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Knowledge is a network of interconnected concepts.
Yet, precisely how the topological structure of
knowledge constrains its acquisition remains
unknown, hampering the development of learning
enhancement strategies. Here, we study the
topological structure of semantic networks reflecting
mathematical concepts and their relations in college-
level linear algebra texts. We hypothesize that these
networks will exhibit structural order, reflecting the
logical sequence of topics that ensures accessibility.
We find that the networks exhibit strong core–
periphery architecture, where a dense core of
concepts presented early is complemented with a
sparse periphery presented evenly throughout the
exposition; the latter is composed of many small
modules each reflecting more narrow domains.
Using tools from applied topology, we find
that the expositional evolution of the semantic
networks produces and subsequently fills knowledge
gaps, and that the density of these gaps tracks
negatively with community ratings of each textbook.
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Broadly, our study lays the groundwork for future efforts developing optimal design principles
for textbook exposition and teaching in a classroom setting.

1. Introduction
Knowledge has been distilled into formal representations for millennia [1,2]. Such efforts have
sought to explain human reasoning and support artificial intelligence [3–5]. Semantic networks
organize information by detailing concepts and their relations as the nodes and edges of a graph
[6]. In an educational context, concept maps reflect students’ understanding of information in a
similar manner, but may be used to evaluate comprehension [7–10] and identify topics that are
most difficult to connect to other concepts [11]. With the capacity to construct semantic networks,
concept maps and similar formal representations of knowledge comes the challenge of distilling
mechanisms of knowledge acquisition.

Network science offers an appropriate conceptual language and useful mathematical toolset
with which to meet this challenge [12]. In the parlance of network science, semantic networks
of language tend to exhibit highly ordered architectures with strong local clustering, relatively
short paths between any pair of nodes, and a few hubs, which are connected to an unexpectedly
large number of other nodes [6,13]. Recent work using highly stylized laboratory experiments
provides some preliminary evidence that network structure may play a role in how humans
process information [14–16] and acquire knowledge [17–19]. Yet extending these findings to the
real world has proven difficult, and it remains unknown precisely how the network structure of
knowledge in the form of science textbooks [20], science and mathematics topics on Wikipedia
[21], and even formal scientific papers [22,23] impacts the learnability of these content domains.
Furthermore, as learning is a process, studies of semantic network architecture would benefit
from evaluating a network’s dynamic structure as it unfurls over the course of presentation,
exposition or acquisition. The education literature establishes that the order in which topics are
introduced can help or hinder learning at this level [24,25], but a rigorous understanding of order
and dynamic structure in knowledge acquisition has not been formalized in ecologically valid
experimental settings.

Here we seek to address these limitations by studying semantic networks of mathematical
concepts in linear algebra textbooks [26,27]. A common college-level course, the subject is
rigorous and logical, sequentially introducing concepts that naturally relate to, depend on and
follow from other concepts. To begin, we seek to understand the structure of these inter-
concept relations in textbooks, which present the knowledge in a thoughtfully ordered and
comprehensive exposition. While each author may introduce and relate topics in a different
order, we assume that each text serves to elucidate and approximate the latent structure
of the domain of knowledge it conveys. Using techniques from network science [12], we
test the hypothesis that these semantic networks exhibit structural order, indicating a logical
sequence of topics that ensures accessibility. Motivated by a recent report that language
acquisition proceeds through an ordered progression filling knowledge gaps [28], we use
persistent homology [29–32] to track the growth and development of topological cavities in
the semantic network. We predict that fewer knowledge gaps will exist in the texts than
in null models of randomly growing semantic networks; withholding connections between
topics that have already been taught is unlikely to effectively convey knowledge. Finally,
we compare the growth of semantic networks elicited from multiple texts, in terms of their
different expositional structures and topic orderings. We hypothesize that the degree to which
knowledge gaps are created and persist within texts may be related to the complexity or
difficulty of a text, and to the knowledge it conveys. Broadly, our quantitative evaluation of
the differing structures and expositional layouts of distinct textbooks provides a foundation
for future work examining the effects of topic ordering and network architecture on classroom
learning.
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2. Results
We constructed semantic networks and expositional growing networks from 10 linear algebra
textbooks (see Methods). We first used a modified version of the RAKE algorithm [33] to identify
significant phrases (figure 1, step 1), which we refer to collectively as the index list of concepts.
We represent these concepts as nodes, and connect two nodes by an edge if their corresponding
concepts co-occur within the same sentence (figure 1, step 2). To mimic the growth of a reader’s
knowledge network, we add nodes and edges as soon as they are mentioned in the book (figure 1,
step 3). Across textbooks, node sets ranged in length from 146 to 453 (average 279.4) and edge
densities ranged from 0.0748 to 0.204 (average 0.129). In what follows, we characterize the
semantic network growth of all texts, and when useful we give examples from individual texts
referred to by author last name.

(a) Meso-scale structure of semantic networks
Mathematics as a field and linear algebra as a subject contain many fundamental topics and
conceptual connections between those topics. Practitioners and authors might contest which
topics are fundamental, and which are more tangential, or less strongly linked to the rest. Within a
network, this organizational scheme can manifest as core–periphery structure where fundamental
concepts are densely connected to one another, while peripheral concepts connect to the core
but not to one another (figure 2a). To assess this structure in a semantic network constructed
from the whole text, we calculate the core–periphery statistic and compare the statistic values to
those obtained from two null models (figure 2c): (i) a random index null model, in which the RAKE
concept extraction methodology is bypassed, and words that are not common ‘stop words’ (see
electronic supplementary material, Methods) are chosen at random within each text to serve as
the index sets for generating expositional networks, and (ii) a continuous configuration model, in
which the original network is rewired while maintaining node degree and strength. Generally,
we observe that the empirical semantic networks show greater core–periphery organization than
the continuous configuration model, suggesting the presence of a strongly connected core of
topics along with a set of sparsely connected periphery topics given the degree and strength
distributions. Interestingly, we also observe that the empirical networks show less core–periphery
organization than the random index model, indicating that the networks of math terms are more
homogeneous than a network of randomly chosen words.

We next investigate the internal structure of the core and periphery. For the core, we find
that across texts many similar words participate, including ‘determinant’, ‘vector space’ and
‘matrix’ as expected (see electronic supplementary material, table S3). By contrast, we expect
that the periphery contains terms more specific to a given book and its particular sub-topics.
We therefore hypothesize that the periphery will display community structure (figure 2d). To test
our hypothesis, we calculate the modularity of the periphery subnetwork, along with the relevant
subnetworks of the random index and continuous configuration null models. We observe that the
periphery of each semantic network generally exhibits a modular organization that is stronger
than that of the continuous configuration model, but weaker than that of the random index
model (figure 2e). Intuitively, while randomly chosen words may display strong modularity due
to greater variation in semantic relationships and frequencies, mathematics phrases are used in a
more modular fashion than expected from the rewired continuous configuration model, perhaps
due to the nature of focusing on one general idea at a time in chapters and sections.

(b) Expositional development of the large-scale structure
How does the identified network structure develop along a text’s exposition? We find that
the expositional introduction of nodes in the final network’s core precedes the introduction
of periphery nodes throughout the exposition (figure 3a). We quantify this observation by
calculating the area between the core and periphery node introduction curves; high values
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Figure 1. Extracting growing semantic networks from textbooks. (1) The index set is populated with phrases conveying
significant mathematical concepts. (2) Any index nodes that co-occur within the same sentence are connected by an edge.
(3) This procedure is applied to each sentence in the exposition, forming a view of the semantic network as it grows throughout
the text. (Online version in colour.)

indicate that the core appears much earlier than the periphery, and low values indicate that the
core and periphery appear at a more equal rate. The areas range from 0.064 and 0.20 across texts,
and a one-sample t-test rejects the null hypothesis that these values are drawn from a distribution
with mean 0 (t = 8.65, p = 1.18 × 10−5; calculated with the SciPy library, v. 1.1.0 [35]).

Next, we compare the areas obtained from the texts to those expected in statistical null models.
Notably, we find that the empirical periphery is introduced earlier (relative to the core) than
expected from the random index model, which has a more stark difference between core and
periphery introduction (figure 3b). We observe no consistent trend across texts in comparison
to a random sentence model, in which we use the original index list to build a growing graph
from the texts after randomizing sentence order. While many texts show a marked discrepancy
between the core and periphery development, others show a more even development. These
differences across texts could reflect different expositional styles among different authors: some
may choose to introduce core topics initially and save extra tangents for later, while others may
involve discussions of peripheral topics throughout the text for motivation. Additionally, we take
a similar approach in examining the relative rate of introduction of edges connecting different
types of groups within the core and periphery, and find that of all edge types, those connecting
concepts within a single periphery community are introduced the most sporadically, with some
communities being fully introduced early on in the text, and some being introduced later (see
electronic supplementary material, figure S2).

(c) Expositional development of knowledge gaps
In studying core and periphery formation, we focused on densely connected areas in the growing
networks; now we turn to a study of sparsely connected areas. Specifically, we seek to understand
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Figure 2. Meso-scale structure of semantic networks. (a) A schematic of core–periphery structure,with densely connected core
nodes and a sparsely connected periphery. (b) A schematic of community structure,with densely connected communitieswhich
are themselves sparsely connected to each other. (c) The core-ness statistic of each network and of the corresponding random
index and continuous configuration null ensembles. (d) Visualization of the Axler core–periphery structure. (e) Modularity
statistics of theperiphery of eachnetwork andof the corresponding random index and continuous configurationnull ensembles.
(f ) Visualization of theAxler periphery community structure. Graph visualizations generatedwith graph-tool [34]. See electronic
supplementary material, table S4, for example, nodes present in the Axler periphery communities. (Online version in colour.)

how voids or knowledge gaps might emerge and evolve throughout the exposition. Teaching
strategies may intentionally leave open a connection or an area of the knowledge space in order
to more intuitively reveal the connection later when a learner has more experience, or to provide
the reader the opportunity to derive the connection on his/her/their own. A lack of connections
between concepts can manifest as a topological gap in the network (figure 4a).

To detect gaps that form and evolve throughout the text, we compute the persistent homology
[29–32] of the ordered set of networks composed of nodes and edges that exist at each point in
the exposition; note, this ordered set of binary graphs is referred to as a filtration. We specifically
detect gaps between connected components (dimension 0 homology > 1), cavities within rings of
edges (dimension 1 homology > 0) or voids within polyhedra (dimension 2 homology > 0). We
say that these so-called persistent cavities are born at the first instance of their appearance in the
network, they live as long as the network grows and the topological void still persists, and they
die when they are either connected to another previously disconnected component (in the case
of dimension 0) or are tessellated by crossing edges (in the higher dimension cases). We invite
the reader to refer to the Methods for a more rigorous description of persistent homology in this
application.
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Figure 3. Development of core–periphery structure during exposition. (a) Core and periphery development curves, showing
the fraction of nodes in each group introduced by a particular time in the exposition; mean±2 standard deviations across all
texts. (b) Difference in area between core and periphery development curves for all texts and corresponding random index and
random sentence order null ensembles. (Online version in colour.)

In order to detect emerging and evolving gaps throughout exposition, we compute the
persistent homology of each text. The number of gaps of dimension n that are alive at a given
point in the filtration, called the Betti curve, is denoted βn. We see that the texts tend to generate
a large number of components, as manifest by the initial β0 peak, followed by a rise in β1, and
finally a slow and steady increase in β2 (figure 4b). For each text, we summarize the life and death
of each persistent gap in a barcode (figure 4c). Each bar represents a single persistent cavity; the
left endpoint of the bar indicates the birth time of the persistent cavity, while the right endpoint
indicates the death time. Across all texts, we see that although many persistent cavities are killed
soon after birth, a non-trivial number of gaps in each of the three dimensions persist throughout
many sentences, suggesting that long-lived gaps are a consistent hallmark of the growing text
structure.

To further evaluate the substantiveness of the gap architecture, we compared the persistent
homology of the text networks to two filtration-based null models. In the first null model, we
use the introduction of concepts to order the complete network for the filtration. More precisely,
this node-ordered null model adds a node at the first mention of the concept, and also adds
all of the connections that will ever exist from that node to previously acquired concepts. This
model mimics the teaching strategy of introducing all connections of a new concept to anything
previously taught. We find that the node-ordered model produces almost no persistent homology,
in stark contrast to the original text (see electronic supplementary material, figures S5 and S6).
This result suggests that the text expositions consistently leave connections between already-
learned concepts for later discussion. We use a second null model to determine whether the totally
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Figure 4. Development and persistence of knowledge gaps throughout exposition. (a) Examples of knowledge gaps in
dimensions 0, 1 and 2. (b) Number of live knowledge gaps (βn) in each dimension n throughout exposition; mean± 2 standard
deviations across all texts. (c) Barcode for the Treil text, showing introduction, persistence and death of cycles introduced
throughout exposition. Barcodes for other texts are provided in electronic supplementary material, figures S3–S6. (d) The
0-dimensional normalized average cycle lifetime across all texts, as well as corresponding random index and random sentence
order null models. (Online version in colour.)

random introduction of edges might produce similar progressions of persistent cavities. We find
that this random edge order model produces an order of magnitude more persistent cavities of
dimension 1 and 2 than the original text (see electronic supplementary material, figures S5 and
S6). Broadly, the presence of a few long-lived cavities in the actual text are consistent with the
notion that knowledge gaps exist but are introduced sparingly, and that introducing connections
to all topics previously learned is not the strategy of these texts.
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At this point, we know that throughout the text the introduction of terms and connections
forms and fills gaps as a reader progresses. However, we do not yet know if the number and
longevity of persistent cavities is different than we would expect from any growing semantic
network in the text or from a reordered text. In order to answer this question, we define the
normalized average cycle lifetime in dimension n as the sum of all persistent cavity lifetimes
normalized by the number of cavities and filtration length (similar to metrics defined in [36],
see Methods for details). Then intuitively a large value of normalized average cycle lifetime
suggests that multiple long-lived persistent gaps exist, while a small value suggests that any
gaps that form will die shortly after birth. We show the distributions of normalized average cycle
lifetime values in dimension 0 in figure 4d for the random index and random sentence models,
and the corresponding distributions for dimensions 1 and 2 in electronic supplementary material,
figures S7 and S8. For completeness, we also include the barcodes and Betti curves for each model
in the electronic supplementary material, figures S3–S6. Strikingly, the original text expositions
generally fall below both null models’ expected normalized average cycle lifetimes in dimension
0. This observation suggests that the exposition proceeds in a manner that may intentionally
avoid developing disconnected topics, or possibly connects new topics to others very quickly.
In dimensions 1 and 2, texts’ normalized average cycle lifetimes vary more in relation to their
null models, with only a handful of texts showing lower values than the null models.

(d) Evolving structure and text properties
After characterizing the structural features of the growing text networks, we next ask if these
features might relate to text rating. Perhaps some readers particularly enjoy a book that
leaves open many gaps motivating future study, while others enjoy a book with a stronger
core offering conceptual closure. To determine whether readers’ preferences relate to network
structure, we used average text rating across all editions from Goodreads (goodreads.com). We
kept any text which had at least five ratings, which was the case for seven of the 10 texts.
We observe no significant correlation between average text rating and normalized average
cycle lifetime across texts’ sentence-based filtrations (figure 5a; see electronic supplementary
material, table S5 for all Spearman’s correlation coefficients and p-values). We also consider
a one-at-a-time (OAAT) filtration (see electronic supplementary material, Methods), which in

goodreads.com
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addition to allowing for comparability in persistent homology across texts and null models,
provides additional information not just about a text’s knowledge gaps on the sentence scale, but
furthermore its sub-sentence topological structure. Remarkably, we observe significant negative
correlations between average rating and OAAT normalized average cycle lifetime in dimensions
0 (Spearman’s correlation coefficient ρ = −0.857, p = 0.0137) and 2 (ρ = −0.893, p = 0.00681), as
well as the mean cycle lifetime averaged over dimensions 0, 1, and 2 (ρ = −0.821, p = 0.0234)
(figure 5b, see electronic supplementary material, table S5 for all statistics). Intuitively, these
results provide preliminary support for the notion that the extent of knowledge gaps in exposition
influences the quality of a text as a learning tool. However, these results only account for seven
of the 10 books, due to lack of availability of ratings for the others; as such, further work will
be necessary to confirm the reliability of these findings in larger samples. For a description of
additional relationships between the texts’ structural features and broader text characteristics, we
refer the reader to the electronic supplementary material.

3. Discussion
Here we examined the structure and topological development of semantic networks of
mathematical knowledge as extracted from linear algebra texts. Meso-scale structural analysis
indicates that the semantic networks exhibit strong core–periphery structure, where a tightly
knit group of concepts form a core, surrounded by sparsely connected periphery concepts that
are grouped into communities. Furthermore, these features appear to relate to the growth of
the networks over the course of exposition; the cores of networks are built more quickly than
the peripheries, and edges within each particular periphery community are introduced at varied
times over the course of exposition. Using persistent homology, we extracted the knowledge gaps
inherent in the exposition and found that the number of distinct connected components tends to
decrease throughout the text, while topological cavities tend to increase. Finally, we examined
possible relationships between the extent and persistence of knowledge gaps and other features
of a text and its associated semantic network, providing motivation for future work examining
the role of knowledge gaps in learning.

(a) Structure and evolution of meso-scale features in semantic networks
The prevalence of core–periphery and community structures in the networks we examine is
consistent with a hierarchical structuring of mathematical knowledge, in which there exist a set
of foundational concepts (the core), which are necessary for the subsequent logical development
of subsidiary (periphery) concepts, which themselves are hierarchically organized into related
communities. The generic notion of hierarchical structure in mathematics has been discussed in
the context of presenting a logical sequence of concepts in education [37]. Hierarchical structure
has also been noted in Wikipedia topic networks, in which concepts tend to maintain several
connections to the foundational concepts used in each article [21]. Furthermore, hierarchical
structure is observed in rigorous formulations of mathematics, which serves as the latent structure
of mathematical knowledge. Formal proof networks for a variety of theorems across fields such
as geometry and algebra exhibit great modularity and a degree distribution characteristic of a
hierarchical, assemble-and-tinker construction process [38]; additionally, a hierarchical model
of random Boolean networks recovers a similar bias-complexity relationship to that observed
in formulas in propositional logic [39]. A hierarchical structure of mathematics knowledge is
intuitive, particularly within a delimited area such as linear algebra: a set of foundational
concepts, such as matrix, vector and linearity, is used to motivate and develop the rest of the topics
within the field, which, for the most part, all presuppose the concepts in the core. Naturally, this
hierarchy will not be a simple dichotomy (core–periphery), but the subsidiary concepts should
themselves fall hierarchically into different groups, which may differ across texts due to author
interests and publisher goals.
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The observed growth dynamics of core–periphery structure offers a coherent expositional
model. Given that the set of core concepts are highly related, and thus plausibly represent the
concepts providing the foundation for linear algebra, it seems reasonable to introduce these
concepts early and to introduce periphery concepts, which presuppose the core, later. The
importance of giving sufficient foundational context and prior knowledge in exposition is well
appreciated [40]. Further, the edge dynamics we observe are consistent with an expositional
model in which topics are procedurally related to each other; the core concepts are introduced
first, and used to introduce, at each point in the exposition, the communities that are being
focused on; furthermore, subsidiary concepts that have already been introduced may then be
used to give context for and develop further, separate subsidiary communities. Such an expository
approach, in which connections are consistently introduced between that which has been learned,
and that which is to be learned, has been demonstrated as useful in teaching mathematics
proofs [41]. An extension of this motivating expository style is one that incorporates historical
context [42]. Much prior work has sought to map the historical structure of research in scientific
fields [43]. Recent work in particular has sought to track the temporal evolution of fields and
their topics, for example, studying the exchange of ideas between topics in information retrieval
[44], the community structure and prevalence over time of topics within neuroimaging [45] and
the temporal dynamics of the interdisciplinarity of work across disparate fields of science [46]. In
the future, it could prove fruitful to compare the expository structure of mathematics and other
scientific texts with the historical development of the results included in those texts.

It is worth noting that, while recent efforts address the dynamics of core–periphery [47,48] and
community [49,50] structures in networks, comparatively little work has addressed the growth
and emergence of these structures over time. The perspective of our work is therefore important;
we consider there to be some a priori structure of mathematical knowledge, unbeknownst to
the reader, which each author seeks to convey. Thus, rather than examining the dynamics of
meso-scale features in the networks, we instead focus on how the eventual features are created
throughout exposition. Importantly, these eventual features may not exactly resemble those
present in the latent structure of the mathematics itself, or in the author’s understanding of the
mathematics. In particular, our approach has been to examine the exposition of mathematics,
whereas the rigorous, proof-based formulation of that mathematics may differ in form from its
exposition. Nonetheless, we anticipate that insofar as mathematical exposition is meant to convey
an understanding of the logic underlying a domain of mathematics, our results on the structure
of this exposition, and in particular on its evolution, should approximate analogous results on
the latent structure of mathematics. As such, methods dealing with the emergence of meso-scale
features could prove useful in studies of learning [51]. For example, how do semantic networks
of students’ knowledge evolve as students are taught? Can that evolution be formally predicted
by a generative network model built from the textbook used in their class? And can students’
performance in a class be predicted by the extent to which their knowledge reflects the latent
structure of the subject matter?

(b) Knowledge gaps in the exposition of mathematics texts
Using the tool of persistent homology, we examined the growth and persistence of knowledge
gaps (more explicitly topological cavities) in the semantic networks of linear algebra texts. While
this tool has been applied to other types of text and knowledge, including Shakespeare’s plays
[52], natural language [53], discourse [54] and collections of mathematics papers [55], little is
known about how gaps within a single expositional text or growing semantic network may
impact how that text or knowledge structure might be received or understood. Our hypothesis,
motivated by the idea that a topologically complex structure with many gaps in knowledge might
be more difficult to learn, was that effective exposition likely seeks to produce a smaller number
of knowledge gaps, as the creation of a great number of topological cavities could prove confusing
to a reader. Still, leaving a few gaps throughout exposition can add intrigue to the subject, piquing
the reader’s curiosity to make connections themselves [56].
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In the context of this discussion, it is interesting to contrast the features of a process that
humans have arguably optimized for explicit learning with the features of a process that nature
has arguably optimized for implicit learning [57]. As a token of the former, we consider textbook
writing; as a token of the latter, we consider language acquisition in children [6,58]. Evidence
suggests that knowledge gaps, detected as topological cavities, are a robust feature of language
acquisition in toddlers and their prevalence is unaffected by maternal education or by the order
in which words are learned [28]. One could speculate that this observed homogeneity in the early
semantic feature network learning supports robust language acquisition, ensuring that children
who are exposed to different sets of words at different times are still able to reach adult language
proficiency. By contrast, when constructing an exposition for a textbook whose sole purpose is
to take a set of students from naivety to sophistication in the same place and at the same time,
such robustness is not needed and instead consistency, thoroughness and comprehensiveness
is required. The inability of randomized models to reliably produce cycle lifetimes similar to
those seen in the textbooks we study here would be consistent with these distinctions in goals
and environment. It could prove useful in the future to more generically assess the robustness
of growing networks to the order of node introduction [59], particularly to assess differences
between implicit or explicit learning processes.

Notably, we found that most cavities were eliminated before the end of each text. We observed
that, while multiple connected components were introduced, all were eventually—and usually
quite quickly—connected into a single connected component, suggesting that the expositional
order of introduction of edges throughout the text minimizes the extent to which cavities are
formed. Remarkably, though, the order of the expositions—that is, the extent to which cycles
were not introduced and did not persist—did not appear to be maximal. That is, the node-ordered
filtration null model exhibited significantly sparser persistent homology than we observed in the
texts (electronic supplementary material, figure S8). This observation suggests a trade-off between
topological order and apparent learnability; specifically, while such neatly ordered expositions
might minimize the extent to which knowledge gaps are created and persist, it is likely in the best
interest of readable and enjoyable exposition to not follow this purely structural ordering—that
is, to properly motivate concepts, give relationships where they might seem natural and useful,
and make the text generally more readable.

Our correlation analysis of the barcode densities suggests some interesting directions for
further study of the potential relationship between persistent homology of a growing semantic
network and effective learnability. Specifically, while our study did not deal explicitly with
differential learnability of texts or in how knowledge gaps might affect the learning process, we
did observe several interesting relationships between the 0- and 2-dimensional barcode densities
and textbook ratings. While these results are preliminary, they suggest that an interesting
avenue for further study would be to examine the topology of growing semantic networks in
the classroom setting. In particular, one could consider multiple networks: the network of the
textbook being used, providing the ‘latent space’ of the knowledge and the relationships between
concepts; the teacher’s network, as provided in class to the students through lessons; and finally,
the students’ networks, as they develop over time while the students learn the material. An
analysis of the developmental and topological relationships between all three of these classes
of semantic networks could yield interesting results in how knowledge structures are transferred
from teacher and book to student, and could provide useful insight to effective structuring and
expositional presentation of knowledge in a textbook format.

(c) The effectiveness of the random index null model
Throughout our study, we have used the random index model as a null to examine how the results
we obtain for the texts’ actual semantic networks differ from what we might expect when simply
calculating the co-occurrence networks and filtrations of a set of random words in a text. Notably,
while most of our results have fallen at the extreme ends of the metric distributions exhibited
by the random index ensemble, in some cases, such as in 1- and 2-dimensional normalized
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average cycle lifetime, the empirical filtrations demonstrate values that fall within the bulk of
the corresponding random index ensemble results. The perspective that the null simply gives
us a weighted network and filtration computed from the co-occurrence of a random set of
words might be disheartening, as this could suggest that our results, rather than reflecting the
meaningful structure of semantic networks of concepts elucidated by textbooks, instead might
simply reflect growing topologies that would be expected from any analogous calculation of
co-occurrence of arbitrarily-chosen words or phrases within a text. However, recall that the
random index sets comprise words not found within the stop word list, and therefore we might
consider each random index null network as a semantic network itself. Certainly, the semantic
features extracted through co-occurrence of randomly chosen words might not reflect the content
which is the primary focus of the text, since the random index set may include words that are
not mathematically meaningful. Even so, it is likely that some mathematical words will make
their way into the random index set, and the remainder of the words in the index set, due to
their not being stop words, will have some (admittedly non-mathematical) meaning. Thus, the
random index set may actually be viewed as an ensemble of growing semantic networks, each
of which happens to have a different node set and hence extracts semantic information about
the relationships between different words. From this perspective, the explanatory power of the
random index model both makes sense, and should be expected.

(d) Methodological considerations
There are certain limitations inherent in our work that should be considered for future study.
First, our text extraction methodology imperfectly converted PDFs to plaintext, leaving significant
textual noise and artefacts of embedded math which required subsequent automated removal,
and the remnants of which prevented perfect concept extraction and sentence-level co-occurrence
calculation. Because textbook PDFs are easier to access than textbook source material, we spent
significant time developing our text extraction approach to account for these circumstances so
that our methodology could be widely applicable. However, future work could use the LaTeX
source for textbooks in order to reduce noise. Second, the problem of concept extraction is ill-
posed due to the subjectivity of the notion of ‘concept’. We examined a number of supervised
and unsupervised keyphrase extraction algorithms, and in addition to performing the best in
comparison to our intuitive expectation for linear algebra concepts, we found RAKE to be both
fast and versatile, as its unsupervised nature allows it to work on any text without requiring
training on a large corpus of similar documents. However, future work will be necessary to better
understand (a) how to determine how many concepts should be extracted from a text, (b) what
should comprise a ‘concept’ in a semantic network, and to (c) examine hierarchically structured
semantic networks to incorporate the subjectivity of concepts into the network structure, so that
high-level concepts are distinguished from those which are lower-level. Third, our network and
filtration construction methodology is only one of many possible methodologies; as we chose to
use co-occurrence to construct the networks, they are undirected and lack edge labels detailing the
nature of each relationship. Fourth, the application of a clique complex to infer knowledge gaps in
a growing network is one of many choices, and it assumes that any fully-connected (k + 1)-clique
should, in fact, reflect a filled k-simplex of knowledge. However, a possible alternative could be to
only add a k-simplex when such higher-order relationships are observed simultaneously, such as
when three words co-occur in the same sentence. Finally, further research in a classroom setting
and across multiple domains of knowledge beyond mathematics could provide insight into what
types of knowledge gaps might have an effect on student learning, thus providing an answer as
to how persistent homology should be computed on growing semantic networks.

(e) Future directions
An open area for future work lies in understanding trade-offs in ordered network structure. Here,
we find four separate instances in which semantic networks of linear algebra textbooks appear to
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balance competing constraints. First, while core-ness and modularity are higher than expected in
a continuous configuration null model, they are notably lower than expected in a random index
null model. Second, while core nodes tend to be added more quickly than periphery nodes, the
difference in speed is more stark in the random index model. Third, while some texts add core
nodes faster than expected in the random sentence order null model, some texts add core nodes
more slowly, suggesting that each text opts for a different expositional style. Fourth, while the
barcodes of the empirical networks are relatively sparse compared to the random edge model,
they still exhibit more persistent cycles than the most ordered model, the node-ordered filtration.
Collectively, these results suggest that effective and useful exposition, while structured in nature,
is not as strongly structured as it could be. It may be effective to purposefully introduce some
gaps in knowledge by withholding topics to support productive failure [25] or provide detailed
motivation to stimulate curiosity [56,60]. Of course, it is also possible that our observations
reflect the nature of the structure of mathematics: perhaps mathematics simply does not have
as strongly ordered a structure as we might observe in our null models. Future efforts across
multiple disciplines could seek to better understand this tradeoff and its potential causes.

4. Material and methods
All tools and methods developed for use in this work are designed to be broadly applicable to
any expositional text. We thus provide Python code for the extraction and analysis of semantic
networks at https://github.com/nhchristianson/Math-text-semantic-networks. Further details
and considerations for the methods used can be found in the electronic supplementary material,
Methods.

(a) Data collection and preprocessing
We collected a diverse set of 10 linear algebra textbooks in PDF format, ranging in focus
from theory to application (see electronic supplementary material, Methods for more details).
We converted the PDF files to plaintext with the tool at https://pdftotext.com, and manually
cleaned each text to isolate the main chapters, discarding introductory or appendix sections.
We then converted the text to unicode KD normal form, replaced hyphens with spaces, and
used spaCy [61] to lemmatize all words in each text, which reduces inflected words to their
dictionary form. We then used the Python Natural Language Toolkit (NLTK, v. 3.3 [62]) to
tokenize the text into sentences and their component words, replacing any word containing
numerical characters with the character ‘#’. We then removed all words not comprised solely
of letters and ‘#’ and made the remaining words lowercase. Due to the presence of embedded
mathematics in the textbooks which is imperfectly handled by the PDF-to-text conversion process,
we implemented a final measure in an attempt to clean the text of artefacts such as the remnants of
variables and equations. In particular, we first created a ‘stop list’—that is, a list of common ‘stop
words’ in English—by removing all single-letter words from the Ranks NL Long stop word list
(https://www.ranks.nl/stopwords), since such single character words likely represent variables
within the text. Then, we applied a series of rules to determine whether any word token was
sufficiently variable-like to be converted to a ‘VAR’ variable placeholder: any ‘#’ placeholder was
kept as is; then, any word without vowels was converted to ‘VAR’; then, any word of length at
most two not present on our stop list was converted to ‘VAR’; and finally, any word of length 3 or
4 that did not spell check using the Enchant [63] spell-checker was converted to ‘VAR’.

(b) Concept extraction
The linguistics and natural language processing literature provide a number of canonical
statistical metrics for determining the significance of n-grams, or phrases comprised n words,
within text [64]. After testing multiple supervised and unsupervised keyphrase extraction

https://github.com/nhchristianson/Math-text-semantic-networks
https://pdftotext.com
https://www.ranks.nl/stopwords
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methodologies, we chose to use an unsupervised method based on the rapid automatic keyword
extraction (RAKE) algorithm [33] to extract concepts from our texts. RAKE works as follows:

(i) A provided set of stop words, phrase delimiters, and word delimiters are used to divide
the document into a set of candidate keyphrases and their comprising keywords.

(ii) The frequency of keywords and their co-occurrence in different keyphrases is calculated,
forming a co-occurrence graph.

(iii) The candidate keyphrases are ranked by a scoring function score(k), which typically ranks
candidate keyphrases by certain properties of their comprising keywords.

(iv) Some threshold n is chosen, and the top n ranked candidate keyphrases are kept as the
extracted keyphrases.

In RAKE, the scoring function for a candidate keyphrase k is typically taken to be

scoreRAKE(k) =
∑

i

deg(ki)
freq(ki)

,

where deg(ki) and freq(ki) are the degree and frequency, respectively, of the ith keyword
comprising the phrase k in the co-occurrence graph RAKE constructs. As such, RAKE poses
that significant keyphrases are those whose component words co-occur with many other words,
but do not occur very frequently. Because we wish to ensure that the scores of more plausibly
mathematical words are high, we modify this keyphrase scoring function to incorporate the
term frequency-inverse document frequency ranking method [65], including an additional term
to account for a given keyphrase’s frequency in an external corpus. Specifically, we specify our
phrase scoring function as

score(k) = scoreRAKE(k)
1 + brown(k)

,

where brown(k) is the number of times that the whole keyphrase occurs in the Brown corpus
[66] with the ‘Learned’ category (comprised of scientific and other academic texts) removed.
As such, we aim to penalize phrases that occur very frequently in non-mathematical text, as
such words will likely not be mathematically meaningful. We add 1 to the brown(k) term in
the denominator since not all phrases RAKE extracts occur in the Brown corpus. Details on
our specific implementation of the modified RAKE algorithm can be found in the electronic
supplementary material, Methods.

(c) Network construction
We construct each text’s semantic network of concepts by calculating the co-occurrence of
concepts in each text on a sentence level. That is, we deem two concepts in each text’s index
set to co-occur, and thus be related, if they occur in the same sentence at some point in the
text. We also assign to each edge between concepts an integer weight indicating the number of
sentences in which the two concepts co-occur. These data yield an undirected weighted graph
G = (V, E), where each node v ∈ V is a concept and each edge (v1, v2) = e ∈ E represents a semantic
relationship between concepts with an associated positive integer weight w(e) ∈ Z

+ denoting the
number of sentences in which the two concepts co-occur.

We are not merely interested in the total semantic network of each textbook, but in the
development of the semantic networks over the course of exposition. Thus, for each text, we keep
track of the first sentence in which each concept and each relationship—equivalently, each node
and each edge—is introduced. If a text has N sentences, our methodology of extracting growing
semantic networks yields a sequence of N graphs G1 → · · · → GN , where the kth graph Gk includes
all nodes and edges which have been introduced prior to or during the kth sentence of the text.
In the context of algebraic topology, which we employ throughout this study, such a sequence
of nested objects is called a filtration. We call this sequence of graphs the expositional filtration
of a text. In considering this filtration, we consider the binarized graphs; that is, we disregard
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edge weight data during the exposition, only considering edge weight data for the final semantic
network, which we call the total network.

(d) Meso-scale network structure
Complex networks often exhibit meso-scale or global characteristics of structural order. Certain
networks exhibit community structure, in which densely connected communities of nodes exhibit
sparse or weak inter-community connections [67]. In the context of semantic networks, such
densely connected communities may represent strongly related concepts that indicate the
existence of some higher-order enveloping concept or umbrella term. Another type of meso-scale
structure which may be exhibited is core–periphery structure, which is characterized by a densely
connected set of core nodes and a set of periphery nodes which are sparsely connected amongst
themselves, but are strongly connected to the core [68]. Such an organization of semantic networks
is plausible in the context of mathematics, in which many different ideas may be developed from
a smaller set of highly related concepts.

To detect community and core–periphery structure in the networks, we used the Brain
Connectivity Toolbox for Python, v. 0.5.0, which is based on the Matlab Brain Connectivity
Toolbox (BCT) [69]. To evaluate the presence of a core–periphery structure, we seek to assign
a network’s nodes to either the core or the periphery group so as to maximize the core-ness quality
function [70]:

QC = 1
vC

⎛
⎝ ∑

i,j∈Cc

(wij − γCw̄) −
∑

i,j∈Cp

(wij − γCw̄)

⎞
⎠ ,

where Cc and Cp are the sets of nodes in the core and periphery, respectively, wij is the weight
of the edge from node i to node j (which will be 0 if the nodes are not connected by an edge), w̄
is the average of all edge weights, where non-existent edges with ‘zero weight’ are also included
in the average, γC is a resolution which controls the size of the core, which we set to 1, and vC is a
normalization constant. In effect, in maximizing core-ness we seek to maximize the number and
weight of intra-core connections, while minimizing the number and weight of intra-periphery
connections.

To evaluate the presence of community structure in the networks, we use a Louvain-like locally
greedy algorithm [71] to optimize the modularity quality function:

QM = 1
vM

∑
i,j∈C

(
wij − γM

sisj

vM

)
δij,

where C is the set of network nodes, wij is the weight of the connection from node i to node j,
si and sj are the summed weights of edges connected to node i and node j, respectively, γM is a
resolution parameter controlling the size of communities which we set to 1, vM is a normalization
constant, and δij is the Kronecker delta function, which is 1 when node i and node j are in the
same community and is 0 otherwise [70]. In effect, modularity maximization seeks to maximize
the strength and number of connections within communities, yielding a partition of the network
nodes into a set of densely connected communities with few inter-community connections.

(e) Persistent homology
Beyond characterization of the local and meso-scale attributes of the total semantic network of the
texts, we furthermore seek to evaluate structural and topological characteristics of the semantic
networks as they are built over the course of the entire text. In particular, we study the extent
to which ‘knowledge gaps’ are created and persist in semantic networks throughout a text’s
exposition. To this end, we use a method with roots in the mathematics of algebraic topology
called persistent homology which, in short, evaluates the creation and lifespan of topological ‘holes’
in data over time, or in this case, over the course of exposition, thus allowing us to characterize
and evaluate the presence of these gaps in knowledge. Here we give a brief, intuitive overview



16

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A476:20190741

...........................................................

of how we calculate persistent homology for our expositional semantic networks; the particularly
interested reader may refer to [29–31] for a rigorous overview of persistent homology and its
computation for data analysis, as well as [32,72–75] for example uses of persistent homology in
the context of complex networks.

Recall that a text’s semantic network at a certain point in the exposition (a particular graph
in the expositional filtration) is an undirected graph, where connections between nodes indicate
that the concepts represented by those nodes have already co-occurred in a sentence. Given a
binary undirected graph G = (V, E), we may construct an object called the clique complex X(G),
which, for every natural number k, assigns to every all-to-all connected subgraph of G on (k + 1)
vertices (also known as a (k + 1)-clique) a k-simplex, which may geometrically be represented
as the convex hull of (k + 1) affinely independent points. For example, a 0-simplex is simply a
single node, a 1-simplex is an edge, a 2-simplex is a filled-in triangle and a 3-simplex is a filled-in
tetrahedron. Intuitively speaking, this clique complex X(G) is a ‘filled-in’ version of the graph G,
where, for each k, we choose a distinct colour and then colour in all (k + 1)-cliques in G to form
k-simplices. Then, classical homology intuitively describes, for each k, how many topological ‘holes’
of dimension k are in the complex, or how many regions are enclosed by the kth colour, but are
themselves not coloured. In other words, homology detects cycles1 of k-simplices that surround
a void. For example, a 1-cycle reflects a conventional cycle in a graph, just like the hole in a
circle; and a 2-cycle reflects a cavity, like the hole in the centre of a sphere. A 0-cycle is intuitively
slightly different, in that 0-cycles refer to connected components of the graph, so that having
more than one 0-cycle tells us that multiple disconnected components exist. In our work, we
restrict our focus to these first three dimensions, since these are the most geometrically intuitive.
These cavities or holes are exactly the knowledge gaps we seek in the semantic networks, as they
indicate some closed cycle of (k + 1)-order connections between concepts surrounding a region of
lesser connectivity.

A useful extension of homology enables us both to count the number of holes present in the
semantic network at each step in a text’s exposition, as well as to keep track of which topological
cavities are created and destroyed at each step. Specifically, persistent homology allows for the
computation of the homology for the sequence of clique complexes of our expositional filtration
X(G1) → · · · → X(GN); this tool not only keeps track of the number of cavities of each dimension
present at each expositional step, but it also tracks the persistence of each individual cavity over the
course of the exposition, so we may identify individual knowledge gaps, when they were created,
how long they persist, and when they are extinguished. Rigorously, the kth persistent homology
of a graph filtration yields a (multi-)set of intervals called the barcode:

{[b1, d1), . . . , [bm, dm)},

where bi indicates the time of birth of the ith k-dimensional cavity, and di indicates the time of
death of that cavity (which may be ∞ if the cavity is still present in the total network, i.e. it never
dies). Thus, the number of intervals, as well as their length (the difference between their death
and birth times), indicate the number and persistence, respectively, of topological cavities during
exposition.

Once we have computed the persistent homology of a text’s expositional filtration for a given
k, we may use several characteristics of the resultant persistence intervals to examine various
aspects of the persistence of knowledge gaps in the semantic networks. In particular, we consider
two metrics: first, we examine the value of m, which gives the total number of k-cavities which
were created, at some point, over the course of the exposition. Secondly, we define a metric similar
to one presented in [36], which we refer to as the normalized average cycle lifetime of dimension k:

Dk = 1
mN

m∑
i=1

(di − bi),

1More precisely, homology finds equivalence classes of cycles, but we refer to an equivalence class as a cycle for simplicity.
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where N is the number of steps in the filtration, and di is the time of death of the ith k-cavity,
unless di = ∞, in which case we set di = N + 1, to distinguish these infinitely persisting cavities
from those that die at step N. Intuitively, this metric describes the extent to which an expositional
filtration has cycles which are persistent; it is normalized by N, the length of the filtration, and m,
the number of k-cycles introduced throughout the filtration, so as to be comparable across texts
which might have different filtration lengths or total numbers of cycles introduced. The goal is to
allow a formal comparison of how persistent k-cycles tend to be in different texts.

In our work, we use Ripser.py [76] due to its speed and efficiency for the computation of
persistent homology for the empirical networks and the null models.

(f) Null models
In order to determine to what extent the results we obtain for meso-scale structure and topological
dynamics in the semantic networks are significant, we employ two categories of null models:
data-level null models, which randomize on the scale of the underlying text and index list,
from which we may then extract semantic networks and expositional filtrations; and projected
network-level null models, which randomize on the scale of the networks we extract for each
text. Furthermore, while some of these models are particularly suited as null models for the
structural metrics on the total network since they yield a single, weighted network, others are
more suitable as null models for the growing dynamics of the semantic networks, as they provide
a null expositional filtration. For each null model, our null ensemble is comprised of 100 random
instantiations; we present the resulting null distributions of metrics alongside the data for our
actual networks in our results. Here we summarize the null models and their uses; more detailed
descriptions of the models can be found in the electronic supplementary material, Methods.

(a) Random index: Expositional filtration of words that are not common ‘stop words’ (see
electronic supplementary material, Methods) chosen at random from each text, bypassing
the RAKE keyphrase extraction methodology, to serve as a semantic network on random
‘concepts’. Acts as a null model for the total network and empirical filtration.

(b) Random sentence order: Expositional filtration of original index set with randomly
shuffled sentences, keeping sub-sentence structure while randomizing exposition on the
sentence scale. Acts as a null model for the empirical filtration.

(c) Continuous configuration: Rewired network preserving node degree and strength. Acts
as a null model for the total network.

(d) Random edge: Random reordering of edge introduction from the empirical filtration,
mimicking totally random exposition. Acts as a null model for the empirical filtration.

(e) Node-ordered: Adds each node and all its edges in order of node introduction in the
exposition, mimicking exposition that connects each concept to all previously-related
concepts. Acts as a null model for the empirical filtration.
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