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ABSTRACT: Peptide mass spectrometry relies crucially on algo-
rithms that match peptides to spectra. We describe a method to
evaluate the accuracy of these algorithms based on the masses of
parent proteins before trypsin endoprotease digestion. Measurement of
conformance to parent proteins provides a score for comparison of the
performances of different algorithms as well as alternative parameter
settings for a given algorithm. Tracking of conformance scores for
spectrum matches to proteins with progressively lower expression
levels revealed that conformance scores are not uniform within data
sets but are significantly lower for less abundant proteins. Similarly
peptides with lower algorithm peptide-spectrum match scores have
lower conformance. Although peptide mass spectrometry data is
typically filtered through decoy analysis to ensure a low false discovery
rate, this analysis confirms that the filtered data should not be
considered as having a uniform confidence. The analysis suggests that use of different algorithms and multiple standardized
parameter settings of these algorithms can increase significantly the numbers of peptides identified. This data set can be used as a
resource for future algorithm assessment.

KEYWORDS: peptide mass spectrometry, trypsin, OMSSA, SEQUEST, Mascot, algorithm parameter sets, parent-protein conformance,
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1. INTRODUCTION

Peptide mass spectrometry provides a powerful method to
analyze proteome expression in cell lysates. At the core of this
method, experimental mass spectra of fragmented peptides are
matched with theoretical mass ladders based on peptide
sequences. The accuracy of peptide matching depends critically
on the effectiveness of algorithms that match the theoretical
and experimental spectra. Accurate matching is a major
challenge for these algorithms. We present here a method to
evaluate algorithms to obtain high-confidence interrogation of
proteomes.
In typical experiments, proteins in cell lysates are digested

with an endoprotease, typically trypsin, to obtain peptides in
size ranges that can be successfully analyzed by tandem mass
spectrometry (MS/MS). Trypsin fragments with pronounced
peaks in the first MS are selected for collision induced
dissociation (CID) in the second MS. CID causes fragmenta-
tion of the trypsin peptides, typically at amide bonds, producing
N-terminal b ions and C-terminal y ions that give rise to a set of
detected mass to charge (m/z) peaks. Peptide-searching
algorithms compare experimental m/z spectra with theoretical
ion ladders derived from tryptic fragments of an input sequence
″database″ of all proteins in the proteome. Each spectrum-
matching algorithm, however, is different in its design and

structure. The best peptide-spectrum matches are determined
by techniques such as cross-correlation (e.g., SEQUEST1) or by
model-based approaches using statistical significance
(OMSSA,2 Mascot3).
Each algorithm has multiple parameter settings, including

mass tolerances between theoretical and observed trypsin
fragments (precursor mass tolerance) or theoretical and CID
fragments (fragment mass tolerance); which and how many
optional mass modifications to allow per peptide; and which
CID ion series (e.g., a, b, y) to assess. It is important to choose
appropriate parameter settings of algorithms for accurate
peptide identifications. Given the many combinations of
choices, what are good strategies to determine parameter
settings? Do different parameter settings of algorithms applied
to a given data set provide different samplings of the proteome,
and are these samplings of high quality?
The effectiveness of an algorithm is typically assessed

through decoy analysis.4,5 For each forward protein sequence
in the sequence “database”, the algorithm is also presented with
the reverse of that sequence. The forward and reverse
sequences are processed blindly together, including a
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theoretical trypsin digestion, and the frequency that decoy
reverse peptides are chosen by the algorithm indicates the false
discovery rate (FDR5) for that particular choice of parameter
settings. Given that the algorithms output quality scores for
each peptide-spectrum match (PSM), scoring thresholds can be
computed and used to filter the output data to ensure an FDR
below a desired level (e.g., 1% or 5%). Decoy analysis is an
excellent strategy to assess algorithm parameter settings,
especially since the approach is inherently independent of
any particular algorithm.
We wished to develop additional approaches to assess

algorithm performance: methods to be used alongside decoy
analysis in order to build confidence in peptide matches by
different standardized parameter settings of algorithms.
Expanding on a protocol suggested by Park et al.,6 we present
a strategy that evaluates peptide-spectrum matches by assessing
the masses of parent proteins prior to trypsin digestion, an
approach that can be applied to any algorithm using the spectra
sets presented here (Supporting Information) or new data sets
if desired. This parent-protein profiling approach uses a gel slice
strategy to partition cell lysates according to parent-protein
mass. Application of this approach suggests that different
algorithms can provide different, yet valid, samplings of the
proteome, and that it can also be extremely productive to run
algorithms multiple times with different parameter settings, an
approach that is becoming increasingly possible given the
availability of increased computational power. We first focus
our discussion on the SEQUEST and OMSSA algorithms and
then present equivalent analysis of the Mascot algorithm, which
revealed similar results.

2. METHODS

2.1. Gel Slice Preparation

Conformance to parent proteins before digestion with trypsin
was used to assess algorithm matches of spectra to tryptic
peptides. Yeast cell lysates were partitioned into gel slices of
known molecular weight size ranges (25−37, 37−50, and 50−
75 kDa). Although the algorithms had no knowledge of the
parent-protein sizes before trypsin digestion, peptide matches
would be expected to conform to the correct parent-protein
size ranges if the algorithm was matching successfully. This has
been shown previously in MS/MS-based gel-band analysis of
the proteome of Pseudomonas putida bacteria.6

Protein samples were prepared as follows: 100 mL of
YSH474 cells were grown to mid-log phase in YPD and lysed

with RIPA buffer (150 mM NaCl, 1% Igepal, 0.1% SDS, 50 mM
Tris pH 8.0), and acid-washed glass beads. To prevent
degradation, protease inhibitors (Roche) and PMSF were
added, and samples were chilled on ice during lysis. The lysate
was spun at 5,000 rpm, and samples of 500 or 1,000 μg were
run alongside protein standard markers (Bio-Rad) on 4−20%
SDS-PAGE gels (Bio-Rad). Protein standard bands served as a
guide for the excision of gel slices of various molecular weight
size ranges (25−37, 37−50, and 50−75 kDa; Figure 1).
Samples were subjected to reduction and alkylation followed by
overnight in-gel trypsin digestion.7 Extracted peptides were
resuspended in 0.1% TFA, loaded onto a c18 packed
(Michrom) nanospray column (Polymicro), and run with a
180-min gradient on a LCQ Deca XP (Thermo-Scientific)
coupled to a high-performance liquid chromatography (HPLC)
system (Agilent 1100 series) and a nanoelectrospray (nano-
ESI) ion source. Preliminary tests indicated that gels with
visible degradation had limited conformance to parent-protein
masses. Hence, gels were discarded and not analyzed if their
appearance suggested visible degradation.
2.2. Peptide Spectrum Matching Algorithms

Peptide matches were identified using the SEQUEST algorithm
(Proteome Discoverer v.1.2) run on a Dell Alienware Aurora
R4 server, the open mass spectrometry search algorithm
(OMSSA) run on a 90-node cluster, and the Mascot algorithm
run on a Dell XPS 8300 server. Algorithm parameters were set
up to search for either the standard b and y ions following CID
or with the addition of a ions. Optional mass increases to
peptides included dynamic modifications of +42 Da for

Figure 1. Schematic summary of parent-protein profiling approach.

Table 1. Comparison of SEQUEST and OMSSA Parameter
Settings

OMSSA

SEQUEST 0 1 2 3 4

max missed
cleavage sites

1 1 1 1 1 1

precursor mass
tolerance (Da)

3.0 3.0 1.5 2.0 1.5 1.5

fragment mass
tolerance (Da)

1.0 1.0 0.5 0.8 0.5 1.0

precursor ion
search type

mono avg avg avg mono avg

fragment ion
search type

mono mono mono avg mono mono

mass tolerance
charge scaling

N/A none none none none linear
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acetylation of any N-terminal amino acid residue and +16 Da
for oxidation of methionine residues, and static modifications
included +57 Da for carbamidomethyl modification of cysteine
residues. The SEQUEST algorithm parameter file included a
precursor mass tolerance of 3.0 Da and a fragment mass
tolerance of 1.0 Da, while the OMSSA algorithm was run using
five different standard sets of parameters (Table 1) and Mascot
was run using four parameter sets (Figure 6A); the SEQUEST
parameter set is similar to that reported for PeptideAtlas yeast
data (http://www.peptideatlas.org/); the OMSSA and Mascot
parameter sets are similar to the algorithm default parameters.
Precursor peptides for liquid chromatography MS/MS (LC−
MS/MS) analysis were prepared by trypsin digestion, which
cuts after arginine or lysine, except when flanked by proline.
For the SEQUEST, OMSSA, and Mascot analysis, we required
trypsin-cleavage sites at both ends of the precursor peptides (or
one end if a terminal peptide). A sequence “database” file
containing protein translations of annotated and downstream
open reading frames (dnORFs) in FASTA format was
constructed as described previously.8

Output data from the three algorithms were uploaded to a
relational database and analyzed with stored procedures written

in MS-SQL to compute decoy false discovery rates (FDRs) and
parent-protein conformance scores. Reverse-sequence decoy
analysis was performed as described previously,8 and peptide
matches were filtered to give a target FDR of ≤5%. Before
computing decoy score thresholds, for each LC−MS/MS run,
we excluded matches with internal trypsin sites and matches
with an initial ranking (Rank) > 1 if a SEQUEST or Mascot
matched peptide. The decoy score thresholds were then applied
to the output data after first excluding OMSSA matches (which
are not ranked) where multiple nondecoy peptides matched to
the same spectrum. As discussed in Section 3.2 below, the
peptide matching by OMSSA is stringent, and the false
detection rate was typically below 5% after application of these
filters (1.6−5.1% depending on parameter settings and CID
ions assessed). For all three algorithms, we also excluded
peptides that mapped to multiple parent proteins; although
these were likely correct identifications, these peptides were
excluded because they could not be assigned to unique parent
proteins.

2.3. Conformance Score Computation

Parent-protein conformance scores were computed from
forward peptide matches classified as conforming or non-

Table 2. Conformance Scoring Based on Distinct Peptide Matches per LC−MS/MS Run

algorithma
OMSSA

parameter set
distinct
peptidesb

conforming
peptides

nonconforming
peptides

overall
conformance score

overall decoy
conformance score

(A) b/y ion screen
SEQUEST 4,480 3,781 699 84.4 14.6
OMSSA 0 3,060 2,717 343 88.8 23.6
OMSSA 1 3,644 3,196 448 87.7 20.3
OMSSA 2 2,134 1,893 241 88.7 23.5
OMSSA 3 3,295 2,887 408 87.6 17.8
OMSSA 4 3,035 2,696 339 88.8 23.9

(B) a/b/y ion screen
SEQUEST 4,757 4,021 736 84.5 17.0
OMSSA 0 2,583 2,282 301 88.3 18.0
OMSSA 1 3,393 2,960 433 87.2 21.2
OMSSA 2 1,702 1,482 220 87.1 19.8
OMSSA 3 3,065 2,670 395 87.1 15.9
OMSSA 4 2,556 2,250 306 88.0 16.7

aThe same spectra from 22 LC−MS/MS runs were analyzed by the SEQUEST and OMSSA algorithms. FDR threshold values were (A) SEQUEST:
0.081; OMSSA parameter sets 0 to 4: 1.0. (B) SEQUEST: 0.164025; OMSSA parameter sets 0, 1, 3, 4: 1.0; OMSSA parameter set 2: 0.9. bDistinct
peptides counted once per LC−MS/MS run. A total of 2,842 distinct peptides were detected when counted only once regardless of which algorithm,
parameter set, ion screen, or gel-slice range. Of these, 10.5% (298 distinct peptides) were detected in more than one gel-slice range, and 5.9% (168
distinct peptides) were scored as both conforming and nonconforming depending on size range.

Figure 2. Union of outputs from multiple OMSSA parameter sets increases the yield of detected peptides. Detection by multiple parameter sets
increases confidence in detected peptides. Conformance scores calculated from distinct peptides detected in the b/y (A) or a/b/y (B) ion screens in
OMSSA; peptides were counted once even if seen with multiple standardized parameter sets.
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conforming peptides according to the known molecular weight
size range of the gel slice (25−37, 37−50, and 50−75 kDa). We
analyzed data from 22 gel slices processed in 22 independent
LC−MS/MS runs (Supplementary Figure 1). Peptides were
counted once per LC−MS/MS run, even if detected by
multiple spectra. To account for aberrant protein travel through
the gel or possible post-translational modifications, mass
tolerances of ±10% of the molecular weight size range were
applied. For example, peptide matches from the 25−37 kDa gel
slice range were categorized as conforming if the parent
proteins were between 22.5 and 40.7 kDa.
Conformance scores for individual LC−MS/MS runs were

computed as follows:

=
+

conformance score
no. conforming peptides

no. conforming peptides no. nonconforming peptides

An overall conformance score (for a single set of parameter
settings for the algorithm) was computed by summing the
number of conforming peptides and nonconforming peptides
across all 22 LC−MS/MS runs counting each matched peptide
a maximum of once per run:

=
∑

∑ +

overall conformance score
(no. conforming peptides)

(no. conforming peptides no. nonconforming peptides)

3. RESULTS AND DISCUSSION

3.1. Parent-Protein Profiling Evaluates Algorithm
Performance

Peptide-spectrum matching algorithms score individual peptide
matches according to how well the masses of expected CID
fragments of a tryptic peptide match the m/z peaks in a
detected spectrum. We developed a parent-protein evaluation
method to assess algorithm performance. The approach is
based on the fact that algorithms have no knowledge of the
masses of parent proteins prior to trypsin digestion. By
partitioning parent proteins into known molecular weight size
ranges (25−37, 37−50, and 50−75 kDa) using SDS-PAGE and
processing individual gel slices for assessment through LC−
MS/MS (Figure 1), we investigated whether peptide matches
by algorithms conformed to the expected parent-protein size
range. Allowing a mass tolerance of 10% to compensate for
experimental variations inherent in the gel slice approach, we
computed conformance scores indicative of the effectiveness of
an algorithm parameter set (Table 2A.).
We ran individual LC−MS/MS runs for each of the 22 gel

slices and assessed spectra from the runs using a standard
parameter set for the SEQUEST algorithm and five different
parameter sets for the OMSSA algorithm (Table 1). After
employing decoy analysis to ensure false discovery rates
(FDRs) below 5%,4,5 we used the convention that even if a
peptide were detected with multiple spectra, each peptide was
counted only once per LC−MS/MS run. (The same peptide
was counted more than once if detected in multiple runs, which
in some cases were from gel slices with different size ranges.) In
a standard b/y ion screen, 84.4% of the 4,480 peptides detected
by SEQUEST had parent proteins conforming to the expected
size range. Using the same spectra, OMSSA detected between
2,134 and 3,644 peptides with conformance scores ranging

Figure 3. Conformance scores for a/b/y and b/y ion screens. (A)
Conformance scores were computed on the basis of distinct peptides,
counted once per LC−MS/MS run, detected by SEQUEST in the a/
b/y ion screen alone, the b/y ion screen alone, or both a/b/y and b/y
ion screens. (B) SEQUEST detected 5,016 peptides, counting each
peptide once per LC−MS/MS run. Of the 5,016 peptides, 4,221
peptides were detected by both ion screens, while 536 and 259
peptides were detected by a/b/y and b/y ion screens alone,
respectively. (C) Bootstrap analysis shows significantly depressed
conformance scores for b/y-alone and a/b/y-alone SEQUEST
matches. Dotted lines and percentages represent the conformance
score based on distinct peptides detected by b/y or a/b/y ion screens
alone. Dashed lines and percentages represent the 1st and 99th
percentiles. Left panel: Distribution of 1,000 conformance scores
calculated after random sampling with replacement of 536 samples
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from 87.6% to 88.8% depending on the particular parameter set
(Table 2A).
The conformance scores provide a relative measure of the

peptide matching accuracy of each set of parameter settings of
an algorithm. For example, the standardized OMSSA parameter
sets have somewhat higher conformance scores than
SEQUEST. However, although correlated, the conformance
score is not numerically equal to the matching efficiency of the
algorithm due to several factors:
• Parent proteins may run aberrantly during gel electro-

phoresis.9

• Post-translational modifications of parent proteins, such as
glycosylation10 or proteolytic cleavage,11 may substantially
change their molecular weights.
• Parent proteins of peptides randomly matched by the

algorithm may be randomly assigned to the correct size range;
for example, 25% of annotated yeast proteins have masses
between 22.5 and 40.7 kDA, so 25% of random matches would
conform to this size range. Indeed, the overall conformance
scores for the decoy reverse peptides are 20.6% (Table 2A).
Because these contributing factors likely apply equivalently

across all parameter settings of algorithms analyzing the same
spectrum data sets, differences in conformance scores never-
theless provide an excellent assessment of the relative
accuracies of the different algorithms and can be used to assess
new algorithms or new parameter settings of current
algorithms.

3.2. Algorithm Detection of Decoys

The five parameter sets of OMSSA all showed higher parent-
protein conformance scores compared with SEQUEST. Indeed,
the conformance score distributions from bootstrap analysis
indicated that these differences are significant (Supplementary
Figure 2). Given that the data sets were filtered to give a 5%

Figure 3. continued

from a full set of 4,757 distinct peptides per LC−MS/MS run detected
in the a/b/y ion screen. Right panel: Distribution of 1,000
conformance scores calculated after random sampling with replace-
ment of 259 samples from a full set of 4,480 distinct peptides per LC−
MS/MS run detected in the b/y ion screen. (D) Similar analysis with
OMSSA. (E) Percentages of distinct peptides detected in either the a/
b/y ion screen alone, the b/y ion screen alone, or both the a/b/y and
b/y ion screens.

Figure 4. Parent protein expression of distinct peptide matches (per LC−MS/MS run) detected in the a/b/y ion screen alone, the b/y ion screen
alone, or both a/b/y and b/y ion screens. Protein expression values (PE; estimated molecules per cell) were obtained from genomic-scale Western
analyses in yeast.13 Proteins of unknown PE values or values of zero (undetected) are not included. Distribution lines represent parent-protein PE
values of peptides detected by the SEQUEST (A) and OMSSA parameter set 0 (B) screens. Also see Supplementary Figure 3.
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FDR, the difference in conformance scores indicates that the
detection of reverse-sequence decoys by the two algorithms was
not equivalent. Indeed, even before applying a 5% FDR scoring
filter, the standard implementation of OMSSA returned decoys
at rates of 1.6−3.9% depending on the parameter set, indicating
that the OMSSA algorithm is quite stringent in its
interpretation of acceptable PSMs. Moreover, unlike SE-
QUEST, OMSSA does not standardly output a ranking of
PSMs; if only the best-scoring PSMs for each spectrum are
considered, then the decoy rates are even lower for the OMSSA
algorithm (0.6−1.7%). For comparison, we reassessed the
SEQUEST output using a 0.6% FDR threshold instead of 5%.
This resulted in fewer matches (3,398 instead of 4,480) and a
significantly higher parent-protein conformance rate (88.2%
instead of 84.4%) comparable to those of OMSSA (Supple-
mentary Figure 2). However, for the analysis that follows we
used standard implementations of both algorithms with 5%
FDR thresholds and filters as described in Methods.
3.3. Using Multiple Standardized Parameter Settings of an
Algorithm

Counting peptides once even if seen with multiple OMSSA
parameter sets, we classified peptides according to the number
of standardized parameter sets (i.e., 1−5) for which a peptide

was detected. Although conformance scores for the individual
parameter sets indicated high confidence in peptide matches,
only 42.9% of the 3,922 peptide matches were detected by all
five OMSSA standardized parameter sets (Figure 2A.). The
different samplings of peptides from different parameter
settings suggest that using multiple standardized settings of
OMSSA can increase the yield of high-confidence detected
peptides. Indeed, when probing the same spectrum data set, the
union of the outputs from five OMSSA parameter sets gave
3,922 detected peptides at an overall conformance score of
86.2%. Furthermore, we found that peptides detected by only
one of the five standardized parameter sets of OMSSA had a
considerably lower conformance score (61.1%) and accounted
for only 5.0% of the detected peptides (Figure 2A). This
suggests that when using multiple settings of OMSSA it may be
appropriate to exclude any peptides detected by only one of the
standardized parameter sets given that this class of orphan
peptides is found to be of lower confidence based on the
parent-protein profiling approach.

3.4. Performing Different CID Ion Screens

Collision induced dissociation (CID) most commonly cleaves
peptides at the amide bonds (between the C and N atoms) to
give b and y ions. These are the two ion types typically assessed
by the matching algorithms (b/y ion screen). However, a ions
can also be produced if the cleavage position is shifted by one
carbon, and algorithms can be configured to screen for a ions in
addition to the b and y ions (a/b/y ion screen). Since
assessment of a ions is sometimes included in specialized
screens (e.g., of glutaraldehyde modified peptides12), we tested
whether inclusion of the a ions might increase peptide
detections. We performed an a/b/y ion screen on the same
spectra data sets from the parent-protein profiling experiments
above and examined the conformance scores (Table 2B).
Using SEQUEST, we detected 5,016 peptides, counting a

peptide once per LC−MS/MS run whether seen in one or both
of the b/y and a/b/y ion screens (Figure 3B). This corresponds
to 2,261 unique peptides, of which 1,752 (77.5%) peptides
were detected by both the b/y and a/b/y ion screens. Bootstrap
analysis (Figure 3C, p < 0.001) indicated that peptides detected
by SEQUEST in both the b/y and a/b/y ion screens had
significantly higher conformance scores compared to peptides
detected by either the b/y or a/b/y ion screens alone (Figure
3A). This suggests that confidence in SEQUEST peptide
matches can be increased by performing both b/y and a/b/y
ion screens and retaining only the peptide matches detected by
both screens (the intersection of the outputs).
In contrast, the equivalent analysis with OMSSA did not give

similar results. Higher percentages of the total number of
distinct peptides (counted once per LC−MS/MS run) were
detected by OMSSA in either the b/y or a/b/y ion screen alone
as compared to the SEQUEST counterpart (Figure 3D, E).
Additionally, the high conformance scores (Figure 3D) of
peptides detected by OMSSA in either the b/y or a/b/y ion
screen alone suggest that in order to increase significantly the
numbers of detected peptides in OMSSA studies, it may be
beneficial to perform both b/y and a/b/y ion screens and to
take the union of the output results (rather than the
intersection as with SEQUEST). We note, however, that this
would approximately double the required computational time.
These results indicate that algorithms can have qualitatively

different behaviors, emphasizing the importance of having

Figure 5. Conformance of distinct peptides detected by OMSSA and
SEQUEST alone or by both algorithms. (A) Counting each peptide
once, regardless of which parameter set of the algorithm, how many
MS/MS experiments, or which CID ion screens revealed the peptide,
we find that 53.34% of the peptides are detected by both algorithms.
Of the 2,261 distinct peptides detected by SEQUEST and the 2,097
distinct peptides detected by OMSSA, 1,516 peptides are found in
both SEQUEST and OMSSA, while 745 peptides are unique to
SEQUEST and 581 peptides are unique to OMSSA. (B) Conformance
scores are computed by counting peptides once per LC−MS/MS run,
even if seen in both ion screens or in multiple parameter sets, for
peptides detected by both algorithms, SEQUEST alone, or OMSSA
alone. (C) Conformance scores are computed after applying two filters
limiting distinct peptides (i) from OMSSA to those that are detected
in >1 parameter set and (ii) from SEQUEST to those that are detected
in both b/y and a/b/y ion screens.
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evaluation tools to assess different standardized parameter
settings of the algorithms.

3.5. Protein Expression

We investigated whether the striking differences in performance
between SEQUEST and OMSSA in the b/y and a/b/y ion
screens might be related to parent-protein expression levels of
the detected peptides. Using data from genomic-scale Western
analyses in yeast,13 we found that parent-protein expression
values for peptides detected by SEQUEST in the b/y or a/b/y
ion screens alone had significantly lower protein expression
distributions compared to the distributions for peptides
detected by both b/y and a/b/y ion screens (Figure 4A; p <
1.09 × 10−18 for b/y only, p < 1.12 × 10−5 for a/b/y only).
However, this was not the case for the corresponding OMSSA
analysis (Figure 4B, Supplementary Figure 3), potentially
accounting for the high confidence in the b/y-only and a/b/y-
only matches.
The significantly lower parent-protein expression levels, in

combination with the lower conformance scores of peptide
matches detected by the b/y or a/b/y ion screens alone,
suggest that, compared to OMSSA, the SEQUEST algorithm
can detect peptides of lower abundance, but that confidence in
these lower-abundance peptides is decreased. The qualitative
difference in the results from SEQUEST and OMSSA raise the
possibility that the two algorithms provide different samplings
of the same cell lysate MS/MS data. Counting each peptide
once regardless of how many MS/MS experiments, which
standardized parameter sets of the algorithm, or which CID ion
screens revealed the peptide, we find that 53.3% of the peptides
are detected by both algorithms. SEQUEST detected 2,261
distinct peptides from the union of both the a/b/y and b/y ion
screens, while OMSSA detected 2,097 distinct peptides from
the union of the five standardized parameter settings of both
the a/b/y and b/y ion screens. A total of 1,516 peptides were
detected by both algorithms (Figure 5A) and had significantly
higher parent conformance than peptides detected by either
algorithm alone (89.0% of 3,382 peptides, counting peptides

once per LC−MS/MS run; bootstrap p < 0.001; Figure 5B,
Supplementary Figure 4). However, conformance rates are
higher (yet still depressed) for SEQUEST-alone peptides if
detected by both b/y and a/b/y screens (Figure 5C); similarly,
OMSSA-alone peptides have higher (yet still depressed)
conformance rates if detected by more than one parameter
set (Figure 5C).
3.6. Spectrum Matching Performance Varies within Data
Sets

The above results suggest that low protein expression is
associated with poor conformance to parent proteins. Indeed,
subsets of SEQUEST spectrum matches with progressively
lower protein expression reveal that parent-protein conform-
ance ranges from 59.4% (protein expression <103 molecules per
cell) to 86.8% (protein expression >105 molecules per cell)
(Table 3A). OMSSA matches show a similar progression.
Interestingly, proteins in the “undetected” set (protein
expression value = 0)13 have high conformance rates,
suggesting that they were undetected for experimental reasons
(e.g., inaccessible epitope tag) rather than low protein
expression.
This result indicates that parent-protein conformance is not a

uniform property within data sets but instead varies with
protein expression levels: the algorithms are less effective at
matching spectra for lower abundance proteins as might be
expected.14 We examined the relationship between protein
expression and the algorithm peptide-spectrum match (PSM)
scores (SEQUEST probability score, OMSSA e-value score)
and found that higher-confidence matching scores tend to be
associated with higher expression proteins, whereas lower-
confidence matching scores are common for both high and low
expression proteins (Supplementary Figure 5). For this analysis
we used a distance measure:

= −d log (PSMscore/FDRthreshold)10

which measures the relative distance between an algorithm
PSM score and the 95% confidence threshold for each

Table 3. Confidence in Algorithm Detected Peptides Depends on Parent Protein Expression and Distance from Decoy FDR
Threshold

SEQUEST OMSSA

conforming
peptidesb

nonconforming
peptides

conformance
scored

conforming
peptides

nonconforming
peptides

conformance
scored

(A) log(PE)a

undetected 669 115 85.3 558 74 88.3
x ≤ 3 171 117 59.4 102 62 62.2
3 < x ≤ 4 668 228 74.6 652 169 79.4
4< x ≤ 5 1467 258 85.0 1446 215 87.1
x >5 1093 166 86.8 850 133 86.5

(B) scoring confidencec (d)
d ≤ 1 724 420 63.3 431 270 61.5
1 < d ≤ 3 1291 241 84.3 741 135 84.6
3 < d ≤ 5 938 135 87.4 787 106 88.1
5 < d ≤ 7 597 66 90.0 642 93 87.3
d >7 561 43 92.9 1123 101 91.7

aProtein expression (PE; estimated protein molecules per cell) based on large scale Western analysis.13 bPeptides are counted once per LC−MS/MS
run even if detected by both the b/y and a/b/y ion screens and, in the case of OMSSA, even if detected by multiple parameter sets. cScoring
confidence d = −log10(PSM_score/FDR_threshold). For OMSSA, the algorithm PSM score used was the e-value. For SEQUEST, implemented in
Proteome Discoverer 1.2, we used the probability outputs to compute a PSM score = 10(probability/−10). dConformance scores are significantly
depressed for lower abundance proteins (chi-squared: SEQUEST, p < 6.18 × 10−36; OMSSA, p < 3.46 × 10−20) and for lower d scores (SEQUEST, p
< 7.23 × 10−80; OMSSA, p < 6.25 × 10−72)
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experimental series. For example a d-score of 2 implies that the
spectrum match is 102 fold better than the FDR threshold,
which is the least stringent acceptable score for inclusion in the
data set based on decoy analysis.
Not surprisingly, given this relationship between protein

expression and algorithm PSM scores, we found that
conformance to parent proteins tends to be higher for subsets
of matches with higher-confidence algorithm PSM scores. We
examined parent-protein conformance for subsets of spectrum

matches with progressively better score ranges (Table 3B). This
revealed that for both algorithms, matches with scores within
10-fold of the FDR threshold have parent conformance scores
of only 61−64%, whereas score bins with greater distances from
the FDR threshold have conformance scores that increase
progressively up to 91−93%.
This analysis suggests that a given parent-protein con-

formance rate for a data set represents an average rate for the
set of spectrum matches, and that the conformance rate is much

Figure 6. Assessment of the Mascot algorithm using parent-protein profiling. Spectra sets from the same 22 gel-slice LC−MS/MS experiments were
analyzed with the Mascot algorithm using 5% FDR. The Mascot algorithm shows trends similar to those of SEQUEST and OMSSA. (A) The
Mascot algorithm was run using similar parameter settings to those used with OMSSA. (B) Parent-protein conformance scores for b/y ion screen.
(C) Parent protein conformance scores for a/b/y ion screen. (D) Few peptides were detected by the b/y ion screen alone, and these had relatively
lower conformance. (E) Peptides detected by only one of the Mascot standardized parameter sets have lower conformance compared to those
detected with multiple parameter sets. (F) Conformance scores are depressed for detected proteins with low expression (p < 1.05 × 10−18; chi-
squared); for example, the set of proteins where protein molecules per cell <1000 (i.e., log(PE) < 3) have a conformance level of 53.9%. (G)
Similarly, conformance scores are depressed for peptide matches that score close to the decoy FDR threshold. This is the case for the subsets of
PSMs with scores below 77.6%, the 1% score threshold from bootstrap analysis. In this assessment, the scoring confidence, d =
−log10(PSM_prob_score/FDR_threshold), is computed using PSM probabilities from the Mascot output: score = −10·log10(PSM_prob_score).
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lower for matches close to the FDR threshold and
correspondingly higher for those further from the threshold.
Similarly, as discussed previously,14 FDRs measure the average
values for a data set and subsets of data with algorithm scores
closer to the FDR threshold have elevated rates of false
identification and hence are of lower confidence compared to
matches with scores further from the FDR threshold.
We note that although decoy analysis4,5 can be employed to

assess subsets of poor-scoring PSMs as discussed above, it
would not be practical to use decoy analysis to assess algorithm
performance with the other special subsets of detected peptides
presented above, such as the outputs from different ion screens
or different algorithms, due to difficulties in determining
appropriate subsets of decoys for computing FDRs.

3.7. A Resource for Algorithm Assessment

The parent-protein profiling data set analyzed in this study
provides a useful resource for assessing spectrum-peptide
matching algorithms. Our 22 LC−MS/MS runs from the
parent-protein profiling approach may be used as a benchmark
data set for future yeast proteomic studies that are based on
CID fragmentation and a mass spectrometer of similar
resolution and sensitivity to the LCQ Deca XP (Supplementary
Materials). For example, the spectra from the 22 gel slice
experiments were used to evaluate several parameter settings of
the Mascot algorithm,3 which is commonly used by many
groups (Figure 6A). Peptide-spectrum matches identified by
Mascot (Figure 6B, C) showed similar parent-protein
conformance rates as SEQUEST and OMSSA and a similar
graded dependence of conformance on protein expression
(Figure 6F) and scoring confidence (Figure 6G). Like OMSSA,
peptides detected with only one set of parameter settings of
Mascot had poorer conformance compared to those detected
by multiple parameter sets (Figure 6E). However, the behavior
of the b/y and a/b/y ion screens was somewhat different for
Mascot in that all matches detected by the a/b/y ion screen
were also detected by the b/y screen, and the few matches
detected by the b/y ion screen alone had poor parent-protein
conformance (Figure 6D).

3.8. Conclusions

With the ongoing improvements in the design of currently
available peptide-spectrum matching algorithms, as well as the
development of new algorithms, our parent-protein profiling
approach provides an unbiased and valid evaluation for
assessing different algorithms and choosing effective parameter
settings to obtain high confidence peptide matches. In
particular, conformance rates provide a relative measure for
comparing different algorithms and different standardized
parameter settings. Assessment of peptide-spectrum matches
from our 22 LC−MS/MS runs also calls for the use of multiple
algorithms and parameter settings to increase the yield of
identified peptides. In the case of SEQUEST, taking the
intersection of the output from the b/y and a/b/y ion screens
may increase confidence in peptide matches. In the case of
OMSSA, taking the union of the outputs from multiple
parameter sets and excluding PSMs detected by a single
parameter set may increase confidence in peptide matches. In
the case of Mascot, combining both of these filters (taking the
intersection of b/y and a/b/y matches and excluding PSMs
detected by only one parameter set) may increase confidence.
As expected,14 assessment of PSMs in the context of known
protein expression levels of the detected parent proteins
indicates that confidence in spectrum matching by an algorithm

varies within a data set and is lower for matches to low
abundance proteins and matches with low-confidence algo-
rithm PSM scores.
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