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Abstract: Cone snail venoms provide an ideal resource for neuropharmacological tools and drug
candidates discovery, which have become a research hotspot in neuroscience and new drug
development. More than 1,000,000 natural peptides are produced by cone snails, but less than
0.1% of the estimated conotoxins has been characterized to date. Hence, the discovery of novel
conotoxins from the huge conotoxin resources with high-throughput and sensitive methods becomes
a crucial key for the conotoxin-based drug development. In this review, we introduce the discovery
methodology of new conotoxins from various Conus species. It focuses on obtaining full N- to
C-terminal sequences, regardless of disulfide bond connectivity through crude venom purification,
conotoxin precusor gene cloning, venom duct transcriptomics, venom proteomics and multi-omic
methods. The protocols, advantages, disadvantages, and developments of different approaches
during the last decade are summarized and the promising prospects are discussed as well.
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1. Introduction

Cone snails (Conus) are carnivorous mollusks from the Conidae family (Figure 1). They live in
the tropical oceans around the world and hunt fish (piscivorous), worms (vermivorous), or molluscs
(molluscivorous) for food, although they are slow-moving creatures [1]. Cone snails have evolved a
full set of specialized envenomation apparatus to release bioactive venoms to compensate their slow
movement for fast-moving prey, competitors, or/and predators [2,3]. Cone snail venom peptides are
secreted by the epithelial secretory cells in the long and convoluted venom duct [2,4]. The venom
is pushed by muscle peristalsis of venom bulb and loaded into the harpoon-like radula tooth for
envenomation [5]. Due to the human casualties that are caused by cone snail stings in 1960s [6],
these venoms first caught researcher’s interest in their toxicity and bioactivity.

Early studies have confirmed that these bioactive venoms are a cocktail of neuroactive
peptides, termed conopeptides or conotoxins, which can cause paralysis, shudder, and even
death of the prey within seconds [1,5]. Subsequent research have revealed that conopeptides
are able to selectively modulate voltage-gated ion channels [7] (Table 1), including sodium
channels [8,9], potassium channels [10], and calcium channels [11,12], as well as ligand-gated
ion channels (Table 1), such as nAChRs [13–15], serotonin receptor [16], NMDA receptor [17],
GABA receptor [18], GPCRs [19] (α1-adrenoceptors [20,21], vasopressin receptor [22], neurotensin
receptor [23]), and neurotransmitter transporters (noradrenaline transporter [21,24]), which are key
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targets for chronic diseases, like neuralgia [8,25,26], addiction [27], epilepsy [17,28], cancer [29],
heart disease [30,31], and so on [32–34].Mar. Drugs 2018, 16, x 2 of 20 

 

 

Figure 1. Representative Conus species native to Hainan China (shot by Cheng Li). 
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channels, has been approved by FDA for chronic pain treatment since 2004 [39,40]. At present, more 
than 10 conotoxins, including Xen2174 (MrIA) [41], CGX-1007 (Conantokin G) [17], CGX-1051 (κ-
PVIIA) [42], ACV1 (Vc1.1) [43], and CGX-1160 (contulakin-G) [44] have marched into preclinical or 
clinical research stage, which present good prospects on conotoxin drug discovery. 
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Additionally, the venom peptides show high selectivity and efficacy when interacting with
the targets, resulting in minor side effects for disease treatment [35]. Hence, cone snail venoms
provide an ideal resource for neuropharmacological tools and drug candidates screening, which have
become a research hotspot in neuroscience and new drug development [36–38] (Table 1). For instance,
an ω-conotoxin, named MVIIA (Ziconotide, Prialt) from Conus magus, which blocks voltage-gated
calcium channels, has been approved by FDA for chronic pain treatment since 2004 [39,40]. At present,
more than 10 conotoxins, including Xen2174 (MrIA) [41], CGX-1007 (Conantokin G) [17], CGX-1051
(κ-PVIIA) [42], ACV1 (Vc1.1) [43], and CGX-1160 (contulakin-G) [44] have marched into preclinical or
clinical research stage, which present good prospects on conotoxin drug discovery.

Table 1. Target and clinical potential of representative conotoxins.

Target/Mode of Action Conotoxin Clinical Potential Ref.

Voltage-gated Ion
Channels

Cav 2.2 inhibitor MVIIA Analgesia (On Market) [40]
Nav 1.8 inhibitor MrVIB Analgesia [45]
Kv inhibitor PVIIA Cardiac reperfusion [42]

Ligand-gated Ion
Channels

α9α10 nAChRs inhibitor Vc1.1 Analgesia (Phase II) [43]
NMDA-R inhibitor Conantokin G Analgesia/anti-epileptic [17]
5-HT3 inhibitor GVIIIA — [16]

GPCRs
α1-adrenoceptor inhibitor TIA Cardiovascular/Benign

Prostate Hyperplasia [20,46]

vasopressin receptor agonist Conopressin-G Cardiovascular/mood [22]

neurotensin receptor agonist Contulakin-G Analgesia (Phase Ia) [23]

Neurotransmitter
Transporters noradrenaline transporter MrIA Analgesia (Phase I) [47]
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There are more than 700 Conus species in the world [48] and each can secrete over
1000 conotoxins [49]. In particular, 3305 novel conopeptide precursors were discovered from one
Conus episcopatus specimen [50]. Owning to small overlap of conopeptides between different Conus
species [51], there are an estimated 1,000,000 natural peptides that are produced by cone snails.
However, <0.1% of the estimated conopeptides has been characterized to date [36,52]. Therefore,
high-throughput and sensitive methods are crucial for the discovery of novel conotoxins and the
development of conotoxin-based drug screening from this enormous peptide reservoir.

In this review, the discovery methodology of novel conotoxins from mollusks Conus species has
been summarized, which mainly focuses on obtaining full N- to C-terminal sequences, regardless
of disulfide bond connectivity, through crude venom purification, conotoxin precusor gene cloning,
venom duct transcriptomics, venom proteomics, and multi-omic method. The protocols, advantages,
disadvantages, and developments of different approaches during the last ten years are overviewed
and the promising prospects of these methods are discussed.

2. Diversity of Conotoxins

Conotoxins normally consist of 10 to 40 amino acid residues with 2 to 4 or more disulfide bonds.
They are expressed as RNA-encoded precursor proteins, which are processed and transferred into
mature peptides in the endoplasmic reticulum (ER) and Golgi apparatus. A typical conopeptide
precursor is composed of a highly conserved ER signal region, a pro-region and a greatly variable
mature peptide region [52]. Conotoxins can be classified into different gene superfamily categories,
according to the similarities between the ER signal sequences [35].

Generally, conotoxin-encoding transcripts produce diverse precursors by hypermutation,
fragment insertion/deletion, and mutation-induced premature termination [53]. One precursor can
produce far more than one mature peptide because of various posttranslational modifications (PTMs)
and variable peptide processing (VPP), which create the exponential diversity of conopetides [53,54].
For example, 20 different conopeptide variants on average for each precursor have been detected
and characterized from venom duct transcriptomics of Conus marmoreus [49]. VPP refers to the
C- and N-terminal truncations of the precursor by proteolytic cleavage at alternative sites [53,54].
These variations generated by interrupting, deleting, or elongating partial sequences and cysteine
frameworks. It produced highly variable mature peptides or isoforms with multiple primary
sequences [54].

PTMs are ubiquitous and play a key role in the structure and activity of conotoxins [55].
Many types of PTMs are found in the conotoxin maturation process, such as oxidative folding
(disulfide bond formation, the most common PTMs), C-terminal amidation, hydroxylation of proline,
valine, and lysine, carboxylation of glutamate, cyclization of N-terminal glutamine, glycosylation,
sulfation, bromination, and residue epimerization, etc. [53,55]. These multi-diversification mechanisms,
such as transcript variation, VPP and PTMs, explain how thousands of specific conopeptides are
produced from such a limited gene precursors in a single Conus specie and reveal the reason for inter-
and intra-specific variability [49,53,56].

3. Conotoxins Purified from Crude Venom

Conotoxins have been obtained by isolation from crude venom of cone snails since 1970s [57]
(Figure 2). The envenomation apparatus of the snails was dissected first. Only about 10 to 50 µL crude
venom could be squeezed from each snail specimen, or the dissected tissues were directly subjected to
extraction. Sometimes, tens to hundreds of collected snails were dissected to obtain enough venom for
conopeptide isolation. The sampling process is non-renewable. It is a waste of precious resource of
cone snails, especially for the rare species.

The purification process almost has remained constant for decades (Figure 2). Crude venom
or dissected tissues are extracted by acetonitrile aqueous solution with 1% TFA. The crude extract
is fractionated by Size Exclusion Chromatography (SEC), and then purified by C18 reverse-phase
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chromatography with gradient acetonitrile/water solution with 0.1% TFA as mobile phase. In order
to gain enough target conopeptides for the subsequent characterization, enough crude venom and
rigorous purification skills are required. The purified conotoxins are subjected to de novo sequencing
through Edman degradation [58–87] or MS sequencing [81,88–90] after sequential disulfide bond
reduction, hydrosulphonyl alkylation, and enzymolysis, which make sequencing process much easier.
PTMs are assigned with the aid of MS techniques [59,65,66,69–71,75–78,80,83,89–92]. The targeted
conotoxins are then chemically synthesized through SPPS, following the subsequent oxidative folding.
HPLC co-elution of the synthesized peptides and the purified native conotoxins could validate the
sequencing results [69,73,75,76,81,83,84,89]. For gene superfamily identification of the native peptides,
their precursor genomic genes or cDNAs could be cloned by various PCR methods or identified by
venom transcriptome sequencing. According to the signal peptide homology of the precursors, their
gene superfamily could be determined and classified [31,62,65,68,74,75,79,82,86].
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Conotoxins purified from Conus venom during the last ten years are summarized in Table 2.
Fifty conotoxins in total were discovered during the last 10 years and only five in average were
found and characterized per year, indicating that conotoxin discovery from crude venom isolation
was stagnant. More efficient omic study is developing in full swing in recent years. It is difficult to
isolate a novel conotoxin from limited amount of crude venom that consists of more than 1000 venom
peptides. Blind search policy always makes the native peptide isolation process time-consuming
and laborious. Therefore, only limited random conotoxins were discovered, which belonged to
a few gene superfamilies (Table 2). Hence, more effective bioassay-guided and MS-sequence-tag
guided fractionation methods are under development to facilitate the rapid discovery of novel native
conotoxins from different crude venoms [62,86,87].
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Table 2. Conotoxins isolated from cone snail venom during recent ten years.

Name Species Super-Family Cystine Pattern Sequence Target/IC50 Year Ref.

RegIIA C. regius A I GCCSHPACNVNNPHIC # nAChR: α7/103 nM, α3β2/33 nM,
α3β4/97 nM 2011 [60]

α-LsIA C. limpusi - I SGCCSNPACRVNNPNIC nAChRs: α3β2/10 nM, α3α5β2/31
nM, α7/10 nM 2013 [87]

α-RgIB C. regius - I TWEECCKNPGCRNNHVDRCRGQV α3β4 and/or α3β4α5 nAChRs 2013 [61]

α-BruIB C. brunneus - I DYCCRROTCIPIC # Dα7 nAChR 2014 [62]

α-AusIA C. australis - I SCCARNPACRHNHPCV α7 nAChR: 11.68 mM for AusIA (g),
9.67 mM for AusIA (r) 2014 [63]

Lo1a C. longurionis A I EGCCSNPACRTNHPEVCD α7 nAChR/3.24 µM 2014 [64]

BnIA C. bandanus A I GCCSHPACSVNNPDIC # α7 nAChR 2014 [65]

Im10A C. imperialis T I NTICCEGCMCY # unknown 2016 [91]

α-EIIB C. ermineus - I ZTOGCCWHPACGKNRC # nAChRs 2017 [66]

PIC
C. purpurascens A I

SGCCKHPACGKNRC
rα1β1δε nAChR 2017 [67]

PIC[O7] SGCCKHOACGKNRC

lt3a C. litteratus M III DγCCγOQWCDGACDCCS unknown 2009 [68]

κ-RIIIJ C. radiates M III LOSCCSLNLRLCOVOACKRNOCCT # hKv1.2 channels/33 nM 2010 [69]

pr3a
C. parius M III

CCNWPCSFGCIPCCY
unknown 2010 [70]

pr3b ERVCCGYOMSCKSRACKOSYCC #

CnIIIC C. consors M III ZGCCNGPKGCSSKWCRDHARCC # Nav1.4/1.3 nM
α3β2 nAChR/450 nM 2012 [71]

BnIIID C. bandanus M III CCDBγNCDHLCSCCD # unknown 2014 [72]

Asi3a C. asiaticus M III CCQWPCSHGCIPCCY # unknown 2016 [91]

bt5a C. betulinus T V SγCCIRNFLCC unknown 2010 [73]

pr6a

C. parius O VI/VII

TCLARDELCGASFLSNFLCCDGLCLLICV

unknown 2010 [70]
pr6b FGSFIOCAHKGEOCTICCROLRCHEEKTOTCV
pr6c DQCTYCGIYCCPPKFCTSSGCRSP
pr6d YGNFOTCSETGEDCSAMHCCRSMTCRNNICAD

MfVIA C. imperialis O VI/VII RDCQEKWEYCIVPILGFVYCCPGLICGPFVCV Nav1.8/95.9 nM, Nav1.4/81 nM 2012 [88]

ge6b C. geneis O2O2
VI/VII ACGGGGAPCGSSLDCCYPFECSYNSCG

unknown 2015 [74]ge6c VI/VII ACGGGGAPCGSSLDCCYPFγCSYNSCG
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Table 2. Cont.

PiVIIA C. princeps O2 VI/VII CDAOTHYCTNYWγCCSGYCγHSHCW unknown 2016 [75]

vi6a C. virgo O1 VI/VII DCGGQGEGCYTQOCCOGLRCRGGGTGGGVCQL unknown 2016 [76]

Lo6/7a C. longurionis - VI/VII
DQCSYCGIYCCPPKFCTSAGCRSP #

unknown 2016 [91]Lo6/7b SCLSSGALCGIDSNCCNGCNVPRNQCY #

fu6a C. fulgetrum O VI/VII TCREKGEOCSVYVγCCSRICGYYACA unknown 2016 [77]

α-GVIIIB C. geographus S VIII SGSTCTCFTSTNCQGSCECLSPPGCYCSNNGIRQPGCSCTCPGT #G α9α10 nAChR/9.8 nM 2015 [92]

lt9a

C. litteratus P IX

IWFCASRTCSAPADCNPCTCESGVCVDWL tetrodotoxin-sensi-tive sodium
channels/300 nM 2017 [78]

lt9b IWFCASRTCSAOADCNOCTCγSGVCVDWL tetrodotoxin-sensi-tive sodium
channels/504 nM

Ca11a C.
caracteristicus I XI

AWPCGGVRASCSRHDDCCGSLCCFGTSTGCRVAVRPCW
unknown 2009 [79]Ca11b ALLCGGTHARCNRDNDCCGSLCCFGTCISAFVPC

ts14a C. tessulatus A XIV DGCPPHPVPGMHPCMCTNTC unknown 2010 [80]

Asi14a C. asiaticus - XIV SCGYPCSHCGIPGCYPG # unknown 2016 [92]

pc16a C. pictus M XVI SCSCKRNFLCC # unknown 2011 [81]

qc16a C. quercinus - XVI DCQPCGHNVCC unknown 2011 [82]

αD-Ms C. mustelinus D XX DVRECQVNTPGSKWGKCCMTRMCGTMCCARSGCTCVYHWRRGHGCSCPG nAChR: α7/0.12 nM, α3β2/1.08 nM,
α4β2/4.5 nM 2009 [31]

αD-Cp C. capitaneus D XX EVQECQVDTPGSSWGKCCMTRMCGTMCCSRSVCTCVYHWRRGHGCSCPG showed the same selectivity profile
as αD-Ms, but has a lower potency

α-GeXXA C. generalis D XX DVHRPCQSVRPGRVWGKCCLTRLCSTMCCARADCTCVYHTWRGHGCSCVM
(dimer) α9α10 nAChR 2015 [83]

im23a C. imperialis K XXIII
IPYCGQTGAECYSWCIKQDLSKDWCCDFVKDIRMNPPADKCP

unknown 2012 [84]im23b IPYCGQTGAECYSWCIKQDLSKDWCCDFVKTIARLPPAHICSQ

as25a
C. cancellatus - XXV

CKCPSCNFNDVTENCKCCIFRQP #
unknown 2013 [85]as25b CKCOSCNFNDVTENCKCCIFRQO?

RsXXIVA C. regularis - XXVI CKGQSCSSCSTKEFCLSKGSRLMYDCCTGSCCGVKTAGVT Cav2.2 2013 [89]

GeXXVIIA C. generalis O - ALMSTGTNYRLLKTCRGSGRYCRSPYDCRRRYCRRISDACV α9α10 nAChR/16.2 nM 2017 [93]

p21a C. purpurascens - - FELLPSQDRSCCIQKTLECLENYOGQASQRAHYCQQDATTNCODTYYFGCCPGYA
TCMSINAGNNVRSAFDKCINRLCFDPGH # unknown 2011 [86]

#, [O], [γ], [B] represent C-terminal amidation, hydroxyproline, carboxyglutamate and bromotryptophan, respectively. Dα7 nAChR means the receptor is expressed in the CNS of the
Drosophila melanogaster fly. The sequence of α-GeXXA (a dimer) presents one subchain of the dimer. ? indicates that the amidation of the C-terminus was not directly confirmed. Dash (-)
means undetermined or none.
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4. Gene Cloning to Discover New Conotoxins

To overcome the limitations of crude venom purification strategy, gene cloning for novel
conotoxins discovery has emerged in 1990s [94]. Since a conotoxin is expressed by a specific gene,
it can be amplified by PCR technique with specific primers [53,95–98].

Generally, genomic DNA is extracted from snail tissue of an individual specimen, or cDNA is
prepared by reversed transcription of mRNA extracted from dissected venom duct. The resulting total
DNA or cDNA is served as a template for PCR amplification with forward and reverse primers to
perform 3′- and 5′-RACE. The primers are designed and synthesized on the basis of the conserved
sequence in signal region (Figure 3, primer 1) or untranslated region of 3′- or 5′-UTRs (Figure 3,
primer 2 and 3) of specific known conotoxin precursor, or its relatively conserved introns (Figure 3,
primer 4). The PCR products are purified by electrophoresis on agarose gel and are ligated into a
plasmid vector for sequencing. The annotation of possible conotoxin-encoding genes is conducted
based on homologous searching. The resulting conotoxin sequences are analyzed and assigned by
CLUSTALX [99]. The signal region sequences can be predicted by SignalP 3.0 server (http://www.cbs.
dtu.dk/services/SignalP/) [99–101].
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Primers make it possible for specific conotoxin-encoding genes to be amplified from the total
genomic DNA or RNA of a cone snail. Thus the PCR primer design is a key factor for conotoxin
discovery by gene cloning. Generally, the resulting PCR sequence of a conotoxin precursor gene
generated by primer 1 or primer 2 pairing with primer 3, contains a complete open reading frame
(ORF) sequence, which includes a signal region, a pro-region, and a mature peptide region (Figure 3).
When primer 4 pairing with primer 3 is used to clone a conotoxin precursor gene, it starts with
partial pro-region without signal peptide. Representative α-family (α*-) conotoxins discovered by
gene cloning during the last ten years are shown in Table 3. The resulting sequences of Pu14.1 and
GeXIVA consist of complete precursor sequences including signal regions which facilitate to assign
gene superfamily category. Previous study showed that the sequences of the α-conotoxin intron in
pro-region is highly conserved [97]. Many new α-conotoxins have been discovered by PCR technique
using its conserved intron and 3′-UTR primers in our lab, such as α-conotoxin TxIB, TxID, LvIA, etc.,
which do not contain signal regions (Table 3). A forward primer and its paired reverse primer could be
designed according to the conserved intron of a known gene superfamily and its 3′-UTR, such as A-,
O-, or other superfamily, to clone novel conotoxin precursor genes. Random cDNA sequencing can
also obtain the complete precursor sequence, e.g., VxXXIVA, but this method is not as targeted as the
strategy with delicately designed primers.

When compared with crude venom purification, the gene cloning strategy is more resource-saving.
Generally, several or even one specimen is enough for conotoxin gene cloning. However, the mature
peptide sequences are speculated from their precursor genes, so no PTMs identification is involved.
On the other hand, gene cloning strategy is relatively low-throughput, when compared with the
transcriptomic approach that arose in 2010s. In addition, the primers for gene cloning are designed
according to the conserved sequences of known family or superfamily, so new family or superfamily
conotoxins are difficult to be discovered by this way.

http://www.cbs. dtu.dk/services/SignalP/
http://www.cbs. dtu.dk/services/SignalP/
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Table 3. Representative α*-conotoxins discovered by gene cloning during the last ten years.

Conotoxin Super-Family Primer Sequence Target
(nAChRs)/IC50

Ref.

Pu14.1 A signal sequence &
3′-UTR

MGMRMMFAVFLLVVLATTVVS
FNSDRASDGRNAAANVKASDLMARVLEK
DCPPHPVPGMHKCVCLKTC

rα1β1δε >
rα6α3β2 > rα3β2 [73]

GeXIVA O1 signal sequence
MKLTCVLIITVLFLTACQLTTA
VTYSRGEHKHRALMSTGTNYRLPK
TCRSSGRYCRSPYDRRRRYCRRITDACV

rα9α10/4.6 nM [102]

TxIB - intron & 3′-UTR FDGRNTSANNKATDLMALPVR
GCCSDPPCRNKHPDLC # rα6/α3β2β4/28 nM [103]

TxID - intron & 3′-UTR FDGRNAAGNDKMSALMALTTR
GCCSHPVCSAMSPIC

rα3β4/12.5 nM,
rα6/α3β4/94 nM [104]

LvIA - intron & 3′-UTR FRGRDAAAKASGLVGLTDRR
GCCSHPACNVDHPEIC #

rα3β2 (8.7 nM) >
rα6/α3β2β3 ≈
rα6/α3β4 ≈
rα3β4 > α7

[105]

Lt1.3 - intron & 3′-UTR FDGRNAAPSDKASDLISLAVR
GCCSHPACSGNNPYFC # α3β2/44.8 nM [106]

VxXXIVA B cDNA sequencing METLTLLWRASSSCLLVVLSHSLLRLLG
VRCLEKSGAQPNKLFRPPCCQKGPSFARHSRCVYYTQSRE

rα9α10/1.2 µM,
Mouse
α1β1γδ/6.6 µM

[107]

The signal region is shadowed. The pro-region is italics. The mature conotoxin sequence is underlined. # represents
C-terminal amidation. “r” indicates rat.

5. Cone Snail Multi-Omics

Although big efforts have been made for novel conotoxin discovery from natural crude venom
and gene cloning, most of the total estimated conotoxins have not been characterized yet [108].
More efficient, resource-saving, and high-throughput methodology urgently needs to be exploited.
“Omics” such as transcriptomics and proteomics, and “Multi-omics” by integrating them together,
have opened a new era for conotoxin discovery and rapidly accelerate the rate of conotoxin
discovery [108–110].

5.1. Transcriptomics—A Useful Pathway to Identify Putative Conotoxins

Transcriptomics aims to identify and profile the holistic gene (including the conotoxin-encoding
genes) transcription and expression at RNA level. Venom duct is an ideal material for transcriptomic
analysis, because the number and level of conotoxin-encoding transcripts from venom duct are much
larger than those from other tissues [50,111]. Conus venom duct transcriptomics is able to describe the
conotoxin expression and it has presented a useful method to rapidly identify putative conopeptide
sequences. In addition, transcriptomics using next generation sequencing (NGS) technology [112]
makes large scale sequencing time- and cost-effective.

The transcriptomic pipeline (Figure 4) starts from the total RNA extraction of dissected venom
duct. Then, mRNAs are served as reverse-transcriptional templates for cDNA library construction.
PCR amplification is conducted while using cDNA as template and specific sequences as primers.
The resulting cDNA or the raw RNA sequences are sequencing using NGS platforms, such as
454 (Roche, Branford, CT, USA), Illumina (Illumina, San Diego, CA, USA), Ion Torrent Personal
Genome Machine (Thermo Fisher, Waltham, MA, USA), Nanopore (Oxford, UK), ABI 3730 Series
(Applied Biosystems, Foster City, CA, USA), and PacBio (Pacific Biosciences, Menlo Park, CA,
USA) [108,113]. Illumina and Roche 454 are the most widely-used NGS platform at present (Table 4).
The raw reads generated from NGS platforms require data assembly to remove artifacts, poor quality
raw reads, as well as redundant and aberrant sequences [114]. The trimmed sequences are then
deciphered into peptide primary sequences according to opening reading frames (ORFs) [112] by
ConoPrec [1,53,54,111,115,116] or SignalP4.0 [115–118], which may locate the signal peptides and
predict their cleavage sites. Profile Hidden Markov Models (pHMMs) [1,111,118,119] is a useful
tool of ConoSorter [1,110,118,119], which could identify the putative precursors of conopeptides
and categorize their superfamilies. Homology search and analysis by running BLAST against the
combined searchable online databases, like ConoServer (The university of Queensland, Brisbane,
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Australia) (http://research1t.imb.uq.edu.au/conoserver/) [120,121], UniProtKB/Swiss-Prot (http:
//www.uniprot.org/downloads) [122,123], and NCBI (http://www.ncbi.nlm.nih.gov/), may enable
the rapid identification of known and novel conotoxins. ConoSorter also facilitates to illustrating
relative sequence frequency, length, number of cysteines, N-terminal hydrophobicity, and sequence
similarity score [118]. Thus, a unique transcriptomic dataset for an individual specimen from a specific
Conus specie might be established.
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Compared with traditional isolation and gene cloning, venom duct transcriptomic approach is
a rapid, efficient, resource-saving, and high-throughput way to identify massive conotoxins from
different cone snails, which greatly extends our cognition of conotoxin resource (Table 4). During the
last decade, many putative conopeptide precursors have been identified from transcriptome of
different Conus species (Table 4). At least 30 conopeptides precursors were discovered from C. bullatus
by transcriptome sequencing. Surprisingly, as many as 3305 novel conopeptide precursors were
discovered from a single Conus episcopatus specimen by sequencing its transcriptome (Table 4).

Phylogeny-based conotoxin discovery utilizes the known conserved sequence to design specific
primers for PCR amplification, which enables to find more conopeptides belonging to known
superfamilies from different Conus species [124]. Additionally, specific PCR primers might be
designed according to incomplete sequences that were obtained by MS-sequencing-tag or Edman
degradation [124,125], which is also applied to clone new conotoxin precursors from venom
transcriptome, cDNA, and its genomic DNA of various Conus species. It provides a feasible way to
explore novel conotoxins belonging to new superfamilies [124]. cDNA library normalization is an
effective and commonly-used method to equalize some specific cDNA, which facilitates to identify
conotoxin genes with a relatively low level expression level [114,124]. Normalization suppresses highly
abundant transcript reads and increases rare transcripts, so as to maximize the identified number of
unique conotoxins [119].

Thanks to transcriptomic study, venom insulins, which target the heterospecific insulin receptors
of prey, predators, and competitors, have been proven to be expressed in many worm- and
snail-hunting cone snails [126]. Six insecticidal conotoxins have been validated and screened out

http://research1t.imb.uq.edu.au/conoserver/
http://www.uniprot.org/downloads
http://www.uniprot.org/downloads
http://www.ncbi.nlm.nih.gov/
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from the transcriptomic dataset of 215 precursors by homologous search with α-conotoxin ImI [127].
These findings reveal that Conus transcriptomic database can promote the extension for new knowledge
and find various new conopeptides.

Table 4. The reported transcriptomic and proteomic data from various cone snails during the
past decade.

Species Number of
Precursors

Number of
Gene

Superfamily

Sequencing
Platforms

Number of
Confirmed

Conotoxins by
Proteomics

MS
Instruments Year Ref.

C. textile - - - 31 ESI-LTQ-Orbitrap 2010 [128]

C. bullatus 30 6 Illumina,
Roche 454 - - 2011 [129]

C. consors 53 11 Roche 454 - - 2012 [130]
C. pulicarius 82 (79 new) 14 Roche 454 - - 2012 [131]

C. marmoreus 105 13 Roche 454 2710–6254 MALDI-TOF,
ESI-Q-TOF 2013 [49]

C. marmoreus 158 13 new Roche454 106 ESI-MS/MS 2013 [118]
C. miles 662 16 (8 new) Roche 454 48 ESI-Q-TOF 2013 [54]

C. flavidus - - - 31 ESI-LTQ-Orbitrap 2013 [53]
C. victoriae 113 20 Roche454 - - 2014 [119]

C. geographus 127 16 (4 new) Roche454 43 ESI-TripleTOF 2014 [3]
C. catus 104 11 Roche 454 51 ESI-Q-TOF 2015 [115]

C. episcopatus 3305 25 (16 new) Illumina 1,448 ESI-MS/MS
ESI-Q-TOF 2015 [50]

C. tribblei 136 30 (6 new) Illumina,
Roche 454 - - 2015 [132]

C. tribblei
C. lenavati

100 (45 new)
132

39
40 ABI 3730XL - - 2015 [116]

C. planorbis 182 25 Roche 454 23 ESI-TripleTOF 2015 [133]
C. betulinus 215 (183 new) 9 new Illumina - - 2016 [111]
C. vexillum

C. capitaneus 220 19 (4 new) Roche 454 24 ESI-Q-TOF,
MALDI-TOF 2016 [1]

C. gloriamaris 108 (98 new) 31 Illumina - - 2017 [134]

Dash (-) means undetermined.

5.2. Proteomics—An Effective Approach to Discovery Natural Conotoxins

Traditional proteomic identification depends on Edman degradation and amino acid composition
analysis to assign the peptide sequences, but its sample-consuming and low-throughput characters
make it difficult to be extensively applied. As the high-resolution MS instrument appears [135],
venom proteomic study with the aid of modern MS technology has proven to be an effective and
high-throughput approach for novel conotoxin discovery [108,109].

The general proteomic procedure is presented in Figure 4. Briefly, the venom sample is prepared
by squeezing the venom from dissected venom duct (one-off operation), or collecting the secreted
venom that is induced by pray from living cone snail individuals (reproducible operation) [1]. As the
MS techniques develop, the required venom amount for experimental analysis of proteomics is
decreased. Even about 7% or less of crude venom from one specimen is enough [136]. The proteomic
data detected from different Conus species, especially for those cone snails hunting different preys, are
quite different from each other, because different species and the food preference are the key factors
for the evolution of venom diversity [137].

In traditional bottom-up proteomics, pretreatment of venom sample, such as reduction, alkylation,
and enzymatic digestion, is carried out before HPLC-MS analysis in order to eliminate the influence of
disulfide bonds, although it leads to partial loss of conopeptides during processing [50,53,111,115,138].
In top-down proteomic approach, intact disulfide-bridged venom peptides are remained, which
makes it more applicable to analyze simple peptide mixtures, like highly purified venom subfractions,
whereas bottom-up approach is more suitable for complex crude venom [50,53,139]. The combination
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of top-down and bottom-up approach enables the identification of several unexpected cleavage sites
during conotoxin maturation [53].

The resulting vast MS data generated from LC-MS analysis are subjected to bioinformatic tools
for further data processing and mining. Raw MS data are inputted into Mascot for Peptide mass
fingerprint. ProteinPilot™ [1,49,54,115] is used for sequence identification and the annotation of
precursor ions by searching the MS/MS mass list obtained at a relatively high precise level [54].
Parameters for enzymolysis and various types of PTMs are imported into ProteinPilot to identify
PTMs and fragment splicing. ConoMass [49,115] and ProteinPilot are able to identify nearly all the
PTMs except glycosylation, which requires assignment by de novo sequencing. The sequences are
homologically searched and matched against databases, such as ConoServer, UniProtKB/Swiss-Prot,
NCBI, and known transcriptomic dataset from its own, to identify the known and novel conopeptides
as well as their gene superfamilies. The subsequent results are presented by various peptide sequences
with a series of statistical data to profile the venom components.

Advanced mass analyzer, like TOF, especially Quadrupole-TOF (Q-TOF), shows rapid acquisition,
high resolution, first-class sensitivity, and excellent mass accuracy. Ionization methods, such as ESI,
MALDI, CID, ETD, EThcD, etc., provide options for obtaining alternative mass data for different
purpose. ESI and MALDI are generally for proteomic study, whereas CID, ETD, EThcD are commonly
for de novo MS sequencing by providing different dissociation patterns to acquire variable specific
peptide fragments. More mature peptides can be detected by using superior MS instrument with
advanced mass analyzer and efficient ionization technique. For instance, from venom proteomics
of Conus marmoreus, there were 2710 peptide sequences revealed by MALDI-TOF; 3172 peptide
sequences were detected by ESI-Q-TOF with regular electrospray; and 6254 peptide sequences were
disclosed using ESI-Q-TOF, which is equipped with a DuoSpray ionization source [49]. ETD ionization
strategy combined with targeted chemical derivatization has been applied to increase the charge
state of conopeptides so as to maximize the detectable mass range, because the molecular masses
of conotoxins usually exceed the optimum detective coverage [132]. Superior mass analyzer and
various ionization methods are combined and applied to expand the boundary of accessible venom
repertoire. Modern venom proteomics provides a methodology, not only for the rapid detection
and characterization of specific conotoxins, but also for profiling an overview of the complex
venom components.

5.3. Bioinformaics—An Efficient Tool for Massive Data Processing and Integrating

Bioinformatics is an efficient tool for massive data processing and integrating, which has
been deeply penetrative during the raw data processing, sequence identification, and superfamily
classification by exquisite analytical softwares and algorithms with the introduction of integrated
databases [108,140]. Venom duct transcriptomics and venom proteomics both benefit from the
emergence and development of bioinformatics, especially the improvements on bioinformatic
softwares, algorithms and expansion of searchable databases. The functions of the frequently-used
tools for transcriptomics and proteomics are presented in Table 5. Transcriptomic and proteomic
studies are quite reliant on the foundation database, which provides templates for sequence searching,
matching, and annotating. The databases for sequence identification and BLAST should be the latest
updated version, which should be composed of complete or partial natural precursor and mature
toxin sequences generated either from conotoxin genes, transcripts, or proteins, as well as artificially
synthesized conotoxins. Discovery of novel sequences using different approaches, in return, expands
the capacity of the databases.
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Table 5. Frequently-used bioinformatic tools for cone snail venom transcriptomics and proteomics.

Tool Developer Function
Tools for transcriptomics

SignalP Technical University of
Denmark, Denmark Predict and locate the signal peptides and their cleavage sites

ConoPrec The university of
Queensland, Australia

Identify ORF and analyze contigs coding for conopeptide precursors, predict
signal peptides and their cleavage site; Superfamily categorization

ConoSorter —
Identify and classify precursor conotoxins into gene superfamilies; Provide
relevant information (frequency of protein sequences, length, number of
cysteine residues, hydrophobicity rate of N-terminal region etc.)

pHMMs Technical University of
Denmark, Denmark Identify precursor peptides and classify the sequences into gene superfamily

Tools for proteomics

ConoMass The university of
Queensland, Australia

Match experimental proteomic mass list against the mass predicted from
transcripts, mass spectrometry comparison; PTMs identification

Mascot Mascot science, UK Peptide mass fingerprint; MS/MS database searches

ProteinPilot AB SCIEX, USA Searching and identification of mass sequences; Identification of PTMs

MaxQuant Max Planck Institute of
Biochemistry, Germany

Quantitative analysis of label-free and SILAC-based analysis;
PTMs identification

5.4. Multi-Omics Integration

A comprehensive strategy, named “multi-omics” or “venomics” [108,140], by integrating
transcriptomics with proteomics through bioinformatics, is popular in the field of conotoxin
research [110]. Although venom duct transcriptomics and venom proteomics both have proven
to be effective and high-throughput methods to identify massive conopeptide sequences, the conotoxin
sequences that are generated from transcriptomics are putative precursor peptides that need to be
further confirmed for their real existence at protein level. Furthermore, no PTMs could be predicted
from the precursor sequences. Luckily, venom proteomics is able to validate the putative peptides at
protein level (Table 4) and identify nearly all the PTMs [49,128]. The validated sequencing and PTMs
data can help to illustrate the processing mechanisms (transcript variation, VPP, PTMs) from precursor
peptides (transcriptomic data) to the corresponding mature peptides (proteomic data).

Just as not every putative precursor can be validated by proteomic data, not all peptide sequences
from proteomic data can find their corresponding precursors (Table 4). In fact, they were overlapped
and matched with a very small percentage of 9.98% for Conus episcopatus [50]. The significant variations
between the datasets of transcriptomics and proteomics actually exist, and the overlapped data
(hit sequences) are not big enough. How to extend the datasets for making access to the completed
repertoire of conotoxins? How to decode the variation so as to expand the overlapped or matched
precursors with their corresponding mature peptides? Since one precursor can generate various
mature conopeptides by the different PTMs. Theoretically, more mature peptides should be detected
by proteomics. In practical use, the detected number always varies greatly with different MS
instrument, bioinformatic analytical methods, fractionation, and sample pretreatment processes, etc.
Rare transcripts at a low translational level are difficult to be recognized, which also contribute to the
disparity. Thus, standardized processing protocols, reliable detection methods, dedicated integrated
databases, and robust data analysis tools are needed.

6. Conclusions and Prospects

In this review, we introduced the discovery methodology of novel conotoxins from
various Conus species. It focused on obtaining full N- to C-terminal sequences, regardless
of disulfide connectivity through crude venom purification, conotoxin precursor gene cloning,
venom duct transcriptomics, venom proteomics, and multi-omic methods. The protocols, advantages,
disadvantages, and developments of different approaches during the last decade and the promising
prospects are summarized and discussed. To overcome the limitations of crude venom purification
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strategy, gene cloning technique have been developed and it temporarily slows down the deprivation
of the native cone snail resource.

In order to improve efficiency, high-throughput omic and multi-omic strategies have opened
a new era for conotoxin discovery. Transcriptomics and proteomics are now acknowledged to be
effective, resource-saving, and high-throughput approaches for novel conotoxin discovery. Multi-omic
strategy is more efficient than using transcriptomics or proteomics alone. Efforts should be made to
decode and reduce the variations between transcriptomic and proteomic data in order to expand the
accessible repertoire of known conotoxins. The precursor processing mechanisms need to be illustrated
as well. Thus, standardized processing protocols, reliable detection methods, dedicated integrated
databases, and robust data analysis tools for transcriptomic, proteomic, and multi-omic studies are
required to speed up novel conotoxin discovery.
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Abbreviations

BLAST Basic local alignment search tool
CID Collision induced dissociation
ESI Electrospray ionization
ETD Electron transfer dissociation
EThcD Electron transfer higher energy collision dissociation
GPCRs G protein-coupled receptors
HPLC High performance liquid chromatography
LTQ-Orbitrap Linear Trap Quatropole-Orbitrap
MS Mass spectrometry
MALDI Matrix-assisted laser desorption ionization
nAChRs Nicotinic acetylcholine receptors
NCBI National center of biotechnology information
NMR Nuclear magnetic resonance
NMDA N-methyl-D-aspartic acid receptor
PAGE Poly acrylamide gel electrophoresis
PCR Polymerase chain reaction
RACE Rapid amplification of cDNA ends
SILAC Stable isotope labeling by amino acids in cell culture
SPPS Solid phase peptide synthesis
TOF Time of flight
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