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Abstract 

Sarcopenia is defined by the loss of muscle mass and function. In aging sarcopenia is due to mild 
chronic inflammation but also to fiber-intrinsic defects, such as mitochondrial dysfunction. Age-
related sarcopenia is associated with physical disability and lowered quality of life. In addition 
to skeletal muscle, the nervous tissue is also affected in elderly people. With aging, type 2 fast 
fibers preferentially undergo denervation and are reinnervated by slow-twitch motor neurons. 
They spread forming new neuro-muscular junctions with the denervated fibers: the result is an 
increased proportion of slow fibers that group together since they are associated in the same 
motor unit. Grouping and fiber type shifting are indeed major histological features of aging 
skeletal muscle. Exercise has been proposed as an intervention for age-related sarcopenia due to 
its numerous beneficial effects on muscle mechanical and biochemical features. In 2013, a 
precursor study in humans was published in the European Journal of Translation Myology 
(formerly known as Basic and Applied Myology), highlighting the occurrence of reinnervation 
in the musculature of aged, exercise-trained individuals as compared to the matching control. 
This paper, entitled «Reinnervation of Vastus lateralis is increased significantly in seniors (70-
years old) with a lifelong history of high-level exercise», is now being reprinted for the second 
issue of the «Ejtm Seminal Paper Series». In this short review we discuss those results in the 
light of the most recent advances confirming the occurrence of exercise-mediated reinnervation, 
ultimately preserving muscle structure and function in elderly people who exercise. 
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 The definition of sarcopenia, initially meant to indicate 
the progressive loss of skeletal muscle mass associated 
with aging, has recently being updated by stressing the 
importance of the loss of muscle strength and physical 
performance.1 Indeed, functional assessments are now 
part of the definition of sarcopenia, similarly to other 
forms of muscle atrophy such as cachexia,2 which 
reckons the importance of muscle functionality in 
defining a muscle disease state. The association of 
sarcopenia with a significant impairment of function such 
as slowing of movement and loss of neuromuscular 
control is linked to decreased quality of life and increased 
risk of falls.3 With the global aging population, 
sarcopenia becomes increasingly prevalent, rising major 
concerns for the health-related authorities,4 and an 
increased awareness of the importance of research aimed 
to improve the preservation of the muscle mass and its 
related function in elderly individuals. A major avenue of 

research in the field of age-related sarcopenia deals with 
the process of muscle denervation in aging and the 
countermeasures that prevent this phenomenon or favor 
recovery in the elderly. A pioneer report on this subject 
is the article by Mosole et al.,5 which is re-published in 
the current issue of European Journal of Translational 
Myology. Their findings on the beneficial effects of 
exercise on muscle reinnervation with age have been 
confirmed and extended by many others 6–9 and are 
discussed in this mini-review in the light of the more 
recent literature. 

Muscle fiber type and fiber shifting 
Fiber diversity reflects the plethora of muscle functional 
and metabolic roles. Myosin has a prominent position 
both as a marker for fiber typing and as a molecular motor 
characterizing the function of the muscle tissue. The 
conventional class II of muscle myosin encompasses 18 
genes driving the expression of several myosin heavy 
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chain (MyHC) isoforms.10 These genes are evolutionary 
conserved in mammals and expressed to a variable extent 
and in different combinations in adult striated muscles, 
while special isoforms are expressed during 
embryogenesis, perinatal life, and muscle regeneration 
(Table 1). Distinct myosin gene expression determines 
four major muscle fiber types, as exhaustively 
highlighted by Schiaffino and Reggiani.10 Briefly: there 
are two types of fast-contracting fibers, called type 2A 
and 2B, which differ for being fatigue-resistant and 
fatigable, respectively, the type 1 fibers predominant in 
slow-twitch muscles, the most resistant to fatigue, which 
form mostly postural muscles; a fourth type of fiber, the 
2X, has twitch properties (contraction and half-relaxation 
time) similar to those of 2A and 2B units, and has an 
intermediate resistance to fatigue.10,11 These fiber types 
are determined during development by hormonal and 
neurogenic factors but are susceptible of extensive 
remodeling in postnatal life. The default phenotype of a 
muscle fiber is the fast one,10 as confirmed by the fact 
that denervated, regenerating muscle fibers activate the 
default expression of fast-like myosin expression.12 
Worth noting, regenerating muscle fibers following 
trauma or pathological cues re-enter a developmental 
program in which they re-express embryonic or perinatal 

MyHC isoforms, such as the embryonic, fetal or neonatal 
myosins.13–16 Regenerating muscle fibers also share 
morphological features with pre-natal muscle fibers, such 
as the central nuclei,17 and ultimately mature acquiring 
features that are not necessarily those prior to damage, 
which accounts for muscle plasticity. The final MyHC 
isoform expressed by an adult, regenerated muscle fiber 
is ultimately conditioned by the microenvironment, 
including the type of motoneuron that innervates the 
fiber.18 Muscle fiber types also differ with respect to 
resistance to fatigue and numerous additional features, as 
highlighted by the differential content of succinate 
dehydrogenase (SDH) and other metabolic enzymes. 
Interestingly, fiber shifts in MyHC with aging are 
associated to a remodulation of these enzymatic 
activities.19 Additional factors, such as the increase in 
resting muscle stiffness, affect age-related muscle 
impairment and will not be discussed here.20 

Effects of aging on the skeletal muscle 
Aging is characterized by a progressive decline in 
skeletal muscle mass, ultimately leading to decreased 
strength and functionality.1 The two major mechanisms 
underpinning the decline in muscle mass are muscle fiber 
atrophy 21 and muscle fiber loss, even though there is not 

Table1. Major myosin isoforms expressed in mammal muscle 
Gene Protein Functional 

properties 

Expression pattern 

MYH1 MyHC-2X Fast contracting Multiple skeletal muscles, Type 2X fibers 

MYH2 MyHC-2A Fast contracting Multiple skeletal muscles, Type 2A fibers 

MYH3 MyHC-emb Slow contracting87 Developing and regenerating muscle 

MYH4 MyHC-2B Fast contracting Not in humans, multiple skeletal muscles, Type 2B fibers 

MYH6 MyHC-alpha Intermediate speed88 Cardiac and skeletal muscle of the jaws 

MYH7 MyHC-beta/slow Slow contracting Cardiac and slow skeletal muscles, Type 1 fibers 

MYH8 MyHC-neo NA Developing and regenerating muscle 

MYH13 MyHC-EO Superfast cont.89 Extraocular (EO) skeletal muscles 

MYH14* MyHC-slow/tonic Slow contracting90 Muscle spindles, Extraocular skeletal muscles 

MYH15 MyHC-15 Slow contracting90 Muscle spindles, Extraocular skeletal muscles 

MYH16 MyHC-M  Not in humans,° Translational Myolog it is evident  

Skeletal muscle of the jaws 

 
The table summarizes the nomenclature and expression pattern of the myosin heavy chain (MyHC) genes (MYH) and 
the corresponding sarcomeric protein product in mammals. The expression pattern in the striated muscles, as well 
as the functional properties in terms of contraction speed, are also reported. Hybrid fibers containing two MyHC 

               87   88  
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consensus on the latter.22 Type 2 fibers are preferentially 
sensitive to atrophy in aging.23 Two additional 
phenomena characteristic of aging are fiber type 
grouping and shifting. Grouping is the presence of 
clusters of fibers of the same type, defined as a group of 
fibers with at least one enclosed fiber.24 Grouping 
typically occurs for type 1 fibers in aging 24 and is 
associated to an enrichment in the percentage of type 1 
fibers in the musculature.25 The latter is a paradoxical 
phenomenon, since, as state above, the default muscle 
fiber phenotype is the fast, type 2 fiber 12 therefore, aging 
actively and selectively promote the appearance of type 
1 fibers in the musculature. Indeed, in murine models it 
has been shown that regenerating fibers express by 
default the fast MyHC-2X and -2B transcripts in absence 
of innervation, even in slow muscle such as the Soleus. If 
slow nerve activity is restored or mimicked by electrodes, 
this induces a switch toward a slow, MyHC-beta/slow 
isoform in the targeted muscle fibers,26 through a 
pathway involving RAS and ERK activation.27 Thus, the 
fiber type essentially depends on the innervation of the 
muscle fibers themselves. Taken together these reports 
helped to state the hypothesis that, with aging, type 2, fast 
fibers preferentially undergo denervation to then form 
new NMJ by reinnervation from slow-twitch motor 
neurons. The result is an increased proportion of slow 
fibers, which also group with each other, since they are 
associated in the same motor unit. These phenomena, in 
our opinion, would also explain the slower movements 
typical of elderly individuals. If reinnervation is 
insufficient, then fibers undergo atrophy or apoptosis.28  
The sarcopenia-associated changes in motor unit 
numbers has been demonstrated using electromyographic 
motor unit recordings through surface-recorded 
compound muscle action potentials (CMAP)  and 
indirectly through MRI and histochemistry (reviewed by 
Piasecki et al.).29 Motor unit loss and the alterations 
characterizing the aging neurons are superbly 
summarized in a recent review by Larsson et al. and will 
not be further discussed here, for lack of space.3 
In addition to denervation and atrophy, other alterations 
characterize the aging muscle, such as a reduced 
regenerative capacity and fiber-intrinsic defects: protein 
oxidation, organelle dysfunction (including lysosomes 
and mitochondria), changes in sarcomeres and 
endoplasmic reticulum, ultimately leading to defects in 
calcium handling.30 Collectively, these events synergize, 
leading to loss of muscle function during aging.30 For 
instance, calcium homeostasis, which is very important 
for the myogenic development and muscle 
regeneration,31,32 is also essential in the adult muscle fiber 
and calcium leakage is a major responsible for the 
diminished contraction capacity observed in aging.33 
In the 2010 European consensus article “Report of the 
European working group on Sarcopenia in older people”1 
the authors described the major muscle issues associated 
with aging and proposed strategies that include 
treatments and changes in lifestyle in order to prevent 

age-associated sarcopenia. These interventions are as 
diverse as hormone therapy and exercise/physical 
activity, caloric intake control and lowering 
inflammation.3 The findings of Mosole et al. summarized 
below, paved the way to exercise-based interventions to 
spare muscle wasting and pinpointed the peculiar role of 
denervation-reinnervation processes. 

Major findings by Mosole et al. and more recent 
developments 
In the seminal work by Mosole et al. the group 
demonstrated that long-term high-level exercise 
promotes muscle reinnervation with age5 (republished in 
the current issue of Eur J Trans Myol). Indeed, this has 
been the focus of their research activities for years and 
led to three publications - first in 2013 and then, 
extending the original findings, in 2014 and 2016 - that 
are discussed in details below. Researchers at the 
University of Padua are among those who propose to 
apply strictu sensu the concept of “use it or lose it” to 
sarcopenic muscles.8 Since the 90s there was an interest 
on skeletal muscle in master athletes and Westerterp in 
2000 was probably one of the very first to extensively 
demonstrate and discuss the benefits deriving from 
physical activity for elderly individuals.34,35 Nonetheless, 
Mosole and coworkers were the first ones to demonstrate 
a clear effect of exercise on muscle fiber reinnervation, 
thus paving the road for a new avenue of investigation. 
Indeed, in 2013 Mosole et al. compared muscle biopsies 
from sedentary seniors, physically active (i.e. sportsmen) 
seniors and young people in order to prove that exercise 
protects against age-related denervation.5 In this study 
they clearly demonstrated the occurrence of selective 
denervation in the aged muscle, as highlighted by the 
occurrence of angular, atrophic muscle fibers, a 
phenomenon prevented in life-long exercised muscles. In 
addition, the authors demonstrated that senior sportsmen 
show a greater level of type 1-fiber grouping, as if their 
muscle were undergoing a higher rate of reinnervation.5 
One year later, in 2014, Mosole et al. further developed 
this idea, by exploiting a technically improved approach 
to analyze skeletal muscle biopsies, consisting in 
immunofluorescence for MyHC types.36 They clearly 
showed the effect of exercise on bona fide denervation 
markers (such as N-CAM expression by the muscle 
fibers), as well as fiber type transition (by double 
immunofluorescence showing the co-expression of fast 
and slow MyHC). Worth noting, while histology was 
comparable between the two studies, in the 2014 article 
the force of the quadriceps was measured, instead of that 
of the vastus lateralis that was analyzed in the 2013 
article. The authors also compared slow fibers with the 
type of training undertaken by the physically active 
seniors but they did not establish a correlation. The 
authors concluded that a long-term, intense exercise 
promotes reinnervation of muscle fibers, with positive 
consequences on the muscle structure and function, 
ultimately leading to a delay in mobility decline.36 
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Mosole’s 2013 article has been inspirational and the 
reference for several other papers over the years, 
confirming that heavy training improves skeletal muscles 
in very old individuals. In particular, the pivotal role of 
motor units in the maintenance of muscle mass with 
aging has been confirmed, on the basis of observations in 
both male and female master athletes.37 To this regard, 
the group of Holm demonstrated a very innovative idea, 
i.e. that just 12 weeks of heavy resistance training are 
enough to improve muscle strength in old individuals 
and, suggesting that lifelong exercise may not be strictly 
required to generate beneficial effects.38 Messi et al. 
extended these observations to the obese population – 
indeed, sarcopenic obesity is a common condition 
observed in a major percentage of elderly individuals, 
characterized by the combination of being significantly 
overweight with the age-related loss of muscle mass and 
strength.39 In particular, Messi et al. showed that 
resistance training diminished the expression of N-CAM 
( a denervation marker) in muscle fibers and affected 
fiber grouping even in obese patients. This group 
expanded their analysis to muscle stem cells, which 
account for the remarkable skeletal muscle plasticity, 
showing that exercise does not modify either the total 
number of satellite cells or their relative abundance in 
every fiber type.40 The histological examination alone 
may not reveal the full extent of ageing-related motor unit 
remodeling; for instance, it was reported that the fiber 
grouping did not correlate with aging. Taken alone, these  
data would indicate that the examined population did not 
show a major feature of sarcopenia,24 further suggesting 
the importance of the functional characterization of the 

aged musculature. Notably, Messa et al. examined the 
vastus lateralis in athletes, albeit aged, which is a major 
difference in respect to the previous studies, that focused 
on very active people, but not athletes. A study by 
Kletzien et al. reported changes in thyroarytenoid muscle 
associated to both aging and to exercise training in rats. 
These changes, affecting MyHC isoforms, were 
consistent with a glycolytic to oxidative shift in muscle 
fiber type.41 The conclusion by the authors is that because 
thyroarytenoid muscle is active during vocalization – it is 
actually part of the laryngeal muscle structure -  the 
approach of doing exercise is crucial in order to prevent 
“vocal function deficits, dysphagia, and aspiration 
observed in elderly people”.41 In addition, we believe that 
this study represents a striking evidence that the upper 
airways muscles are affected by treadmill running, even 
though they are not directly involved, offering a proof of 
principle of the occurrence of systemic effects of physical 
activity on muscle fiber type shifting. Another 
breakthrough article was the comparison of muscle status 
and performance on monozygotic twins with decades of 
discordant exercise habits. Here, the authors showed that 
the trained twins exhibited better endurance features, 
more slow-twitch MyHC, and increased level of pro-
myogenic markers than their counterpart. They 
concluded that skeletal muscle as a high plasticity 
depending on lifestyle which overrides the genetic 
background.42 Intriguingly, an indirect but solid 
confirmation of Mosole’s data comes from the group of 
Carraro and co-workers that in several studies have 
actually exploited Functional Electrical Stimulation 
(FES) to modify “muscle fibers by increasing 

 
 
Fig 1. Denervation in age-related sarcopenia and effects of exercise on reinnervation. Defects in neuromuscular 
junctions and loss of motoneurons occurring with aging decrease the number and size of type 2 fibers and, to a lesser 
extent, type 1 fibers, ultimately leading to decreased muscle mass and strength (sarcopenia). Exercise favors the 
sprouting of surviving motor fibers which innervate the orphan muscle fibers, enlarging type 1 motor units. Repeated 
cycles of denervation and re-innervation eventually lead to changes in fiber-type composition, with a proportional 
increase in type I fibers and grouping. Created with BioRender.com 
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contractions per day”43,44 in the absence of physical 
activity. While primarily used to counteract neurogenic 
atrophy,45 FES has been successfully applied to age-
related sarcopenia, demonstrating that muscle 
contraction per se is beneficial against atrophy.46 Current 
trials are optimizing protocols for neuromuscular 
electrical stimulation in humans.47 Whether FES is 
sufficient to promote reinnervation has not been 
established yet. 44 However, very promising results have 
been recently reported on the use of FES to promote 
regeneration of a transplanted nerve and muscle 
functional recovery in a rat model.48 Based on all of the 
above, we conclude that muscle contraction, induced by 
physical activity or by electrical stimulation, protects 
motoneurons from age-related sarcopenia and that 
peripheral reinnervation might occur due to sprouting of 
slow motoneurons, ultimately preserving muscle 
structure and function, in elderly, exercised individuals 
(Figure 1). 

The dark side of the moon: sensory nerves and 
intrafusal fibers in muscle spindles 
The skeletal muscle possesses nociceptors49 that are 
believed to mediate muscle pain via group III and IV 
afferent fibers. In addition, muscle has proprioceptive 
neurons, that innervate intrafusal fibers, in the muscle 
spindles, conveying length information to the central 
nervous system via primary type Ia and secondary type II 
sensory fibers.50,51 Very little is known on the effects of 
aging on the sensory fibers and nociceptors in the aging 
muscle. Nonetheless, research in this field is of the 
utmost importance. While being the effector system, the 
musculoskeletal system participate in the integration of 
information responsible for balance which also declines 
with aging involving major social and clinical 
consequences.52 Such decline in balance is likely due to 
both reduced proprioception and ability of the cortex to 
process sensory information,53 resulting in an increased 
likelihood of falling when fatigued. The relevance of leg 
proprioception in postural control and its age-related 
alterations have been notably summarized by Henry and 
Baudry.54 Aging alters the intrafusal fibers by increasing 
their number and modifying the content of intrafusal slow 
and developmental isoforms of MyHC.55 Interestingly, 
intrafusal muscle fibers undergo degeneration and 
regeneration cycles during aging in rodents,56 so one 
would expect the nervous fibers innervating the muscle 
spindle to also be affected by aging. While it has been 
reported that bone sensory fibers are spared by aging,57 
how aging affects proprioception in muscle remains 
poorly explored. Recently, it has been shown that, 
similarly to what happens in the bulk muscle fiber 
population, proprioceptive sensory neurons degenerate 
prior to atrophy of the intrafusal muscle fibers with 
aging.58 However, not all the sensory neurons are 
affected by aging to the same extent: in aged rats the 
discharge frequency in response to muscle stretch 
(dynamic sensitivity) diminishes,59,60 whereas the static 

sensitivity does not exhibit such an effect. While the 
effects of exercise on position sensing, including 
differential effects induced by different muscle 
contraction types, have been investigated in detail - for a 
review, see Fortier 2012,61 - to the best of our knowledge, 
nothing is known on whether exercise has any effect on 
aged nociceptive or proprioceptive fibers. This issue 
definitely deserves further investigation. 

Countermeasures: which type of exercise is more 
efficacious against sarcopenia? 
Physical activity has been shown to decrease with age 
with only an estimated 28-34% of adults age 65 and older 
participating in any leisure time physical activity.62 In 
regard to current trends in age-related changes in physical 
activity, the COVID-19 pandemic has demonstrated that 
the young and elderly population have experienced the 
greatest decline in physical activity.63 The link between 
loss of muscle strength and mass is clearly dependent on 
physical inactivity,64 which is a modifiable risk factor 
that can partially reverse skeletal muscle dysfunction 
related to age.65 Physical activity, and more specifically 
resistance training, has been demonstrated to be a 
modality to enhance muscle function in older sarcopenic 
adults.66 Overall the generalized recommendation in 
resistance training for sarcopenia  includes dynamic 
movements involving the facilitation of both concentric 
and eccentric contractions of major muscle groups.67 
These movements can be accomplished by a variety of 
exercise modalities which include strength training, 
muscular endurance training, power training, and high 
intensity interval training. Some of the key factors that 
distinguish the difference between these modalities are 
the intensity and volume prescribed. In order for 
resistance training to induce a physiological response that 
will improve muscle mass and strength, a training load of 
greater than 70% of the one-repetition max (1-RM) is 
needed.68 The adaptations from strength training has been 
demonstrated to increase muscle strength and muscle 
mass. However, increases in muscular strength or mass 
may not always relate to a direct improvement in 
functional muscle performance.65 Worth noting, power 
training seems to not only elicit a positive effect on 
muscle mass37 but may more directly improve muscle 
function.69 There is also evidence of aerobic exercise, 
balance training and flexibility to have beneficial effects 
in sarcopenia70,71 and recent findings demonstrate that 
endurance exercise induces the appearance of hybrid 
fiber alterations in seniors consistent with what 
previously observed Mosole et al.72 Sarcopenia is a 
condition with multiple factors involved67,73 and aerobic 
exercise seems to be very efficient in eliciting a plethora 
of beneficial effects on the organism.74 Indeed, a major 
advantage of endurance exercise are the metabolic and 
biochemical adaptations specifically linked to this type of 
exercise, for instance the stimulation of the muscle 
endocrine activity.75–78 The combination of various 
modes of exercise may benefit elderly individuals, as this 
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provides variety and allows the exercise practitioner to 
periodize the training program in order to improve the 
physiological factors associated with sarcopenia. 
Aging is typically associated with burden of late-life 
diseases.79 In many cases, such as cachexia,2,80 
sarcopenia is associated with a primary disease and is 
possibly exacerbated by aging in a synergistic manner. 
By using exercise, in principle, it is possible to target the 
morbidity deriving from the primary disease and the 
muscle wasting occurring at the same time.77,81,82 
However, it is not known whether exercise promotes 
reinnervation in pathological conditions but still is 
characterized by NMJ loss in age-related sarcopenia, as 
it is seen in cancer cachexia.15,83,84 

Conclusions 
Sarcopenia is often associated to aging, likely due to 
undergoing mild inflammation,85 but also to more subtle 
phenomena, such as selective denervation of the fast 
fibers, ultimately accounting for pronounced muscle 
fiber atrophy, functional deficit and the acquisition of a 
slow phenotype of the musculature in elderly people. 
Since the publication of the seminal work by Mosole et 
al. republished in this issue of European Journal of 
Translational Myology it is evident that physical activity 
promotes muscle reinnervation, thus preserving not only 
muscle mass but also the capability of the muscle to 
contract. Therefore, both endurance and resistance 
training are recommended throughout life or at least for 
elderly individuals, including patients suffering from 
various pathologies. The recommendations for exercise 
should be a multimodal approach as to maximize the 
benefits from the physical activity.86 
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