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ABSTRACT
High-throughput sequencing has given new insights into aquatic fungal community
ecology over the last 10 years. Based on 18S ribosomal RNA gene sequences publicly
available, we investigated fungal richness and taxonomic composition among 25 lakes
and four rivers. We used a single pipeline to process the reads from raw data to the
taxonomic affiliation. In addition, we studied, for a subset of lakes, the active fraction
of fungi through the 18S rRNA transcripts level. These results revealed a high diversity
of fungi that can be captured by 18S rRNA primers. The most OTU-rich groups were
Dikarya (47%), represented by putative filamentous fungi more diverse and abundant
in freshwater habitats than previous studies have suggested, followed by Cryptomycota
(17.6%) and Chytridiomycota (15.4%). The active fraction of the community showed
the same dominant groups as those observed at the 18S rRNA genes level. On average
13.25% of the fungal OTUs were active. The small number of OTUs shared among
aquatic ecosystems may result from the low abundances of those microorganisms
and/or they constitute allochthonous fungi coming from other habitats (e.g., sediment
or catchment areas). The richness estimates suggest that fungi have been overlooked
and undersampled in freshwater ecosystems, especially rivers, though they play key
roles in ecosystem functioning as saprophytes and parasites.

Subjects Biodiversity, Ecology, Microbiology
Keywords Fungi, Freshwaters, Meta-analysis, Diversity

INTRODUCTION
Molecular diversity of microbial eukaryotes in aquatic ecosystems is far less investigated
than their prokaryotic counterparts. This is even more striking for particular groups such
as fungi that attract very little interest. This bias partly results from their supposed low
abundances (e.g., ∼1% of total marine eukaryotes (Massana & Pedros-Alio, 2008)) that
suggests fungi have little ecological importance in aquatic ecosystems. However, rare
organisms can play crucial roles in ecosystem functioning but more importantly recent
studies have revealed much larger proportions of fungi than previously observed, as well
as high taxonomic richness in different marine (Le Calvez et al., 2009; Gao, Johnson &
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Wang, 2010; Orsi, Biddle & Edgcomb, 2013; Richards et al., 2012; Lepère et al., 2015) and
freshwaters environments (Monchy et al., 2011; Ishii, Ishida & Kagami, 2015; Duarte et al.,
2015; Lepère et al., 2016). The extent of fungal biodiversity is therefore likely underestimated
(Scheffers et al., 2012) though diversity estimates based on molecular data suggest that it
can range between 0.5 and 10 million species (Hawksworth, 2001;O’Brien et al., 2005;Mora
et al., 2011; Bass & Richards, 2011; Blackwell, 2011).

Despite this putative rich biodiversity, functional roles of aquatic fungi, for which only
3,000–4,000 species have been recorded, remain poorly characterized (Pautasso, 2013;
Rambold, Stadler & Begerow, 2013). They are mainly known as decomposers of leaves
in rivers, mangroves and wetlands (Seena, Wynberg & Bärlocher, 2008; Gulis, Kuehn &
Suberkropp, 2009) and as parasites of phytoplankton and zooplankton in lake ecosystems
(Jobard, Rasconi & Sime-Ngando, 2010). A decade ago, fungi were divided into four main
phyla: Basidiomycota, Ascomycota, Zygomycota and Chytridiomycota (James et al., 2006).
However, phylogeny of fungi is still unresolved and several phyla, classes and orders of
basal fungi have been determined, since. For example, Corradi (2015) highlighted that
Cryptomycota forms a new phylum in which we can find Microsporidia, Aphelids and
Rozellids. The vast majority of this phylum is characterized by environmental sequences
and gathered under the term ‘‘dark matter fungi’’ (Grossart et al., 2015). These fungi are
mostly zoosporic and ‘‘old’’ in term of evolution since they diverged from the remaining
fungi 710–1,060 million years ago (Lücking et al., 2009). These basal fungi are distant from
cultured and described fungi. Aquatic environments are thus likely to host a high number
of uncharacterized groups (Grossart & Rojas-Jimenez, 2016).

With the goal to drawup an inventory of existing knowledge on the diversity, distribution
and ecology of aquatic fungi, we (1) combined all publicly available fungal 18S ribosomal
RNA gene sequences produced by high-throughput sequencing approach from freshwater
studies (2) compared fungal composition across environments (3) analysed a new set of
data presenting 18S rRNA transcripts abundance on a sub-sample of 8 lakes in order to
characterize the active part of the community.

MATERIALS AND METHODS
Data collection of 18S rRNA genes in public databases
In this work, we collected a set of publically available data that were related to HTS
(pyrosequencing and Illumina with MiSeq technology) of the V4 region of the gene
encoding for 18S rRNA (Tables 1, 2 and Debroas et al. (2017)). These sequences were
obtained from freshwater ecosystems (25 lakes and ponds, and four rivers), sampled at
various depths and dates (long term or periodically), and/or obtained from various size
fractions (Table 1).

In this analysis, we included external references such as V4 amplicons sequenced from
a few non-freshwater ecosystems (marine ecosystems and environments characterized by
salinity gradients) to compare environments and define spurious OTUs (i.e., singletons,
see below) (Table 1).
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Table 1 High throughput sequencing (HTS) data used in this analysis.

Ecosystems References Geographic area Size fraction Primers HTS

Freshwater environments used
for taxonomic affiliation

Lakes
Pavin Debroas, Hugoni & Domaizon (2015) Massif central

(France)
0.2–5 µm NSF573-NSR951 454

Bourget Debroas, Hugoni & Domaizon (2015) Alps (France) 0.2–5 µm NSF573-NSR951 454
Leman Mangot et al. (2013) Alps (France) 0.2–5 µm NSF573-NSR951 454
LakeA Charvet et al. (2012) Arctic 0.2–3µm E572F-E1009R 454
LakeWH Charvet, Vincent & Lovejoy (2014) Arctic E572F-E1009R 454
Aydat, Anterne, Godivelle, Pavin,
Bourget, Sep, Villerest

Lepère et al. (2013) and
Taib et al. (2013)

Massif central
(France) and Alps

0.2–5 µm NSF573-NSR951 454

LaClaye
EtangVallees SaintRobert
Garbard

Simon et al. (2014)
and
Simon et al. (2015)

Chevreuse
Valley
(France)

0.2–5 µm
EK-565F18s-EUK
-1134-R- UNonMet

454

FAS3 FAS4 Kammerlander et al. (2015) Alps >0.65 µm TAReukV4F-
TAReukREV3

454

HL5 HL15 Himalaya >0.65 µm 454
A iguebelette MG-RAST:4703954.3 to 4703966.3 Alps (France) <50 µm NSF573-NSR951 454
Leman MG-RAST: 4703954.3 to 4703966.3 Alps (France) 0.2–50 µm NSF573-NSR951 454
Vichy, Aydat, Eguzon, Pavin, Fades,
Cournon, Grangent, RocheMoines

MG-RAST: 4703954.3 to 4703966.3 Massif central (France) 0.2–50 µm 515F-951R MiSEQ

Rivers and brooks
RiverA and RiverB Bricheux et al. (2013) France Biofilm 528FE-1193E 454
SaintAnneBrook Simon et al. (2014) and Simon et al. (2015) Chevreuse Valley (France) 0.2–5 µm 565F-1134R 454
Morcille MG-RAST: 4703954.3 to 4703966.3 France Biofilm NSF573-NSR951 454

External references: saline environments
and/or DNA amplifying by specific primers

Ngallou : hypersaline ponds Roux et al. (2016) NSF573-NSR951 454
Blanes Naples Oslo Roscoff Varna Logares et al. (2009) V4 454
Saline lakes Wang et al. (2010) A-528F B-1055R 454
Arctic Ocean Killias et al. (2014) 528F-1055R 454
Coastal Bachy et al. (2014) Ciliates Tin454-18SFw -

Tin454-18SRev
454
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Table 2 Richness of main taxonomic groups of fungi in freshwater ecosystem.

S. obs S. chao1 se. chao1 S. ACE se. ACE

Freshwater
Fungi 25,771 25,713 61 25,741 69
Ascomycota 3,339 3,339 1 3,350 26
Basidiomycota 4,061 4,061 <1 4,063 27
Cryptomycota 9,559 9,559 <1 9,562 41
Chytridiomycota 3,927 3,927 <1 3,932 28
Lakes
Fungi 17,026 17,419 27 18,057 62
Ascomycota 2,920 2,962 8 3,044 25
Basidiomycota 2,142 2,153 4 2,188 21
Cryptomycota 4,723 5,229 40 5,619 37
Chytridiomycota 3,002 3,035 7 3,122 26
Rivers
Fungi 12,453 12,757 23 13,279 48
Ascomycota 1,009 1,191 26 1,317 20
Basidiomycota 2,212 2,228 5 2,282 19
Cryptomycota 6,891 7,005 14 7,219 36
Chytridiomycota 1,323 1,360 8 1,433 16

RNA extraction and 18S rRNA amplification
To go further than the analysis of 18S rRNA genes we sampled eight lakes which are included
in the meta-analysis (Vichy, Aydat, Cournon, Grangent, Roche aux Moines, Eguzon, Fades
and Pavin, Table 1) to studied the 18S rRNA transcript level. They included both natural
and human-made waterbodies with considerable heterogeneity in terms of surface area
and catchment characteristics. Sampling was carried out during the homothermy period
in winter 2013–2014 as described inHugoni et al. (2015). Water samples were integrated in
the photic zone of each lake over the deepest part of the lake. A sub-sample of water (300
mL) was pre-filtered through 150 and 50-µm pore-size filters and collected on 0.2-µm
pore-size (pressure < 10 kPa) polycarbonate filters (Millipore) before storage at −80 ◦C
until nucleic acid extraction.

The nucleic acids extraction method was done as described in Hugoni et al. (2015).
Briefly, after thermic and enzymatic cell lysis, the AllPrep DNA/RNA kit (Qiagen, Valencia,
CA) was used. RNA samples were tested for the presence of contaminating genomic
DNA using PCR and then reverse transcribed with random primers using SuperScript R©

VILO (Invitrogen). Amplification of the V4 region of the 18S rRNA genes among cDNA
was performed using the universal primer 515F (GTG-YCA-GCM-GCC-GCG-GTA,
(Caporaso et al.,2010) and the eukaryotic primer 951R (TTG-GYR-AAT-GCT-TTC-GC).
Sequencing was achieved by the Genoscreen platform (Lille, France), using an Illumina
Miseq paired-end chemistry.
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Sequence analysis procedures
All sequence data (public databases and new data) were examined against the following
quality criteria: For the pyrosequencing data: (i) no Ns in the nucleotide sequence,
(ii) quality score ≥ 23 according to the PANGEA process (Giongo et al., 2010),
(iii) a minimum sequence length of 200 bp, and (iv) no sequencing errors in the
forward primer. The MiSEQ data were assembled with the USEARCH tool (usearch
v7.0.1090_i86linux64) (Edgar, 2013) and examined in relation to the previous criteria
as well as for the absence of errors in the reverse primer. Putative chimeras and
homopolymers were detected by UCHIME (Edgar et al., 2011) and a customised script
(https://github.com/panammeb/stable/blob/master/modules/check_homopolymers.pm).

The clean freshwater reads were clustered at a 95% similarity threshold (Mangot et al.,
2013; Lepère et al., 2016; Debroas et al., 2017) with USEARCH 7.0 (option: cluster_fast)
(Edgar, 2013) to identify representative OTUs. Clean data for the external references (e.g.,
sequences from organisms in marine environments) and selected sequences from the
SILVA database named RefEUKs (Debroas et al., 2017) were mapped on the representative
OTUs to define them. This procedure allowed us to remove the singletons. A singleton in
freshwater environments was therefore defined as a read sequenced only once, regardless
of the environment, and that was absent in the SILVA database.

Taxonomic affiliations
The representative OTUs were affiliated by similarity and phylogeny with a curated
reference sequences named RefEUKs (https://github.com/panammeb/). These eukaryote
references were extracted from the SSURef SILVA database (Pruesse et al., 2007) according
to the following criteria: length >1,200 bp, alignment quality score >75%, and a pintail
value >50. In addition, the taxonomy of this reference database was modified to include
typical freshwater lineages (e.g., fungi) defined in previous studies (e.g., (Debroas, Hugoni
& Domaizon, 2015). After a comparison of the OTUs with the RefEUKs by a similarity
approach (USEARCH tool), trees of OTUs with their closest reference sequences were built
in FastTree (Price, Dehal & Arkin, 2010) (see Debroas et al., 2017) for detailed pipeline).
Taxonomic assignment was conducted according to twomethods: nearest neighbour (NN),
and last common ancestor (LCA) affiliations (Liu et al., 2008).

Comparing representative OTUs with reference sequences from a
public database
To compare freshwater OTUs to reference 18S rRNA gene sequences found in the public
database, we used two criteria: similarity and phylogenetic metrics. In the first approach,
OTUs were compared to the SSURef SILVA database and were restricted to the total or
cultivated eukaryotes using BLAST. In the second, different phylogenetic indices (Swenson,
2009) were computed from the trees generated in the pipeline described above. The ‘‘X
depth/deeper’’ is defined as the average distance to the deepest node in the tree (Pommier
et al., 2009). These various indices were computed using R software with the packages
‘‘picante’’ (Kembel et al., 2010), ‘‘Geiger,’’ and ‘‘ape’’ (Paradis, Claude & Strimmer, 2004),
and were implemented in PANAM (Taib et al., 2013).
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Figure 1 Rarefaction curves for lakes, rivers and freshwater ecosystems (rivers+ lakes) computed
from fungal OTUs.

Full-size DOI: 10.7717/peerj.6247/fig-1

Statistics
Different estimators were used to infer the taxa richness of the planktonic eukaryotes:
non-parametric estimators (Chao1, ACE) and indices based on the rank-abundance
curves. These estimators were computed with Vegan (Dixon, 2003) and the SPECIES
packages (Wang, 2011) implemented in R.

TSA-FISH (Tyramide Signal Amplification-Fluorescent In situ Hybridization)
On two lakes (Aydat, Pavin) included in the meta-analysis we performed TSA-FISH to
detect Cryptomycota. The probe used was the LKM11-01 (Mangot et al., 2009) and the
protocole is described in Lepère et al. (2016).

RESULTS
Richness and community composition of freshwater fungi
The rarefaction curves built from OTUs show that a plateau is reached for lakes and for
freshwater environments considered as a whole (lakes + rivers). On average 37,680 reads
per samples were obtained. No plateau is obtained for river ecosystems (Fig. 1). From 1.6
million of reads, our analysis recovered 19,008 fungal OTUs at a similarity threshold of
95% (Debroas et al., 2017). The estimated OTU richness in rivers, lakes and freshwater
ecosystems (lakes + rivers) vary according to the estimators (Table 2). The majority of the
fungi retrieved in freshwater are represented by Dikarya (Ascomycota and Basidiomycota),
Cryptomycota andChytridiomycota. All estimators suggest that Cryptomycota is the richest
group in both lakes and rivers while the lowest richness is found for the Basidiomycota in
lakes and Ascomycota in rivers (Table 2).

When looking at the OTU taxonomic level in freshwater (lakes + rivers), 47% of
fungal OTUs (26% of reads) are affiliated to Dikarya (1/3 to Basidiomycota, 2/3 to
Ascomycota) followed by basal fungi: Cryptomycota (17.6% OTUs; 15% reads) and
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Figure 2 Taxonomic identities of fungal OTUs (A) and reads (B) in freshwaters.
Full-size DOI: 10.7717/peerj.6247/fig-2

Chytridiomycota (15.4% OTUs; 12% reads) (Fig. 2). Moreover, 16% of the OTUs can’t be
affiliated and are grouped under ‘‘unclassified fungi’’. These ‘‘unclassified fungi’’ represent
50% of the reads (Fig. 2). Most of the OTUs with a taxonomic affiliation belonged to
the subkingdom Dikarya (Ascomycota, Basidiomycota) in both lakes and rivers. The
majority (almost 85%) of Ascomycota OTUs group within the Pezizomycotina (Fig. S1)
and the most represented class within this subphylum is the Dothideomycetes. The rest
of the Ascomycota OTUs belong to Ascomycota yeasts (subphylum: Saccharomycotina
subphylum, class: Saccharomycetes).

A high proportion of Basidiomycota sequences are also found in our dataset, with the
majority being yeast fungi. The three major clades of Basidiomycota are represented:
Agaricomycotina, Pucciniomycotina and Ustilaginomycotina with the Agaricomycotina
accounting for 53% of the Basidiomycota OTUs (Fig. S1).

Spatial distribution of freshwater fungi
All phyla were detected in lakes and rivers but several are found at very low proportion,
less than 1% of the OTUs and less than 2% of the reads (i.e., Blastocladiomycota,
Glomeromycota). At a finer taxonomic resolution (i.e., OTUs level), 3,369 OTUs (18%)
are found in both lakes and rivers while 12,424 (66%) are restricted to lakes and 3,215 to
rivers (16%) (Fig. S2). Regarding the basal fungi, Cryptomycota OTUs predominate over
Chytridiomycota in river while OTUs belonging to Chytridiomycota are more abundant
in lakes as well as the proportion of Dikarya (Fig. S3). When considering only lacustrine
ecosystems, the number of OTUs shared by the different lakes decrease exponentially with
the number of lakes leading to the fact that 61%of theOTUs (9642) are restricted to one lake
only. No OTU is shared by more than 19 lakes (over the 25 considered) and only 0.2% of
the OTUs are shared bymore than twelve lakes. There is a link between themost ubiquitous
taxa and their abundances (i.e., number of reads), with the most widely distributed falling
within the most abundant OTUs (Fig. 3). The top 10 most abundant OTUs (representing
7,334 reads per lake on average) are shared by a minimum of eight lakes (Fig. 3). However,
there is no linear relationship between abundance and distribution. For example, one
Cryptomycota OTU (Leman_S2331067) belongs to the 32 more abundant OTUs though it
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Figure 3 Abundance (Number of reads) of top 32 fungal OTUs. The identity number of the respective
OTU is shown below the bars. Colours represent the fungal phyla and the numbers at the top of the bars
represent the numbers of lakes where the OTU can be found.

Full-size DOI: 10.7717/peerj.6247/fig-3

is detected in one lake only. The most shared OTUs between lakes belong to Chytrids and
Dikarya while the more abundant belong to Basidiomycota and Cryptomycota (Fig. 3).

789 fungal OTUs detected in freshwater are also found in marine environments
displaying different salinities (Table S1). The majority of these OTUs (582) are detected
in lakes. Most of the OTUs (224) shared by marine environments and lakes belong to
Ascomycota and Chytrids (145). Rivers and marine environments share a majority of
Ascomycota (82) and Cryptomycota (44) OTUs (Fig. S2).

Active fungi in freshwater lakes
By targeting the 18S rRNA transcripts on a reduced number of lakes found in this
meta-analysis (Vichy, Aydat, Cournon, Grangent, Roche Moines, Eguzon, Fades and
Pavin, Table 1), we found that 30% of the eukaryotes OTUs are represented by fungi
while they represent only 7.2% of the reads. 18S rRNA transcript sequencing showed
the same dominant phylogenetic groups assessed by 18S rRNA genes analysis: Dikarya,
Cryptomycota, Chytridiomycota as well as a large proportion of unclassified sequences.
The mean rRNA transcripts: rRNA genes ratio computed from each OTU is 0.82. On
average 13.25% of the fungal OTUs were active (Fig. 4A) (i.e., rRNA:rDNA ratio > 1).
If we focus on the Dikarya which includes a broad diversity, some subphyla were more
active than the others. Within the Basidiomycota, the Ustilaginomycotina did not seem
to be active (Fig. 4B) whereas 28% of the Agaricomycotina were active (Fig. 4B). The
most active subphylum within the Ascomycota is the Pezizomycotina (Fig. 4B) and the
number of sequences in the 18S rRNA transcripts dataset was more abundant than in the
18S rRNA genes dataset also for Saccharomycotina and Mitosporic Ascomycota while the
environmental sequences showed the opposite.
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Figure 4 % of active fungal OTUs (i.e., DNAOTUs found in the RNA dataset) (A), % of active Basidiomycota (grey) and Ascomycota (black)
OTUs (B).

Full-size DOI: 10.7717/peerj.6247/fig-4

DISCUSSION
18S rRNA gene sequences
Until recently, fungi were one of the most understudied microbial groups in aquatic
ecosystems, being more studied in terrestrial habitats. This trend has changed over the
last decade and there is now more interest in deciphering the diversity and role played
by fungal communities in aquatic ecosystems. Aquatic fungi have been studied through
environmental clone library approaches (Lai et al., 2007) or high-throughput sequencing
(HTS) using specific fungal primers (Monchy et al., 2011; Arfi et al., 2012; Wang et al.,
2014a; Wang et al., 2014b; Duarte et al., 2015; Zhang et al., 2016). However, aquatic fungi
are most often not considered on their own but rather studied as part of whole microbial
eukaryotic community investigations (Livermore & Mattes, 2013;Panzer et al., 2015;Hassett
& Gradinger, 2016; Tisthammer, Cobian & Amend, 2016). Therefore, the majority of the
data available on aquatic fungi is 18S rRNA gene sequences. Recently, De Filippis et al.
(2017) showed that 18S rRNA gene allow a more reliable quantification of fungi than the
ITS region. ITS, which is the most accurate phylogenetic marker for fungi based on in silico
simulations, promotes preferential amplification of shorter sequences and therefore leads
to a biased view of taxa relative abundance. In freshwaters, the main phylogenetic markers
used are the V4 (Table 1) and V9 regions (Korajkic et al., 2015) of the 18S rRNA and,
more rarely, the V3 zone (Nolte et al., 2010). For an easier and more accurate taxonomic
identification, we choose to focus on the V4 sequences since this is the largest dataset
but also because this variable zone is present in almost all Sanger sequences deposited
in GenBank. The sequences analyzed in this study have been obtained by the use of
five ‘‘universal’’ primer sets which could introduce biases in the meta-analysis. Indeed,
even if these primer sets target a similar V4 region of the 18S rDNA, they may lead to
slightly different taxonomic compositions (Debroas et al., 2017). Moreover the different
DNA extraction methods used in the studies considered in this analysis may produce
bias. Indeed, the accuracy of the data depends on how well the DNA is extracted from
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the environment, so that it accurately reflects the composition of the actual microbial
community (Djurhuus et al., 2017). It is therefore difficult to disentangle the bias due to
the primers and extraction methods from the effects of biogeography or environmental
parameters. However, the use of several primer sets could be also an advantage taking into
account that the use of different primers/markers leads to a better image of the diversity
(Shi et al., 2011; Debroas et al., 2017). It’s noteworthy that we chose to use the general
term fungi even though the phylogeny of some groups cited in this paper is not yet fully
elucidated.

Taxonomic resolution
The mean size (∼400 bp) of the V4 amplicons gives taxonomy at a relatively broad
resolution. For example, more than 90% of the Chytrids OTUs were identified at the genus
level while 99% of the Cryptomycota OTUs are not identified below the phylum level.
Altogether, a total of 52 genera of fungi were identified within nine phyla (including Incertae
sedis). OTUs detected in one ecosystem only, were, for most of them, ‘‘unclassified fungi’’.
When considering freshwaters (lakes + rivers), the sequence similarity of Cryptomycota
OTUs was generally <80% to that of sequences available in the SILVA database whereas
for Chytrids OTUs, this sequence similarity was on average 87%. Except for the Chytrids,
fungal sequences found in rivers were characterized by lower similarities than the ones
found in lakes suggesting for example that Dikarya are less known in rivers.

Fungal communities in freshwater habitats
Meta-analyses are powerful analytical tools to decipher the structure and ecology of
microbial communities (ArchMiller et al., 2015). When analyzing the global microbial
eukaryotic diversity in freshwaters, using the same dataset as in our study, Debroas et al.
(2017) showed that fungi represented 17% of this diversity. Freshwater fungi, analyzed
in this paper, were affiliated to nine phyla, revealing the great richness that can be
captured by the use of different universal 18S primers. Considering OTUs, Ascomycota
and Basidiomycota were the most represented phyla in this dataset. The dominance of
Dikarya is not usual in freshwater lakes. Indeed, the general assumption is that basal
fungi (especially Chytrids) dominate the fungal community composition (Monchy et al.,
2011; Panzer et al., 2015; Comeau et al., 2016; Rojas-Jimenez et al., 2017) while Dikarya
tend to be dominant in marine ecosystems (Panzer et al., 2015). It’s worth mentioning that
Dikarya represented 26% of the fungal reads and present the lowest richness in freshwater.
However, the low observed richness could be due to the marker used here which is
relatively less resolving for this group than others we’ve surveyed (Schoch et al., 2012).
The great majority of the Ascomycota OTUs fall indeed within the Pezizomycotina which
include 32,000 species (Kirk et al., 2001). Pezizomycotina contains filamentous species that
are ecologically diverse and the most represented class is the Dothideomycetes, which can
have terrestrial and aquatic members (Shearer et al., 2009). Terrestrial filamentous fungi
(e.g., associated or not with plants) can be introduced into lakes through spores and pieces
of mycelia during inflowing stream, rainwater and wind events (Voronin, 2014). Most of
the time these fungi fail to establish stable population in aquatic environments (Graupner et
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al., 2017). Consequently, it is difficult to know if these fungi are truly aquatic (Wurzbacher,
Bärlocher & Grossart, 2010). However, the rRNA analysis (eight lakes dataset) showed that
these fungi were active in freshwater lakes. Filamentous fungi could also be associated
with roots of aquatic macrophytes (De Marins, Carrenho & Thomaz, 2009; Beck-Nielsen &
Madsen, 2001), similarly to fungi associated with roots of terrestrial plants. However, there
is little knowledge about fungi in submerged roots. Pleosporales were also well represented.
Species in this order inhabit various ecosystems, and are known as saprobes that decay plant
material in freshwater (Shearer et al., 2009) and marine habitats (Suetrong et al., 2009). The
rest of the Ascomycota OTUs belongs to Ascomycota yeasts. These yeasts live as saprobes,
often in association with plants and animals. They are well distributed in deep-sea regions
(Bass et al., 2007; Nagahama et al., 2011) and oxygen-depleted ecosystems (Takishita et al.,
2007). Moreover, numerous Ascomycota are known to be pathogens of algae in marine
systems (Kohlmeyer & Kohlmeyer, 1979; Kubanek et al., 2003).

Interestingly, a great number of Basidiomycota sequences were detected in our dataset.
Even though recent molecular data suggest that the Basidiomycota diversity might be high
in aquatic ecosystems (Richards et al., 2012; Panzer et al., 2015), less than 100 described
species were isolated from aquatic sources (Shearer et al., 2007; Jones & Fell, 2012). Some
OTUs were affiliated to the three major clades of Basidiomycota: Agaricomycotina, which
represented more than half of the Basidiomycota OTUs and includes the vast majority of
edible mushrooms forming spores and Pucciniomycotina as well as Ustilaginomycotina,
which are known as plant parasites and sometimes have been found in association with
aquatic invertebrates. For example, several OTUs are affiliated with the basidiomycete yeast
Rhodotorula (Pucciniomycotina). It has been found in deep-sea tubeworms and bivalves
as well as in different environmental DNA surveys (Nagahama et al., 2003). The rRNA
sequencing surprisingly showed that the Agaricomycotina were the most active group
within the Basidiomyota while the Ustilaginomycotina did not show any active OTUs.
Even though Dikarya are identified as inhabiting terrestrial environments they were found
active in freshwater lakes. They can therefore be directly involved in the trophic food web
functioning. There could also be a continuous flowof active terrestrialDikarya to the aquatic
ecosystems through flooding for example (Röhl et al., 2017). Another explanation could
be that these organisms were not active despite their high rRNA content. Chytridiomycota
and Cryptomycota were also well represented in this freshwater dataset. Together they
represent almost a third of the fungal OTUs/reads. These two phyla are included in the
so-called DMF (Dark Matter Fungi), which encompass uncultured taxa belonging to early
diverging branches of the fungal tree (Grossart et al., 2015). Chytridiomycota are well
documented in freshwater lakes where they play various roles as saprobes and parasites
(mainly of phytoplankton) (Panzer et al., 2015). Chytridiomycota zoospores are also a food
resource for zooplankton (mycoloop) (Gleason et al., 2008). Chytridiomycota seemed to be
relatively less active than Cryptomycota and Dikarya, only 8.4% of their OTUs were found
active. Because of their undersampling, little is known about Chytridiomycota in rivers.
Nevertheless, a recent study showed high abundances of Chytridiomycota zoospores in the
Columbia river (Maier & Peterson, 2016).
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In contrast to Chytridiomycota, Cryptomycota were discovered more recently in
aquatic environments (Jones et al., 2011). Cryptomycota have been reported to account
for only 0.02–4.5% of the total 18S rDNA sequences found in aquatic ecosystems
(Livermore & Mattes, 2013). This group is highly-diverse (15 clades have been identified
(Lazarus & James, 2015)), but it is almost exclusively known through environmental
sequences. These fungi are found in a large range of ecosystems (Jones et al. (2011);
Livermore & Mattes (2013), Lazarus & James (2015)) without any specific clades to
freshwater, soil, or marine systems (Livermore & Mattes, 2013). In freshwater a few
investigations showed that they could act as parasites of phytoplankton (Jones et al., 2011;
Ishida et al., 2015). Using fluorescent in situ hybridization, our investigations showed,
indeed, several associations between diatoms (Asterionella) and Cryptomycota (Fig. 5)
in a freshwater lake. All estimators suggest that Cryptomycota is the richest group in
both lakes and rivers. In term of rDNA OTUs abundance, Cryptomycota dominate over
Chytridiomycota in rivers. Moreover, Cryptomycota OTUs were usually less than 80%
similar to the sequences deposited in databases in both lake and rivers and can’t be identified
at a high taxonomic resolution. Moreover, 17% of the Cryptomycota OTUs were active in
Freshwater lakes and represented a large proportion of the total rRNA reads. This shows
the need to enhance reference databases by increasing the sampling effort in freshwater
ecosystems, especially streams.

Fungal distribution across ecosystems
The low number of shared fungal OTUs among the diverse studies considered here suggests
a high diversity and a low proportion of generalist fungi. Only a few fungal lineages were
assigned at the species or genus level suggesting that even the more common lineages are
poorly known or aremissing from databases. 61% of the OTUs were found in one lake only.
Interestingly, most of these OTUs have very weak supported affiliation (i.e., environmental
samples). We cannot exclude the possibility that increasing further the sampling depth may
lead to identify a higher number of OTUs characterized by a broader distribution. Simon
et al. (2015) highlighted the importance of temporal surveys in the study of the microbial
diversity. Such approach helps at detecting taxa that can occur at low frequency.

Our analysis showed that a very small number of fungal OTUs (5.5%) is shared between
marine and freshwater ecosystems while up to 23% of the OTUs were shared between lakes
and rivers. This confirms the data of Panzer et al. (2015) showing that freshwater fungal
community structure differed significantly from all other habitats and of Logares et al.
(2009) showing that fungi usually group into distinct marine and freshwater phylogenetic
clusters. Molecular results from SSU rRNA and ITS1 region analyses also support the idea
of a transition in fungal community structure along a salinity gradient (Burgaud et al.,
2013). Until recently, marine fungi showed low diversity and abundance especially in the
photic zone. However HTS has suggested that marine ecosystems contain more fungal
diversity than previously thought (Richards et al., 2015). For example, Livermore & Mattes
(2013) found evidence of considerable Cryptomycota diversity at the marine surface and
Richards et al. (2015) showed that marine fungi include a large number of chytrid that had
not been described before.
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Figure 5 Micrographs showing Cryptomycota cells (targeted with the LKM11-01 probe, Mangot et al.
2009) attached to the diatom Asterionella (21/05/2015 Aydat lake, France).

Full-size DOI: 10.7717/peerj.6247/fig-5

CONCLUSION
This study represents the first in-depth inventory of published 18S rRNA gene sequence
data on freshwater fungi and also adds some new data regarding potential activity of
fungi in freshwater lakes. However, our knowledge on this phylogenetic group remains
very limited. This is partly due to methodological limitations such as inaccurate methods
for fungal morphological identification, non-specific molecular markers and to the lack
of well-represented reference databases. We are indeed currently limited by the low
representation of functional genes in the databases as well as the lack of sequenced fungal
genomes, which prevent the exploration of the metabolic capacities of aquatic fungi
through metagenomic and metatranscriptomic studies for instance, even though ongoing
projects will likely reverse this bias such as the 1000 Fungal Genomes Project (Grigoriev et
al., 2014). Our study highlights the need to increase the sampling effort at a global scale by
conducting surveys in the most diverse set of aquatic ecosystems as possible, by exploring
the diverse putative habitats (e.g., immerged plants, aquatic vertebrates, littoral, sediments,
pelagic) as well as increasing the resolution of the fungal diversity by realizing temporal
surveys at the scale of single ecosystems. For example, Wurzbacher et al. (2016) discovered
a high biodiversity of fungi and a large number of ecological niches in a single lake.
They also showed that the sediment and biofilms are hotspots of aquatic fungal diversity.
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Moreover, a large part of this fungal diversity seems to be active in lacustrine ecosystems
(Debroas, Hugoni & Domaizon, 2015; Lepère et al., 2016). Furthermore, considering that
only 1112 species of marine fungi have been described while 71% of the planet is covered
by marine water (Jones et al., 2015), it is very likely that the global fungal diversity is greatly
underestimated in aquatic systems.
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