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ABSTRACT

Metagenomic sequencing projects yield numerous
sequencing reads of a diverse range of uncultivated
and mostly yet unknown microorganisms. In many
cases, these sequencing reads cannot be
assembled into longer contigs. Thus, gene predic-
tion tools that were originally developed for whole-
genome analysis are not suitable for processing
metagenomes. Orphelia is a program for predicting
genes in short DNA sequences that is available
through a web server application (http://orphelia.
gobics.de). Orphelia utilizes prediction models that
were created with machine learning techniques on
the basis of a wide range of annotated genomes. In
contrast to other methods for metagenomic gene
prediction, Orphelia has fragment length-specific
prediction models for the two most popular
sequencing techniques in metagenomics, chain ter-
mination sequencing and pyrosequencing. These
models ensure highly specific gene predictions.

INTRODUCTION

Metagenomics is an approach to the characterization
of microbial genomes without the cultivation of individual
species under laboratory conditions. In metagenomic
sequencing projects, DNA is directly isolated from the
environment and sequenced. Currently, the most
common sequencing methods utilized in this field are
chain termination sequencing (also named Sanger sequenc-
ing) (1), which yields an average read length of �700 bp,
and the more cost efficient pyrosequencing (2), which
results in reads of average length �300 bp. Regardless of
the read length, it is in many cases impossible to reliably
assemble metagenomic sequencing reads into longer con-
tigs because diversity in metagenomic samples is often
too large to provide a high sequencing coverage of single
species. To answer one of the major questions of metage-
nomic sequencing projects, which parts of the sequencing

reads encode for proteins, methods are required that can
identify genes directly in short and anonymous DNA
fragments.
In principle, metagenomic gene prediction is accom-

plished by two approaches. One is the identification of
genes through homology-based methods, for instance by
BLAST search of the input sequence against a database of
known proteins (3). This approach is limited to the pre-
diction of genes that are highly similar to already known
genes. By the clustering of open reading frames (ORFs),
homology-based methods can also find novel genes which
are conserved within the metagenomic sample (4,5).
However, these methods become computationally expen-
sive for large samples. A different approach is gene pre-
diction by means of statistical models. Model-based gene
prediction methods have the advantage that they can dis-
cover novel genes at lower computational cost and with-
out the prerequisite of a high conservation of these genes
within the sample. On the other hand, most model-based
methods are sensitive to sequencing errors in form
of frame shifts. Up to now, three model-based gene
prediction tools for metagenomic DNA fragments are
available, namely MetaGene (6), its successor, the
MetaGeneAnnotator (7), and GeneMark with a heuristic
model (8). All three tools are available as web server
applications. In contrast to the MetaGene and
MetaGeneAnnotator web servers, the GeneMark web
server was not designed to treat single entries of a multiple
fasta file separately, which limits its applicability to meta-
genomic data. Nevertheless, all tools achieve a good per-
formance on fragments of Sanger read length. Prediction
accuracies on 300 bp DNA fragments are lower.
Here, we introduce the ab initio gene prediction web

server application ‘Orphelia’, which is based on our pre-
viously published machine learning approach to metage-
nomic gene prediction (9). While the other three tools
utilize the same prediction model for all read lengths,
Orphelia currently supports two separate models for the
most common sequencing techniques in metagenomics,
thereby also providing highly specific gene predictions in
fragments <300 bp. A high gene prediction specificity can
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be very important for high-throughput metagenome ana-
lysis, because the large number of sequences usually makes
a manual curation of the predictions impossible.

METHODS

In a first step, Orphelia identifies all ORFs in the input
sequence. By our definition, ORFs begin with a start
codon (ATG, CTG, GTG, or TTG), are followed by at
least 18 subsequent triplets, and end with a stop codon
(TGA, TAG, or TAA). Due to the short input sequence
length, we also consider incomplete ORFs of at least 60 bp
input length that lack a start and/or stop codon. After
extraction, all ORFs are scored by a gene prediction
model that is based on machine learning techniques.
Finally, a greedy method with a maximal overlap con-
straint selects a combination of highly probable genes.
The gene prediction model is sketched in Figure 1. At

first, features for monocodon usage, dicodon usage and
translation initiation sites are extracted from the ORF
sequence using linear discriminants. The discriminants
were trained on 131 fully sequenced prokaryotic genomes
(9). After feature extraction, an artificial neural network
combines the sequence features with ORF length and frag-
ment GC-content, and computes a posterior probability of
an ORF to encode a protein. The neural network was
trained on randomly excised DNA fragments of a speci-
fied length from the genomes that were used for linear
discriminant training. In our previous publication, we pro-
vided a prediction model in which the neural network was
trained on 700 bp fragments for predicting genes in Sanger
read length fragments. We showed that this model is
robust with respect to varying sequence length (above

�300 bp). On fragments as short as �300 bp, we observed
a drastic decrease in performance. Therefore, the Orphelia
web server also provides an additional prediction model
that was trained on 300 bp fragments, which corresponds
to the average read length of pyrosequencing.

Besides the discriminant-based translation initiation
site (TIS) probability as inferred from a 60 bp TIS
region around the potential start codon, we now use the
‘TIS coverage’ as an additional feature. The TIS coverage
is the fraction of the TIS region, which is actually con-
tained in the sequence fragment. This feature accounts for
incomplete TIS regions and completely missing start
codons, which imply a zero coverage.

WEB SERVER

Input

The Orphelia submission page is shown in Figure 2.
Orphelia requires as input data a set of DNA sequences
in standard multiple FASTA format. Small data sets can
be pasted into the sequence window, larger data sets
should be uploaded via the ‘Browse’ button. Currently,
the upload is limited to 30MB. If a data set exceeds this
size, we recommend either the splitting into smaller files,
or the usage of our standalone command-line tool for
64-bit architecture Linux systems.

Further, the prediction model to be utilized can be spe-
cified: Net700 should be selected for Sanger reads, Net300
for reads shorter than 300 bp. For calculating the final
combination of predicted genes per fragment, Orphelia
by default allows a maximal overlap of 60 bp between
genes. The maximal overlap can be varied through the

Figure 1. Orphelia’s ORF scoring model. In Step 1, 7 ORF/fragment
features are computed. Step 2 calculates a final gene probability, com-
bining the features by means of a neural network.

Figure 2. Screenshot of the Orphelia web server application submission
page.
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web interface. Finally, the user must provide a valid e-mail
address to which an URL with a link to results will be
sent.

Output

A typical run of Orphelia takes several minutes (for 10MB
input). Upon completion of the job, Orphelia sends an
e-mail with two files to the user: the original input
sequences, seq.fna, and the predicted genes, gene.
pred. Predicted genes are given in a one-line-per-gene
format:

>FragNo, GeneNo, Coord1_Coord2_Str_Fr_C_FH

FragNo is the fragment number in the input file,
GeneNo is a numerical identifier of a Gene within the
fragment. Coord1 and Coord2 indicate the positions of
a predicted gene in the fragment, starting with position 1
at the beginning of the fragment. Str is the strand on
which a predicted gene is encoded. The input sequence
from 50 to 30 direction is assigned the ‘+’ strand. Fr
gives the reading frame of a gene counted from the
50-end of the sequence. Reading frame 1 begins at the
first nucleotide position of the input sequence, frame 2
at the second position and frame 3 at the third position.
C is a label which indicates whether a candidate is com-
plete (C) or incomplete (I). FH stands for the FASTA
header of the input sequence. The first three entries are
separated by a comma (,), all subsequent entries are sepa-
rated by an underscore (_).

EXPERIMENTAL RESULTS

Evaluation on simulated data

We evaluated the accuracy of Orphelia’s prediction models
on DNA fragments of 300 and 700 bp, respectively. The
fragments were randomly excised to a 10-fold genome
coverage from 12 annotated test genomes that were not
contained in the training set of Orphelia and that were
first proposed by Noguchi et al. in 2006 (6). We measured
sensitivity, which reflects how many of the existing genes
were detected, and specificity, which shows how many
of the predicted genes are annotated. In addition, the
harmonic mean, which combines sensitivity and specificity
within a single measure was used according to:
2� (Sensitivity� Specificity)/(Sensitivity+Specificity).

All predicted genes that match at least 60 bp in the same
reading frame on the same strand with the annotation were
counted as true positives. Table 1 shows the mean and stan-
dard deviation of performance over all species. Orphelia
(Net700) has a prediction sensitivity of 88%, a specificity
of 93% and a harmonic mean of 90.5% on 700 bp frag-
ments. On 300 bp fragments (Net300), sensitivity (82%),
specificity (92%) and the harmonic mean (86.6%) are
lower than on 700 bp fragments, but the specificity is still
very good.
In comparison to MetaGene, Orphelia has a lower

sensitivity but shows a higher specificity, while the har-
monic mean of both methods differs by <1%. The
MetaGeneAnnotator shows a slightly higher harmonic
mean than Orphelia and MetaGene, particularly on
300 bp fragments. Orphelia still has a higher specificity
than the MetaGeneAnnotator. A direct comparison of
GeneMark and Orphelia on the test setup shown here
seems unfair if one considers that the model used by
GeneMark was built using some of the test species.
Keeping this in mind, GeneMark has a harmonic mean
that is similar to MetaGeneAnnotator but has a specificity
that is comparable with Orphelia.
In order to determine input sequence length-specific

optimal models, we evaluated gene prediction accuracy
of both models on fragments ranging in length from
200 bp to 500 bp in 20 bp intervals. The fragments were
randomly excised to a 1-fold genome coverage from
the test species mentioned above. While Net700 shows
a softly decreasing sensitivity and specificity on shorter
fragments, and a good performance on fragments as
long as 60 000 bp (previously demonstrated in supplemen-
tary materials, Figure 4 of (9)), Net300 drastically drops
in accuracy for fragments >300 bp. We therefore recom-
mend the usage of Net300 for fragments ranging from
200 bp to 300 bp length, and Net700 for all longer frag-
ments. More details can be seen in Supplementary Data,
Figures 1 and 2.
In order to determine the effect of sequencing errors

on gene prediction accuracy, several scenarios were simu-
lated using the MetaSim software (10) and the same test
species as before. We simulated error-free Sanger reads
(with a mean length of 700 bp), and Sanger reads with
error rates of 1� 10�2, 1� 10�3, 1� 10�4 and 1� 10�5

at the beginning of the read and error rates of 2� 10�2,
2� 10�3, 2� 10�4 and 2� 10�5 at the end of the read,

Table 1. Mean and standard deviation of sensitivity, specificity and harmonic mean on 300 and 700 bp DNA fragments that were randomly excised

from 12 test species

300 bp fragments 700 bp fragments

Sensitivity Specificity Harmonic mean Sensitivity Specificity Harmonic mean

Orphelia Net300 82.1� 3.6 91.7� 3.8 86.6� 2.7 49.5� 13.8 79.3� 6.9 59.4� 10.2
Orphelia Net700 83.8� 3.4 88.1� 4.9 85.8� 3.9 88.4� 3.1 92.9� 3.2 90.6� 2.9
MetaGene 89.3� 3.3 84.2� 6.0 86.6� 4.3 92.6� 3.1 88.6� 5.9 90.4� 4.0
MetaGeneAnnotator 90.1� 2.8 86.2� 5.7 89.1� 3.1 92.9� 3.0 90.0� 6.0 91.5� 3.3
GeneMark 87.4� 2.8 91.0� 4.2 89.1� 3.1 90.9� 2.7 92.2� 5.1 91.5� 3.1

Orphelia Net300 represents Orphelia with the 300 bp prediction model, Orphelia Net700 represents the 700 bp prediction model. In addition, the
performance of MetaGene, MetaGeneAnnotator and GeneMark is shown.
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respectively (more details are given in the Methods section
of Supplementary Data).
For a comprehensive evaluation of the effect of

sequencing errors on gene prediction performance, pre-
dicted nucleotide sequences were translated to amino
acid sequences using the standard translation table for
prokaryotes. Predicted sequences were then aligned
to annotated protein sequences using BLAT (11) with
standard parameters. Matching amino acids were counted
as true positives, amino acids that occur only in the anno-
tation were counted as false negatives and amino acids
that occur only in the prediction were counted as false
positives. Based on these counts, we observe a decrease
of sensitivity and specificity for Orphelia Net700 on
Sanger reads with increasing error rates (see Supplemen-
tary Data, Table 1). For an error rate of �10�4, which was
suggested by (6) as a realistic error rate, Orphelia shows a
drop in accuracy of <1%.

Application to real data

The hypersaline microbial mat metagenome consists of
samples from 10 spatially successive layers of Guerrero
Negro (12). Each sample was Sanger sequenced and
contains �13 000 reads. The original gene annotation of
those reads was created with the commercial program
FGENESB (http://www.softberry.com). Note that
FGENESB integrates model-based gene prediction with
homology-based annotation. In contrast to Orphelia and
MetaGene, FGENESB also annotates rRNA and tRNA
genes. For the following comparison of gene predictions,
all RNA genes were removed from the FGENESB
annotation.
We applied Orphelia (Net700) and MetaGene to the

hypersaline microbial mat metagenome (all samples).
The number of nucleotides that were predicted as protein
encoding was counted and all possible intersections of
nucleotides that were predicted as protein coding by
Orphelia MetaGene, and FGENESB were calculated.
The results are shown in Figure 3. All three methods pre-
dict �62.3� 106 nt as protein coding. FGENESB predicts
�1.2� 106 nt, MetaGene predicts �2.4� 106 nt and

Orphelia predicts �3.1� 106 nt as protein coding that
were not predicted by any other method. FGENESB has
an intersection of �4.9� 106 nt with Orphelia, and an
intersection of �1.2� 106 nt with MetaGene. Both
Orphelia and MetaGene predict about �4.9� 106 nt as
protein coding that were not predicted by FGENESB.
Mavromatis et al. (13) reported FGENESB to overlook
�20% of the genes on single sequencing reads from anno-
tated genomes, and that FGENESB ‘newly predicted’
�10% genes in the same reads. We think that the inter-
section of nucleotides that were predicted by all methods
contains highly reliable genes, and that at least the nucleo-
tides commonly predicted by Orphelia and MetaGene, but
not by FGENESB, are worth further investigation
because they are likely to contain genes that were over-
looked by FGENESB. Gene predictions of Orphelia and
MetaGene on this dataset are available through the
Orphelia web site.

IMPLEMENTATION

Orphelia’s ORF finder is implemented in Java, while
the ORF scoring routine and the greedy strategy for cal-
culating the final gene combination are implemented in
MATLAB using fast C (‘mex’) code for time critical sub-
routines. MATLAB routines are integrated as a
MATLAB compiler generated program. The web server
is based on Java Servlet technology. Submitted jobs are
scheduled via a batch queuing system which allows simul-
taneous processing of several requests.

CONCLUSION

The evaluation on simulated data sets demonstrates that
Orphelia shows high gene prediction accuracy on short
DNA fragments and has—compared with the other web
servers for metagenomic gene prediction—a particularly
high gene prediction specificity. We showed that realistic
sequencing error rates influence prediction performance
only mildly. Therefore, the Orphelia web server applica-
tion can be a valuable tool for predicting genes in meta-
genomic sequencing reads.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We thank Rasmus Steinkamp for helping us with the web
server at GOBICS. We thank Dr Mario Stanke for dis-
cussions about the evaluation of gene predictions on the
hypersaline microbial mat data set.

FUNDING

Georg-Christoph-Lichtenberg stipend granted by the state
of Lower Saxony (to K.J.H.); fellowship within the
Postdoc-program of the German Academic Exchange
Service (DAAD to T.L.). Funding for open access

1.2

3.1 2.4

4.9 1.2

4.9

62.3

FGENESB

Orphelia MetaGene

Figure 3. Venn diagram of the number of million nucleotides predicted
as protein encoding by FGENESB, Orphelia (Net700) and MetaGene
in the hypersaline microbial mat metagenome samples.

W104 Nucleic Acids Research, 2009, Vol. 37,Web Server issue



charge: Department for Bioinformatics, Institute for
Microbiology and Genetics, Georg-August-Universität
Göttingen.

Conflict of interest statement. None declared.

REFERENCES

1. Sanger,F., Nicklen,S. and Coulson,A.R. (1977) DNA sequencing
with chain-terminating inhibitors. Proc. Natl Acad. Sci. USA, 74,
5463–5467.

2. Ronaghi,M., Uhlén,M. and Nyreén,P. (1998) A sequencing method
based on real-time pyrophosphate. Science, 281, 363–365.

3. Altschul,S.F., Gish,W., Miller,W., Myers,E.W. and Lipman,D.J.
(1990) Basic local alignment search tool. J. Mol. Biol., 215, 403–410.

4. Krause,L., Diaz,N.N., Bartels,D., Edwards,R.A., Pühler,A.,
Rohwer,F., Meyer,F. and Stoye,J. (2006) Finding novel genes in
bacterial communities isolated from the environment.
Bioinformatics, 22, e281–e289.

5. Yooseph,S., Li,W. and Sutton,G. (2008) Gene identification and
protein classification in microbial metagenomic sequence data via
incremental clustering. BMC Bioinformatics, 9, 182.

6. Noguchi,H., Park,J. and Takagi,T. (2006) MetaGene: prokaryotic
gene finding from environmental shotgun sequences. Nucleic Acids
Res., 34, 5623–5630.

7. Noguchi,H., Taniguchi,T. and Itoh,T. (2008) MetaGeneAnnotator:
detecting species-specific patterns of ribosomal binding site for
precise gene prediction in anonymous prokaryotic and phage
genomes. DNA Res., 15, 387–396.

8. Besemer,J. and Borodovsky,M. (1999) Heuristic approach to
deriving models for gene finding. Nucleic Acids Res., 27, 3911–3920.

9. Hoff,K.J., Tech,M., Lingner,T., Daniel,R., Morgenstern,M. and
Meinicke,P. (2008) Gene prediction in metagenomic fragments: a
large scale machine learning approach. BMC Bioinformatics, 9, 217.

10. Richter,D.C., Ott,F., Auch,A.F., Schmid,R. and Huson,D.H. (2008)
MetaSim – a sequencing simulator for genomics and metagenomics.
PLoS ONE, 3, e3373.

11. Kent,W.J. (2002) BLAT – the BLAST-like alignment tool. Genome
Res., 12, 656–664.

12. Kunin,V., Raes,J., Harris,J.K., Spear,J.R., Walker,J.J., Ivanova,N.,
von Mering,C., Bebout,B.M., Pace,N.R., Bork,P. et al. (2008)
Millimeter-scale genetic gradients and community level
molecular convergence in a hypersaline microbial mat. Mol. Syst.
Biol., 4, 198.

13. Mavromatis,K., Ivanova,N., Barry,K., Shapiro,H., Goltsman,E.,
McHardy,A.C., Rigoutsos,I., Salamov,A., Korzeniewski,F.,
Land,M. et al. (2007) Use of simulated data sets to evaluate the
fidelity of metagenomic processing methods. Nat. Methods, 4,
1548–7091.

Nucleic Acids Research, 2009, Vol. 37, Web Server issue W105


