteristics from
a limited number of loci, researchers can accurately estimate the
fragment size, ends and strandness at every single cfDNA
molecule, as well as the fragment coverage at each base of the
reference genome [16, 56–61] [16, 56–59]. In 2008, Fan et al.
identified the well-positioned nucleosomal patterns around TSS in
plasma cfDNA but not in genomic DNA control by utilising the
fragment coverages estimated from NGS [62]. In 2010, Fan et al.
further demonstrated that the fragment size originated from the
foetal side is smaller than those originated from the maternal side
through paired-end NGS [63]. The concept of ‘cfDNA fragmen-
tomics’ was first introduced by Ivanov et al. in 2015 [32]. Since
then, in addition to the study of the fragment coverages and sizes,
several innovative computational and experimental approachesTa
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have been developed to comprehensively measure the cfDNA-
fragmentation patterns in plasma across different resolutions,
including large-scale fragmentation patterns at megabase level
(DELFI) [64], large-scale co-fragmentation patterns (FREE-C) [65],
fragment coverage near transcription-start sites (TSS) [34], cfDNA-
accessibility score near the transcription factor-binding sites (TFBS)
[66], orientation-aware cfDNA fragmentation (OCF) [67], wind-
owed protection score (WPS) [33], cfDNA-fragmentation hotspots
[68], inference of DNA methylation from cfDNA-fragmentation
patterns [69], the preferred-ended position of cfDNA [70, 71], the
end-motif frequency and motif-diversity score (MDS) [72], jagged
end [73, 74] and patterns outside the chromosomes [75–78]. Here,
we will go through these state-of-art approaches applied at cfDNA
fragmentation from a large-scale genomic bin to a single
fragment.

Large-scale fragmentation patterns (DELFI) and chromatin
organisations [64]
“DNA evaluation of fragments for early interception” (DELFI) was
developed to detect genome-wide fragmentation abnormality
of cfDNA by ~1X low-coverage whole-genome sequencing
(WGS). DELFI evaluated the fragment coverage, size and other
summary statistics within 100-kb non-overlapping bins and
aggregated them into the 5-megabase (Mb) non-overlapping
window, which will bring more than 20,000 reads per window at
1–2X genome coverage. They estimated the ratio between short
cfDNA fragments (100–150 bp) and long cfDNA fragments
(151–220 bp) within each window and found the increased
aberrations at cancer patients, not at healthy individuals. They
further utilised these summary statistics for the diagnosis of
early-stage cancer. The fragment coverage among these
statistics in the window was the most critical classification
feature in their stochastic gradient-boosting model. Regarding
the correlation with gene regulation, they utilised the window-
protection score (WPS) [33] approach to infer the nucleosomal
positioning in both cfDNA- and DNase-digested genomic DNA
(gDNA) from lymphocytes. The median distance of the nucleo-
some from cfDNA showed a high correlation with that from
DNase-digested gDNA and intermediated correlation with the
chromatin compartment characterised by Hi-C from lympho-
cytes. These results indicated the important role of both
nucleosome occupancy and high-ordered chromatin organisa-
tions for the cfDNA fragmentomics at cancers.

Large-scale co-fragmentation patterns (FREE-C) and 3D
genome [65]
‘FRagmentation Evaluation of Epigenetics from CfDNA sequen-
cing’ (FREE-C) was developed to evaluate the co-fragmentation
patterns between pairs of large-scale genomic bins in the low-
coverage WGS. They hypothesised that the cfDNA molecules
released from two genomic regions would show similar
fragmentation patterns at large scale if the two regions are
spatially close to each other inside the cells, further informing
the 3D genome status. There are two different approaches in
FREE-C: multi-sample FREE-C and single-sample FREE-C. (1). In
multi-sample FREE-C, they divided the chromosomes into 500-
kilobase (kb) non-overlapping bins and calculated a ‘normalised
fragmentation score’ based on fragment size at each bin for
each individual. They then calculated the Pearson correlation
coefficient of the fragmentation scores between each pair of
bins in the same chromosome across all individuals. (2). Single-
sample FREE-C calculated the fragment-size distributions of
cfDNA in each genomic bin at a single cfDNA WGS sample.
Further, FREE-C characterised the distance of the fragment-size
distribution between each pair of genomic bins in the same
chromosome using the Kolmogorov–Smirnov test. After obtain-
ing the two-dimensional distance-correlation matrix between
bins in each chromosome by multi-sample FREE-C and

single-sample FREE-C, they found a high similarity with the
correlation matrix characterised from Hi-C data in white blood
cells (WBCs). The first eigenvector of the matrix from cfDNA in
both approaches showed high similarity with the A/B compart-
ments characterised from Hi-C data in WBCs. The fragment sizes
of cfDNA are affected by multiple epigenetic backgrounds, such
as DNA methylation and histone modifications [32, 79]. Thus,
they performed the multivariate analysis and confirmed that the
3D genome signal is the major contributor to the co-
fragmentation patterns in large-scale rather than sequence-
composition bias or other large-scale epigenetic signals, such as
CpG methylation and H3K4me1. This study has not been peer-
reviewed and is supported by commercial entities.

Fragment coverage near TSS and gene expression [34]
In 2016, Ulz et al. developed a computational approach to
summarise the fragment coverages at two focal regions near TSS:
2000-bp region centred on the TSS (2K-TSS coverage) and −150
bp to +50 bp with respect to the TSS (NDR coverage). They
normalised the fragment coverage for both regions with the
relative copy number to exclude the potential effect of copy
number alterations (CNAs) often observed in cancer. Further, Ulz
et al. utilised these two features by a support-vector machine
model for the binary classification of the housekeeping genes and
constitutively not-expressed genes and achieved high accuracy in
the cross-validation. Moreover, the model was applied in the
cancer patients to predict the gene’s binary expression status or
even several isoforms inside the tumour, suggesting a promising
opportunity to non-invasively investigate the in vivo gene
expression status at inaccessible tissues. The earlier study by
Ivanov et al. [32] also revealed the associations between gene
expression and nucleosome-fragmentation patterns near promo-
ters but with whole-exome sequencing, which limited its
capability to predict the gene expression status with high
accuracy.

The cfDNA-accessibility score and the binding affinity of the
transcription factors [66]
In 2019, Ulz et al. developed an accessibility score to estimate
the overall binding affinity of the transcription factor (TF) by
cfDNA WGS. They summarised the cfDNA-fragment coverages
near each transcription factor-binding site (TFBS). The gDNA-
accessibility pattern near TFBS was different in proximal and
distal regions to the TSS. They found the low-frequency pattern
of cfDNA-fragment coverage at proximal TFBS and the high-
frequency pattern of cfDNA-fragment coverage at distal TFBS.
They utilised Savitzky–Golay filters to suppress effects on the
coverage not contributed by nucleosome positioning and
remove the local biases. Further, the high-frequency signals
were ranked and finally utilised as the accessibility score. Ulz’s
cfDNA-accessibility score around the cell-type-specific TFs
showed similar overall trends as that at gDNA accessibility
measured by ATAC-seq between cancer and healthy. Thus, they
concluded that the cfDNA-accessibility score indicated the
global in vivo binding affinity of TFBS in each cfDNA sample.
Further, Ulz et al. demonstrated the ability of the cfDNA-
accessibility score to distinguish the subtypes of late-stage
prostate cancer by aggregated low-coverage cfDNA WGS.
Finally, the accessibility score across 504 TFs showed good
performance in identifying the early-stage colorectal-cancer
samples even with the low tumour fraction.

OCF and open-chromatin regions [67]
Sun et al. developed a computational approach to quantify the
cfDNA-fragmentation patterns near the tissue-specific open-
chromatin regions identified in previous epigenomic profiling by
DNase-seq. First, they identified the tissue-specific open-chroma-
tin regions from different publicly available DNA- accessibility
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data. Second, around the centre of these open-chromatin regions
(±1000 bp), they calculated the coverage of upstream (U)
fragment ends (the end mapped to the reference genome with
a smaller coordinate), and the coverage of downstream (D)
fragment ends (the end mapped to the reference genome with
larger coordinate), respectively. Since the U and D ends showed
peaks at −60 and +60 bp from the centre of the open-chromatin
regions, respectively, they calculated the OCF value by quantifying
the differences of coverages of the U and D ends in 20-bp
windows around these two peaks for each tissue-specific open-
chromatin regions. Naturally, the OCF value can be utilised to rank
the relative contributions of different cell types to the circulating
cfDNA and further application for the diagnosis of different
pathological and physiological conditions.

WPS, single-stranded cfDNA, nucleosomes and other
epigenetic backgrounds [33]
In the traditional WGS library-preparation approach, damaged
and short double-stranded DNA molecules were poorly recov-
ered. Thus, Snyder et al. developed a single-stranded cfDNA
library- preparation method, which was adapted from studies of
damaged ancient DNA [80]. Several follow-up studies on single-
stranded cfDNA further revealed that most cfDNA is highly
nicked, which might be subjected to continuous nuclease
activity in the bloodstream [50, 67, 81]. Snyder and his
colleagues also developed a computational approach, named
WPS, to reconstruct the footprint of nucleosome positioning and
transcription factor binding through deep WGS. Basically, WPS
was calculated by the number of DNA fragments completely
spanning a genomic window minus the number of fragments
with an endpoint within that same window. They applied a
peak-calling algorithm on the genome-wide WPS signals and
identified many nucleosome-occupied regions, which showed
similar genomic distributions as the nucleosome maps pre-
viously identified within the blood cells. The long-fraction WPS
(L-WPS) was calculated by long fragments (120–180 bp) with a
larger window (120 bp) and short-fraction WPS (S-WPS) was
estimated by short fragments (35–80 bp) with a smaller window
(16 bp). While L-WPS captured the signal from nucleosome
occupancy, S-WPS represented the potential of TF binding, such
as CTCF. Further, the nucleosomal spacing identified by WPS
showed correlations with the A/B compartments identified by
Hi-C, open-chromatin regions and gene expression specifically
from haematopoietic cells, which enable its potential to identify
the tissues-of-origin from cfDNA.

CfDNA-fragmentation hotspots, open-chromatin regions and
transposons [68]
Cell-free dna fragmentation (CRAG) was developed to de novo
characterise the genome-wide cfDNA- fragmentation hotspots in
cfDNA WGS. Many studies suggested that local nucleosome
structure reduces the fragmentation process, indicating the
potential enrichment of cfDNA-fragmentation hotspots (lower
coverage and smaller size) at the open-chromatin regions.
Basically, they utilised a 200-bp sliding window to scan the
genome. The fragment coverage was weighted by the ratio of
average fragment sizes in the window versus that in the whole
chromosome, named integrated fragmentation score (IFS). They
further applied a negative binomial model to test if the windows
showed significantly lower IFS than the local (5-kb and 10-kb
centre to the window) and global background (whole chromo-
some). In cfDNA from healthy, cfDNA-fragmentation hotspots
were enriched in gene-regulatory elements, including promoters,
haematopoietic-specific enhancers and 3′ end of transposons. In
cfDNA from early-stage cancers, IFS showed aberrant patterns at
hotspots near microsatellites, CTCF and promoters of genes
enriched in immune processes from peripheral immune cells. They
also applied the IFS signals from hotspots for the diagnosis of

multiple early-stage cancers with high accuracy. This study has not
been peer-reviewed.

Inference of DNA methylation from cfDNA-fragmentation
patterns [69]
The cfDNA-fragment sizes are significantly different at methylated
and unmethylated fragments [45, 79]. Liu et al. developed a
machine-learning approach to infer the base-pair resolution DNA
methylation level by the fragmentation patterns from cfDNA WGS
[69]. Fragment size, coverage and the distance of each CpG to the
fragment end in each fragment were utilised as features for a non-
homogeneous hidden Markov model. The emission probability
was estimated by adding a Bayesian factor of cfDNA methylation
level from healthy peripheral blood mononuclear cells to the
multivariate Gaussian mixture model. In cfDNA WGBS, with the
ground truth of the binary CpG methylation status in each CpG at
each fragment, they achieved about 0.92 area under the curve in
the balance-sampled CpG sites at CpG-rich regions (>=10 CpGs in
each fragment). They also achieved a high correlation in a 1-kb
window between the prediction from cfDNA WGS by the matched
cfDNA WGBS from the same tube of blood in both healthy and
multiple cancer patients with deep and shallow sequencing. Using
hundreds of WGBS datasets from different tumour and normal
cells as the reference map, they deconvoluted cfDNA’s tissue-of-
origin status by inferred DNA methylation level at ultra-low-pass
WGS from thousands of breast or prostate cancer samples and
healthy individuals. The tissue-of-origin status in cancer patients
showed a high concordance with confirmed metastasis tissues
from physicians and correlation with some clinical metadata. This
study has not been peer-reviewed.

The preferred-ended position of cfDNA [70, 71]
Taking advantage of PCR-free ultra-deep WGS, Chan et al. first
identified the presence of foetus-associated cell-free DNA
preferred ends at plasma from pregnant women [70]. They
scanned the genome to check if certain locations had a
significantly increased probability of being an ending position of
plasma DNA fragments using a Poisson probability function. The
ratio between foetal-specific preferred end and maternal-specific
preferred end showed a high correlation with the foetal fraction
estimated by the fraction of reads mapped to the chrY. Moreover,
the fragments with these foetus-specific preferred ends showed
similar fragment-size distributions as those overlapped with
foetus-specific alleles. These observations disappeared at frag-
ments that ended more than just 5 bp away from the foetal-
specific preferred ends, which suggested the high specificity of
these preferred-end positions from the foetus. Later, Jiang et al.
discovered the liver-associated preferred ends at patients who
received liver transplants and tumour-associated preferred DNA
ends at cancer patients with a similar strategy [71]. In the follow-
up study from the same group, Sun et al. suggested that the
preferred-end positions were highly correlated with the nucleo-
somal structure [82]. They found that foetal preferred end sites
were generally located in the nucleosome cores, while the
maternal ones were located in the linker regions, which explained
the relative shortness of foetal DNA in maternal plasma.

The end-motif frequency and MDS [72]
Jiang et al. measured the end-motif frequency by calculating the
frequency of the first 4-nucleotide (i.e. 4-mer) sequence on each
5′-fragment end of plasma DNA after alignment to the reference
genome. The comparison of end-motif frequency revealed the
significant differences between hepatocellular carcinoma (HCC)
patients and healthy at some of the motifs across all the 256
combinations. For example, the CCCA motif showed significant
reductions at the cfDNA from cancer patients compared with the
non-malignant controls. Jiang et al. further utilised the normalised
Shannon entropy to summarise the variations of the motif
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frequency into a single MDS score for each cfDNA WGS sample. A
higher MDS value suggested a higher variety of plasma DNA
molecules with different end motifs, while a lower MDS value
indicated fewer varieties of plasma DNA end motifs. They found a
higher MDS value in HCC patients than the non-malignant
controls and utilised it as a marker for the diagnosis of HCC. At
the same dataset, the MDS value showed a better classification
power than other fragmentomic metrics, such as fragment size or
OCF value developed in the same group. More importantly, by
utilising the DNASE1L3-deleted model system in mice, they
discovered that the DNASE1L3 might have a major role in
generating the CC motif fragments predominant in cfDNA. In the
human cancer data from the TCGA research network, they
observed that the expression levels of DNASE1L3 across multiple
cancers were generally downregulated. In several other additional
literature, homozygous loss-of-function mutations of DNASE1L3 in
both mouse model and human were found to significantly impact
the end-motif frequency [83, 84]. These findings finally open the
door to dissect the molecular mechanism behind cfDNA
fragmentomics.

Jagged end [73, 74]
The traditional WGS library-preparation step usually contains the
DNA end-repair steps before the generation of NGS libraries,
which erases the protruding-end (i.e. jagged-end) information.
Early in 2008, Suzuki et al. identified the 5′ jagged ends in plasma
DNA but not in gDNA by using the radioactive end-labelling
procedure with the enzyme Klenow fragment [73]. CpG dinucleo-
tides outside the CpG island in the human genome are usually
methylated. In the library-preparation step of bisulfite sequencing,
unmethylated cytosine is usually used for the end-repair step.
Therefore, the uneven methylation status of CpG between the
original and newly synthesised strand at the 3′ end may reflect the
length of the jagged end. By utilising the publicly available cfDNA
and gDNA WGBS data, Jiang et al. showed the proof-of-concept
results of the genome-wide presence of jagged end at plasma
DNA but not at sonicated genomic DNA from blood cells [74].
They developed a jag index (JI-U, Jagged Index-Unmethylated) in
read 2 to measure the jaggedness of the fragments. The JI-U in
cfDNA fragments between 130 and 160 bp showed a high
performance in diagnosing the HCC in their previous cfDNA
WGBS cohort. CpG dinucleotides are underrepresented in the
human genome, which will affect the accuracy of measuring the
length of the jagged end. Since non-CpG cytosine is usually
unmethylated and widely distributed in the human genome, they
further developed CC-tag technology by using methylated
cytosine instead of unmethylated cytosine for the end-repair
step. Therefore, in the context of CpH, they can utilise the JI-M
(Jagged Index-Methylated) to characterise the jaggedness with
higher accuracy. Finally, they observed the increases of jagged-
ness in mice with the deletion of DNASE1L3 (DNASE1L3−/−)
compared with wild-type mice, whereas the decreases of
jaggedness in mice with deletion of DNASE1 (DNASE1−/−),
further revealed the possible biological mechanism behind
jaggedness.

CfDNA-fragmentation patterns at eccDNA [76–78]
Zhu et al. and Kumar et al. published the articles almost the same
time about the genome-wide identifications of extrachromosomal
circular DNA (eccDNA) at the cfDNA from human blood [76, 77]. To
enrich eccDNA from cfDNA, Zhu et al. utilised the ATP-dependent
DNase to selectively digest linear DNA and then applied the
multiple-displacement-amplification (MDA) method to amplify
the remaining circular DNA preferentially. Kumar et al. utilised
the proteinase and exonucleases to remove linear DNA and
subjected to rolling-circle amplification to increase the yield of
circular DNA. Very recently, Sin et al. utilised exonuclease V to
digest the background linear DNA and follow-up with MspI

digestion or Tn5 tagmentation to build the NGS library [78]. These
results suggested that ecc-cfDNA showed predominate peaks at
dinucleosomal fragment size and highly enriched in exons, 3′UTR
and CpG island, as well as the DNase-hypersensitive sites,
H3K4Me1 and H3K27Ac marks. The ecc-cfDNA was also identified
at cfDNA from cancer patients with longer fragment size than that
from healthy controls, which suggested it as a potential biomarker
for the disease diagnosis.
Overall, different approaches emerged rapidly to measure the

cfDNA fragmentomics and even benefit other non-fragmentation-
based measurements of cfDNA. For example, the characteristics of
small fragment sizes from ctDNA or foetus have been utilised to
enrich the ctDNA or cell-free foetal DNA (cffDNA) and thus
increase the performance of cancer diagnosis and NIPT by CNVs
[85–88]. Moreover, the shorter fragment size in ctDNA was utilised
to filter out the possible clonal haematopoiesis of indeterminate-
potential (CHIP)-associated genetic variants and improve the
classification performance for the genetic-based approaches
[89, 90]. The non-random fragmentation and fragment-size
information have recently been incorporated into the mutational
calling algorithm specifically designed for the cfDNA [91].

IDENTIFICATION OF TISSUES-OF-ORIGIN BY CFDNA
FRAGMENTOMICS
Different measurements of cfDNA fragmentomics described
above are highly correlated with local and global epigenetic
backgrounds, the patterns of which are known to be highly cell-
type specific [92–94]. Therefore, it is possible to evaluate the
tissues-of-origin by cfDNA fragmentomics.
DELFI, coverage near TFBS and cfDNA-fragmentation hotspots

showed the potential to distinguish different cancer types in a
supervised manner of machine learning but without providing the
most relevant cell types contributed to cfDNA [64, 66, 68].
Preferred-end position, ended motif frequency and jagged end
showed the potential for the estimation of the most relevant cell
types but only demonstrated their correlations with the foetal
sources in pregnant women, transplanted tissue source in organ-
transplantation patients and tumour sources in cancer patients
[70–72, 74].
Snyder et al. performed the fast Fourier transformation (FFT) on

WPS signals in the first 10 kb of gene bodies [33]. Then they
evaluated the correlations of the intensity of FFT signal against 76
gene expression datasets of human cell lines and primary tissues
and found out that the most negatively correlated cell lines are
haematopoietic lineages in healthy individuals. The intensity of
FFT signals from the late-stage cancer patients showed the most
positive correlations with cell lines from non-haematopoietic
lineages. However, this WPS-based approach does not give the
relative contributions from each cell type.
Sun et al. utilised OCF value around tissue-specific open-

chromatin regions to solve this problem [67]. In healthy subjects,
they observed the positive OCF values on open-chromatin regions
from T cells and liver, and near or below zero on other tissue-
specific open-chromatin regions. At cfDNA from pregnant women,
liver transplantation and HCC patients, lung-cancer patients and
colorectal-cancer patients, they observed the elevated OCF values
on the placenta, liver, lungs or small intestine-specific open-
chromatin regions, respectively. More importantly, the rank of the
OCF value seems to provide the relative contributions from each
cell type.
Liu et al. tried to estimate the absolute fractions of cell types that

contributed to cfDNA by using A/B compartments inferred from
FREE-C, which were represented as the linear combinations of 65
datasets from 18 tissues/cell types (Hi-C, H3K4me1 or WGBS data)
[65]. However, the reference panel here is arbitrary and not
completed yet, especially for the Hi-C data from different cell types.
The inferred DNA methylation level from cfDNA seems to take
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advantage of the rich reference panel from DNA methylation and
current well-established methylation-deconvolution methods to
obtain the absolute contribution value from different cell types [69].
However, the inference accuracy of the methylation level in this
approach is still not high enough for a robust and sensitive
estimation of tissues-of-origin.
Overall, unlike the tissue-of-origin studies by cfDNA methylation

in different pathological conditions [28, 95–105], the current
tissue-of-origin analysis methods by cfDNA fragmentomics are still
in their infant stage. An accurate and robust computational
approach is still needed. Importantly, circulating cfDNA fragmen-
tomics data from cancer patients contain the fragmentation
information at DNA released from multiple cell types. A well-
designed gold-standard system is needed for the complete
benchmark and evaluation of the current tissue-of-origin analysis
methods, including those based on cfDNA fragmentomics and
methylation. Moreover, this is especially crucial in oncology for the
fragmentation analysis in diagnosis and screening of cancers,
given the presence of cfDNA deriving from a mixture of malignant,
tumour-microenvironment and normal cells.

DISCUSSION
In summary, the cfDNA fragmentomics showed the potential to
characterise different molecular layers, especially epigenetics, in
gene regulation within the cells. Therefore, circulating cfDNA in
the peripheral blood offers a promising non-invasive approach to
monitor the dynamics of genetics and epigenetics information
together from multiple cell types in a single WGS experiment.
CfDNA in peripheral blood is mainly from haematopoietic cells in
healthy people and additional diseased tissues in patients
[28, 44, 95]. Thus, cfDNA fragmentomics may inform the initiation
and progression of complex diseases such as early-stage cancers
and autoimmune diseases that are associated with genetic and
epigenetic aberrations in both primarily affected tissues as well as
multiple immune cells [106–108]. Moreover, cfDNA-
fragmentomics study in cancer does not suffer the problem of
CHIP-associated genetic variations, which are not specific to
cancer but a normal phenotype of ageing [109–111].
Beyond the circulating blood, cfDNA also existed in many other

bodily fluids, such as urine and cerebrospinal fluid (CSF) [112–116].
The cfDNA fragmentomics showed significantly different patterns
at these bodily fluids. The comprehensive characterisation of
cfDNA fragmentation and the related biological mechanisms at
these bodily fluids are still largely unexplored. More interestingly,
how the cfDNA fragmentomics evolves in the context of evolution
across different species beyond the mice is still not known.
Circulating cfDNA showed different fragmentation patterns

when released from cellular apoptosis or necrosis. Neutrophil
extracellular DNA traps (NETs) were identified in 2004 [117]. It has
been shown that NETosis may lead to the release of DNA without
the cell lysing upon certain conditions [56, 118–120]. How does
NETosis affect the fragmentation patterns, especially with the
presence of different pathogens, will be an interesting question to
explore.
Currently, some urgent computational and experimental-

related questions need to be solved for cfDNA fragmentomics.
For example, the cfDNA yield and fragment sizes varied
significantly with different pre-analytical steps, for instance,
the cfDNA-extraction kits [121]. The fragmentation patterns in
plasma cfDNA will also be severely affected by the contamina-
tion of genomic DNA from white blood cells, which could be due
to the delay between blood draw and plasma preparation,
storage time, plasma centrifugation and preparation approach,
and different storage tubes [122, 123]. How to compare the
cfDNA fragmentomics at samples generated from different
protocols is a big challenge. Moreover, the fragment coverage
and sizes measured by NGS are known to be affected by PCR

amplification, G+ C% content, mappability and k-mer composi-
tion [33, 124, 125]. Several computational approaches have been
proposed and applied to correct or normalise these technical
artefacts for the coverage and sizes [33, 64, 124–126]. However,
extensive benchmark and comparison is still needed to find the
optimal approach for different fragmentomic analysis at
different resolutions. For instance, whether or not these
technical factors will affect the other fragmentomic approaches,
such as the preferred end and end motif, is still not well
understood. Further, the batch effect is the major hurdle for
applying cfDNA fragmentomics in disease diagnosis and
prognosis [127]. Research groups began to evaluate the
importance of PCR-amplification bias for the application of
DELFI on their follow-up cancer screening study [126]. The
performance of most approaches mentioned in this review was
evaluated by cross-validation from the same dataset. Whether or
not the trained machine-learning model in one dataset can still
be applied to other independent datasets is a challenging
problem, especially for the multiple different measurements
across different genomic resolutions. Moreover, a lot of
fragmentation-based approaches were developed recently and
need more follow-up studies from different labs to replicate
their power in the prospective clinical studies. Although with
some recent progress, such as cfDNApipe [128], the lack of well-
documented and well-maintained open-source bioinformatic
packages for cfDNA fragmentomics is still a hurdle for the field
[57]. Finally, a limited number of fragmentomic features were
integrated together to represent the overall fragmentation level,
such as WPS to integrate fragment coverage and end [33].
However, unlike the integration-method development in single-
cell multi-omics field, it is urgently needed in the cfDNA field
that how to integrate multiple cfDNA fragmentomic features in
the same dataset, as well as other cfDNA signals
[22, 25, 26, 129, 130], and therefore boost the power for the
disease diagnosis. Several recent efforts on the multi-modality
integration across different resolutions of fragmentomics and
with other measurements began to show their power on the
cancer diagnosis, such as LIQUORICE and others
[85, 89, 90, 126, 131].
In 2020, the American College of Obstetricians and Gynecolo-

gists’ (ACOG) guidelines recommended the NIPT for all pregnan-
cies, regardless of risk, which could eventually generate millions of
cfDNA WGS every year in the United States. Moreover, large-scale
cfDNA WGS datasets have already been generated for cancer
detection and many other purposes [132]. However, most cfDNA
WGS datasets are deposited in the controlled-access repositories
for the purpose of protecting patients’ genotype information,
which is not needed for the cfDNA fragmentomic analysis. Due to
the enormous commercial interests behind the cfDNA, the access
of raw cfDNA NGS data in these repositories usually requires data-
transfer agreements that may take several months of negotiations
between the two organisations’ legal departments. Some initial
efforts, such as FinaleDB, have been made recently to establish the
cfDNA-fragmentomics database [133–135]. However, more com-
munity efforts are still needed to collect and uniformly process the
comprehensive publicly available cfDNA datasets together with
their rich metadata. A centralised and uniformly processed cfDNA-
fragmentomics database, similar to the ENCODE [136], will finally
benefit this community in the long run.
In the end, a large number of cfDNA WGS and their associated

clinical metadata from individuals at different physiological
conditions will eventually allow us to characterise the baseline
of the cfDNA fragmentomics and their variations in the population
level at both healthy and pathological conditions.
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