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Abstract

Purpose

Proton magnetic resonance spectroscopy (1H MRS) is a noninvasive neuroimaging method

to quantify biochemical metabolites in vivo and it can serve as a powerful tool to monitor

neurobiochemical profiles in the brain. Asperger’s syndrome (AS) is a type of autism spec-

trum disorder, which is characterized by impaired social skills and restrictive, repetitive pat-

terns of interest and activities, while intellectual levels and language skills are relatively

preserved. Despite clinical aspects have been well-characterized, neurometabolic profiling

in the brain of AS remains to be clear. The present study used proton magnetic resonance

spectroscopy (1H MRS) to investigate whether pediatric AS is associated with measurable

neurometabolic abnormalities that can contribute new information on the neurobiological

underpinnings of the disorder.

Methods

Study participants consisted of 34 children with AS (2–12 years old; mean age 5.2 (±2.0); 28

boys) and 19 typically developed children (2–11 years old; mean age 5.6 (±2.6); 12 boys)

who served as the normal control group. The 1H MRS data were obtained from two regions

of interest: the anterior cingulate cortex (ACC) and left cerebellum.

Results

In the ACC, levels of N-acetylaspartate (NAA), total creatine (tCr), total choline-containing

compounds (tCho) and myo-Inositol (mI) were significantly decreased in children with AS

compared to controls. On the other hand, no significant group differences in any of the

metabolites were found in the left cerebellum. Neither age nor sex accounted for the meta-

bolic findings in the regions.

PLOS ONE | DOI:10.1371/journal.pone.0169288 January 6, 2017 1 / 8

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Goji A, Ito H, Mori K, Harada M, Hisaoka

S, Toda Y, et al. (2017) Assessment of Anterior

Cingulate Cortex (ACC) and Left Cerebellar

Metabolism in Asperger’s Syndrome with Proton

Magnetic Resonance Spectroscopy (MRS). PLoS

ONE 12(1): e0169288. doi:10.1371/journal.

pone.0169288

Editor: Rex Eugene Jung, University of New

Mexico, UNITED STATES

Received: June 15, 2016

Accepted: December 14, 2016

Published: January 6, 2017

Copyright: © 2017 Goji et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data cannot be

made publicly available due to ethical and legal

restriction. Data are available from the

Tokushima University Institutional Data Access

/ Ethics Committee for researchers who meet

the criteria for access to confidential data.

Please contact corresponding author Aya Goji

(gojiakso@yahoo.co.jp) with data related

inquiries.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0169288&domain=pdf&date_stamp=2017-01-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0169288&domain=pdf&date_stamp=2017-01-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0169288&domain=pdf&date_stamp=2017-01-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0169288&domain=pdf&date_stamp=2017-01-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0169288&domain=pdf&date_stamp=2017-01-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0169288&domain=pdf&date_stamp=2017-01-06
http://creativecommons.org/licenses/by/4.0/
mailto:gojiakso@yahoo.co.jp


Conclusion

The finding of decreased levels of NAA, tCr, tCho, and mI in the ACC but not in left cerebel-

lar voxels in the AS, suggests a lower ACC neuronal density in the present AS cohort com-

pared to controls.

Introduction

Asperger’s syndrome (AS) is a brain disorder characterized by impaired social skills and non-

verbal communication, as well as restrictive and repetitive patterns of behavior and activities

[1]. Although AS has been reclassified as an autistic spectrum disorder (ASD) in the 5th edition

of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) [2], there have been

suggestions that AS and ASD can present with distinct verbal styles, motor signs, emotion per-

ception, and pragmatic reasoning [3].

Pathophysiologically, a number of limbic and cortical structures are believed to be impli-

cated in AS/ASD [4]. Due to the ritualistic behavior and impaired social interactions in AS/

ASD, a great deal of attention has been focused on the anterior cingulate cortex (ACC), as the

structure in the limbic system involved in response inhibition, in delineating between the per-

ception of self and others, as well as in error detection, all of which are impaired in AS/ASD

[5]. Further implicating the ACC are the results of task-related functional magnetic resonance

imaging (fMRI) studies, which have consistently found ACC hypoactivation in ASD [6–9].

In the present study, we sought to advance our understanding of the neurobiological under-

pinnings of AS by using proton magnetic resonance spectroscopy (1H MRS), a noninvasive

neuroimaging technique that enables in vivo examination of brain metabolism and chemistry,

to investigate potential neurometabolic abnormalities in the ACC and cerebellum of children

with AS.

Several prior 1H MRS studies in ASD [10,11], and three in AS have been reported [12–14].

A meta-analysis of 1H MRS data from the ACC of children with ASD found significant

decreases in the levels of the putative neuronal marker, N-acetylaspartate (NAA), compared to

controls [10]. By contrast, levels of frontal lobe NAA were found to be higher in AS than in

controls in the two prior studies [12,13]. Despite these discrepant NAA findings in ASD and

AS, we hypothesized that, as in the two prior studies in AS, NAA would be increased in the dis-

order compared to controls, while no differences would be observed in the cerebellum. In sec-

ondary analyses, levels of total creatine (tCr), total choline (tCho), myo-inositol (mI),

combined glutamate and glutamine–referred to as Glx–and γ-aminobutyric acid (GABA)

were compared between the groups.

Methods

Participants

For this study, which was approved by the Institutional Review Board of Tokushima Univer-

sity, 34 children (2–12 years old; mean age: 5.2 ± 2.0; 28 boys) diagnosed with AS according

DSM-IV-TR criteria [1], were recruited from among the outpatients of the Department of

Pediatrics. To participate in the study, each child’s parent or legal guardian provided written

informed consent according to the principles of Declaration of Helsinki. Children old enough

to understand the content and purpose of the study also provided their assent.
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Nineteen children (2–11 years old; mean age: 5.6 ± 2.6; 12 boys) referred for MRI examina-

tion due to a non-specific temporal symptom (e.g., headache or vertigo), but were otherwise

healthy, were recruited to serve as the normal comparison group (Table 1). To minimize anxi-

ety and motion, all participants were sedated with 0.5ml/kg body weight of triclofos sodium,

which was administered approximately one hour before the MRI scan and monitored accord-

ing to the sedation guidelines of the American Academy of Pediatrics [15]. We first examined
1H MRS in the ACC followed by the left cerebellum. For children who could not lie still we

only measured 1H MRS in the ACC.

1H MRS measurement

All neuroimaging studies were conducted on a General Electric 3.0 T Signa HD MRI system

(Milwaukee, WI, USA) with a standard volume birdcage radiofrequency head coil.

To acquire the brain 1H MRS data, two methods were implemented. First, conventional

short echo time (TE) spectra were obtained using the Stimulated Echo Acquisition Mode

(STEAM) sequence with repetition time (TR) = 5000 ms, echo time (TE) = 15 ms and 48 signal

averages to record spectra from a 1.5×2.0×2.0-cm3 voxel prescribed in the ACC and in the left

cerebellum (Fig 1). Next, without moving the subjects spectra were again obtained from a

3x3x3-cm3 voxel, but using the standard Point RESolved Spectroscopy (PRESS) sequence,

which had been modified to enable the detection of γ-aminobutyric acid (GABA) by J-edited

spin echo difference technique [16], as fully described recently [17,18]. Briefly, to implement

the J-editing technique, a pair of a frequency-selective inversion pulses was inserted into the

standard PRESS method, and then applied on the GABA C-3 resonance at 1.9 ppm on alter-

nate scans, using TE/TR 68/2500ms. This resulted in two subspectra in which the GABA C-4

resonance at 3.03 ppm and Glx C-2 resonance at 3.71 ppm were alternately inverted or not

inverted. Subtracting the two subspectra yielded a spectrum consisting only of the edited

GABA C-4 and Glx C-2 resonances, with all overlapping resonances eliminated. For each

voxel, the data were acquired in 10.1 min using 128 interleaved excitations (256 total), with the

editing pulse on or off. The magnetic field homogeneity for the acquisitions was typically

�12Hz, as assessed from the full width at half maximum of the unsuppressed voxel tissue

water resonance.
1H MRS data processing and quantification. Both the short-TE PRESS and J-edited

spectral data were processed according now established methods and then quantified with the

LCModel package (V. 6.2), using a basis set of MR spectra experimentally measured from a

phantom containing GABA, glutamine, glutamate, NAA tCr, tCho, and myo-inositol, with

default LCModel macromolecule (MM) resonances at or near 0.9, 1.2, 1.4, 1.7 and 2.0 ppm.

All the metabolites were quantified as “absolute” concentrations in mmol/L by LCModel using

the unsuppressed water signal in each voxel as a signal intensity and concentration reference,

assuming a water content of 82% [19]. The reliability of the LCModel-derived metabolite levels

Table 1. Participant Characteristics and Demographics.

N Gender(Boy/girl) Age(year) Age(mean±SD)

ACC AS 34 28/6 2–12 5.2±2.0

Control 19 12/7 2–11 5.6±2.6

Left cerebellum AS 23 19/4 4–9 5.1±1.4

Control 12 9/3 2–12 6.5±2.8

AS, Asperger’s syndrome

doi:10.1371/journal.pone.0169288.t001
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was expressed with Cramer-Rao lower bounds (CRLB), with a relative CRLB (%SD) of 20% set

as the upper cutoff limit of acceptable uncertainty for each metabolite. By this standard, no

spectra were rejected due to a high quantification uncertainty.

Statistical analysis

Mean levels of the metabolites of interest were compared between children with AS and con-

trols. In primary analyses, NAA alone was compared between the groups, and in secondary,

exploratory analyses, tCr, tCho, mI, Glx and GABA were compared, without correction for

multiple comparisons. Student’s t-tests were used to assess the differences between AS and

controls, and each group’s gender differences at the significance of p = 0.05 (two-tailed). Pear-

son’s correlation coefficient was used to assess for potential associations between age and

metabolite levels in AS.

Results

Levels of ACC NAA, tCr, tCho, and mI were lower in children with AS than in the controls

(p<0.05). On the other hand, no differences of these metabolites were found in the cerebellum

(Table 2). Furthermore, no significant differences in any of the metabolites were found

between boys and girls either within the AS or within control groups and no significant associ-

ations were found between age and any of the metabolite levels in AS.

Discussion

In this study, we found levels of NAA in the ACC to be significantly lower in children with AS

than in age- and sex-matched control children, while no such difference was found in the cere-

bellum. In secondary analyses, we also found lower levels of tCr, tCho, and mI in the ACC of

children with AS compared to controls, but no differences in the cerebellum. These results are

in disagreement with the results of two prior studies in adults with AS, which reported eleva-

tions of ACC and frontal lobe NAA compared to controls [12,14]. A third prior study had

Fig 1. Positions of the measurement voxel in ACC (anterior cingulate cortex) and left cerebellum and

representative spectra from each voxel. (LEFT) Positions of the measurement voxel in the anterior

cingulate cortex (ACC) and left cerebellum. (RIGHT) Representative short TE and J-edited spectra obtained.

doi:10.1371/journal.pone.0169288.g001
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measured levels of metabolites in amygdala-hippocampal complex in 10–50 years old AS, and

found no significant difference compared to controls although it reported report a significant

age-related reduction in NAA, NAA/Cr, and tCho in the AS group [13], suggesting potential

differences in these metabolites between adults and children (vide infra). With respect to the

levels of the other metabolites, one of the prior studies, reported elevations of prefrontal tCr

and tCho [12], which were also in disagreement with the results of the present study.

While the reason for the discrepancy between the present results of decreased ACC and fron-

tal neurometabolites in AS and prior studies that reported elevations of the same metabolites in

similar brain regions could be methodological or due to differences in AS cohort characteristics,

the difference in age may be the primary reason for the discrepancy: in the present study we

have investigated only children with AS where prior studies had investigated only adults [12,13]

or a mixture of children and adults [14]. In fact, to our knowledge, the present study is the first

to use 1H MRS to assess the neurometabolic characteristics of children with AS, and age-depen-

dent metabolic differences have been reported, albeit in different regions [10, 13].

Interestingly, a meta-analysis of 1H MRS data in ASD, which included AS, had found NAA

to be decreased specifically in whole-brain gray and while matter in children [10]. In addition,

and importantly, the meta-analysis showed age-dependent changes in parietal cortex, the cere-

bellum, and the anterior cingulate cortex [10]. These findings suggest metabolite levels in AS

may fluctuate with age, although we found no significant association between age and levels of

any of the metabolites, likely due to the limited age range and sample size of this study.

The involvement of the ACC in the executive function neuronal network and its role in the

cognitive control attention are well established [20,21]. In addition, the ACC has close ana-

tomic connections to the amygdala and the orbitofrontal cortex, which are participants in

emotional expression. In non-human primates, experimentally-induced ACC lesions lead to

poor vocal and facial expression, with tendency toward isolation from and poor communica-

tion with other primates in the colony [22]. In humans, likewise, injury to the ACC leads to

decreased social interactions and increased isolation, and decreased verbal communication,

although with increased tendency to interact with and manipulate inanimate objects [22]. Our

finding of decreased ACC NAA in children with AS is consistent with abnormal ACC function

in the disorder.

The meta-analysis of 1H MRS studies in ASD suggested a strong association between the

degree of NAA abnormalities and developmental changes, especially in frontal lobe. ASD chil-

dren with larger-than-normal brain size also had lower-than-normal NAA levels, suggesting

that early increase in brain size in children with ASD may occur through an increase in non-

neuron tissues, such as glial cell proliferation [10].

Table 2. Metabolite concentrations (mmol/L).

NAA tCr tCho mI Glx GABA

ACC AS(n = 34) 5.6±0.8* 4.6±0.7** 1.2±0.2* 3.5±0.9** 9.1±2.1 0.7±0.3

control(n = 19) 6.0±0.8 5.2±0.9 1.3±0.3 4.3±1.0 10.0±3.1 0.9±0.4

Left cerebellum AS(n = 23) 5.9±0.8 5.7±1.1 1.3±0.5 4.1±0.7 8.5±1.5 1.5±0.5

control(n = 12) 6.1±0.9 5.9±1.0 1.4±0.5 4.6±1.7 8.0±1.6 1.5±0.6

Values are the mean±SD.

*p<0.05;

**p<0.01

ACC anterior cingulate cortex, AS, Asperger’s syndrome. NAA, N-acetylaspartate; tCr, creatine/phosphocreatine; tCho, choline-containing compounds; mI,

myo-Inositol; Glu, glutamate; Gln, Glutamin; Glx, Glu+Gln. GABA, gamma-aminobutyric acid.

doi:10.1371/journal.pone.0169288.t002
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As with the levels of NAA, we found levels of tCr, tCho and mI levels to be significantly

lower in the ACC in children with AS than in controls, but not in the cerebellum. This selective

reduction in metabolite levels in the ACC region but not in the cerebellum strongly suggests a

decrease in the density and/or function of neuronal and glia cells density in the ACC of chil-

dren with AS. Such cellular abnormalities in a key brain regulatory structure can plausibly con-

tribute to difficulty in modulating emotional reactivity that characterizes children with AS and

ASD.

This study has two of notable limitations. First, the sample size was relatively small and clin-

ical records for several patients were incomplete, which limited statistical power and the ability

to detect potential associations between clinical variables, including AS severity scores, and

demographic variables vs. metabolite levels. Second, we did not obtain volumetric MR images

to assess potential tissue volume differences and to correct the metabolite levels for tissue het-

erogeneity within the voxels of interest. However, no abnormal signal or atrophy was detected

in the brain of AS or controls. The findings of this study should therefore be interpreted taking

into consideration these caveats.

In summary, this study has found that NAA and the other major brain metabolites detect-

able by 1H MRS are significantly lower in the ACC of children with AS than in matched

healthy controls, which provides additional evidence implicating ACC is implicated in the

pathophysiology of AS. If replicated, the results of this study could lead to the development of
1H MRS as a noninvasive technique for characterizing metabolic abnormalities in children

with AS that could serve as diagnostic and therapeutic response biomarkers for the disorder.

Supporting Information

S1 Dataset. The file summarizes all the relevant data that have been used in the statistical

analyses.
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