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INTRODUCTION 
The B.1.1.529 variant designated as Omicron was defined 

as a variant of concern (VOC) by the WHO on 26th of Novem-
ber 2021 (1). This variant caused international concern due to 
the exponential increase in infections observed in South Af-
rica following the first detected case in Botswana on 11th No-
vember 2021 (2). The variant spread globally, with the first 
sequenced case in the United Kingdom identified on 27th No-
vember 2021 (3). Ascertaining whether Omicron transmission 
was going to be additive to or replacing the then-dominant 
Delta variant became an urgent priority for the UK’s public 
health response. 

Early estimates of the growth rate of Omicron in South 
Africa found the doubling times of cases to be between 1 to 2 
days (4). The Gauteng province of South Africa, which expe-
rienced a very high attack rate from the Delta variant, re-
ported a doubling time of 2.0 to 3.3 days (5) for confirmed 
cases of the Omicron variant from 8th November to 5th Decem-
ber 2021. The variant subsequently spread across the African 
continent and on the 9th of December it was reported that 
cases of the variant had increased by 93% within the past 
week (6). Omicron had been recorded in over 77 counties by 
the 14th of December (7), with this a probable underestimate 
of its rapid geographic dispersion due to disparate levels of 
sequencing and screening. Omicron cases grew rapidly after 

it was introduced to Europe, with doubling times that were 
unprecedented in comparison to earlier waves of the Alpha 
and Delta variants. This was particularly pronounced in Den-
mark that reported doubling times close to 2 days (8), rates 
that were mirrored in England (9). 

The Omicron variant has a higher likelihood of biological 
vaccine escape than Delta. The variant has 37 mutations on 
the receptor binding domain (RBD) (10). Consequently, in 
vitro studies noted lower neutralisation titers of convalescent 
and vaccine sera against the Omicron variant (11, 12) and real-
world data has demonstrated reduced vaccine effectiveness 
(14). Some of these mutations are believed to confer transmis-
sion advantages (11) and research will be required to under-
stand the impact of the further mutations in this variant. 
Notably, polymerase chain reaction (PCR) antigen tests that 
measure cycle thresholds (CT) for three targets fail to amplify 
the S gene for Omicron. This contrasts with Delta samples, 
which amplify on all three. 

Here, we present an analysis that was conducted on an 
ongoing, real-time basis in England after South Africa first 
alerted the international community to the emergence of 
Omicron. We analyzed TaqPath PCR tests that reported cycle 
threshold values for the N, S, and ORF1ab gene targets to 
identify both Omicron (through S gene target failure, SGTF) 
and Delta cases (positive all three genes). We developed a 
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geographically stratified logistic growth model to examine 
the rate of replacement of the Delta variant by Omicron. Our 
analysis examined both regional patterns as well as dynamics 
at the “Lower Tier Local Authority” (LTLA) level. This model 
was used as part of the public health response to Omicron by 
forecasting the expected rate and timing of the replacement 
of the Delta variant. In mid-December, the expected percent-
age of SGTF cases began to diverge from typical logistic 
growth. We therefore allowed the model to estimate a 
“changepoint”, where the logistic growth rate of the propor-
tion of tests compatible with Omicron slowed. In the model, 
this acted as a time-dependent binary switch that allowed us 
to quantify the extent to which the competitive advantage of 
Omicron decreased mid-December. Additionally, we adapted 
a version of the model that stratified the data by vaccine sta-
tus and age group, to investigate trends within these specific 
subcategories. Using Generalised Additive models, we esti-
mated the doubling and halving times for SGTF and triple 
positive cases during the Omicron wave. Frequentist results 
such as the GAM-derived growth rates are reported with 95% 
confidence intervals (CI), while outputs from the Bayesian 
model are reported as 95% credible intervals (CrI). 

RESULTS 
National Analysis 
The model estimated that the national proportion of 

SGTF tests was 97.67% (95% CrI: 95.99, 98.63) by the 1st of 
January 2022. The SGTF proportions and model predictions 
are shown in Fig. 1A; note that the regional heterogeneities 
(represented in the boxplots) are explicitly accounted for in 
the model framework. There was a changepoint – estimated 
as being between the 14th and the 15th of December – where 
the rate of replacement of triple positive by SGTF cases 
slowed. After the changepoint, the coefficient describing the 
rate of replacement was 53.56% (95% CrI: 45.38, 61.01) 
smaller than before, suggesting that the growth rate ad-
vantage of Omicron over Delta was approximately halved. In 
a separate analysis of the absolute growth rate of cases (Fig. 
1B-1C), we estimated a peak doubling time of 1.56 days (95% 
CI: 1.49, 1.63) of SGTF cases on the 5th of December. By con-
trast, triple-positive cases were approximately stable on the 
5th, with confidence intervals including a 31.02 day doubling 
and 56.23 day halving. As England entered the Christmas hol-
idays on the 24th of December, triple-positive cases were halv-
ing every 5.82 days (95% CI: 5.11, 6.67), whereas SGTF cases 
were doubling every two weeks (14.55 day doubling, [95% CI: 
21.35, 11.03]). 

Regional Analysis 
Regional heterogeneity in the transmission of the Omi-

cron variant is shown in Fig. 2. We allowed the model to es-
timate both region-specific and LTLA-specific changepoints 
in the rate of replacement of Delta by Omicron, with the lat-
ter hierarchically dependent parameters nested in the 

former. All regions had an estimated changepoint of between 
the 14th and the 15th of December. By the 1st of January 2022, 
no region had an estimated percentage SGTF lower than 97%. 

London saw the earliest growth in SGTF, with 77.59% 
(95% CrI: 75.01, 80.05) of cases likely Omicron around the 
changepoint on the 14th of December. Early growth of SGTF 
in London was closely followed by neighboring regions in the 
East of England and the South East, reaching 53.65% (95% 
CrI: 50.76, 56.71) and 48.41% (95% CrI: 45.06, 51.99) respec-
tively. The North East and Yorkshire lagged other regions 
considerably; both were well below 40% SGTF prior to the 
changepoint at 23.30% (95% CrI: 19.14, 27.60) and 35.12 (95% 
CrI: 30.83, 39.54), respectively. In Fig. 3, we show estimated 
growth rates in triple positive, SGTF and the percentage of 
SGTF across regions. We observed that the regions which ex-
perienced later SGTF growth – such as the North East and 
Yorkshire and the Humber – had the shortest absolute and 
relative doubling times at the changepoint. On the 1st of Jan-
uary, regions leading the epidemic such as London reported 
a 19.62-day (95% CI: 38.03, 7.80) halving time of SGTF cases 
whereas the North East was experiencing a rapid 4.92-day 
(95% CI: 7.22, 3.74) doubling. 

Fig. 4 illustrates the consequences of the changes in the 
rate of replacement for regional epidemics; Fig. 4A shows 
how the coefficient changed across the changepoint, whereas 
Fig. 4B shows the difference between the dynamics pre-
dicted with and without the changepoint. The effect size was 
greatest for London, where the rate of replacement of Delta 
by Omicron slowed by 63.37% (95% Crl: 60.57, 66.04). The 
North East, which experienced the latest growth in SGTF, had 
the largest realized effect size (Fig. 4B); by the 20th of De-
cember, we observed 21.42% (95% Crl: 17.52, 25.42) lower 
SGTF than if the changepoint had not occurred. As the 
changepoint only reduced and did not reverse the fitness ad-
vantage of Omicron, anywhere with delayed growth in the 
near term would be expected to catch up eventually as Delta 
was replaced in the long term. 

Lower Tier Local Authority (LTLA)-level inference 
In Fig. 5, we show the phases of SGTF growth between 

the 10th and the 22nd of December across the LTLAs in Eng-
land; this date range was chosen to as it illustrates the most 
pronounced shift in SGTF cases. LTLAs in London, Greater 
Manchester, Nottinghamshire, Oxfordshire, and Northamp-
tonshire experienced some of the earliest growth in SGTF. 
However, the initial outbreak was largely focused in and 
around London, with no LTLAs below 70% SGTF by early- to 
mid-December (Figure S1). LTLA-level model fits are shown 
in Figures S1-S9 and illustrate intra-regional variation in 
Omicron epidemics. 

The role of vaccination status and age in the Omi-
cron wave 

We tested a model stratified by vaccination status, where 
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changepoints and replacement rates were estimated for those 
who were unvaccinated and those who were vaccinated with 
either one or two or more doses (there were insufficient num-
bers of breakthrough booster cases to include this as a sepa-
rate factor level in the model). In Fig. 6, we present the rates 
of replacement split by vaccination status. Here, we account 
for the confounding factors of age and region in our model 
estimates. Omicron replaced Delta earlier (Fig. 6A, B) and 
16.24% (95% CrI: 9.72, 23.41) faster (Fig. 6C) in those with 
two or more doses of the vaccine compared to the unvac-
cinated. Single dose and unvaccinated dynamics were 
broadly comparable. After the changepoint, the rate of re-
placement was most significantly reduced in vaccinated indi-
viduals (Fig. 6C) declining by 56.28% (95% CrI: 49.33, 63.11), 
such that the rate matched that of the other two groups (Fig. 
6D). The changepoint date was estimated as slightly earlier 
for those with two or more doses, but the credible intervals 
include the central estimate of each subsequent group. Alt-
hough the largest post changepoint reduction was estimated 
for those with two or more doses, there was again high un-
certainty in the model estimates. 

In all regions, 18–24-year-olds who had been double vac-
cinated or boosted comprised the leading wave of Omicron 
infections up until the changepoint; on the 15th of December 
85.67% (95% CrI: 81.04, 89.33) of cases in this group were 
probable Omicron (Fig. 7A). The timing of the age-specific 
changepoints is compatible with the vaccinated 18-24- and 
25–39-year-old age groups driving the replacement in the 
older age groups (Fig. 7B). This was evidenced by the order-
ing of the age-dependent changepoints, with the earliest 
change occurring in these two age groups, followed by the 
over 40s. If within age-group transmission was independent, 
it would be likely that the changepoint would have been con-
sistent across all ages. The unvaccinated under 18s lagged in 
the progression of SGTF (Fig. 7A), following independent dy-
namics in terms of changepoints and replacement dynamics. 
Fig. 7D provides evidence that the pre-changepoint fitness 
advantage of Omicron in those with more than two doses was 
agnostic to age. The fit of the vaccine status model is given in 
Figure S10 and regional trends for each age group and vac-
cination status in Figure S11. 

DISCUSSION 
Our analysis documents the almost complete replacement 

of Delta by Omicron in England entering the New Year, de-
spite the first sequenced case being identified just over a 
month before on the 27th of November 2021. The growth in 
the proportion of SGTF tests was led by London and South 
East. However, by approximately the 15th of December, we 
had observed a slowdown in the rate of replacement. At this 
point, the North East, West Midlands, South West and York-
shire were yet to reach 50% replacement, and we have shown 
that this likely prolonged the period of growth in absolute 

numbers of SGTF cases as Omicron’s fitness advantage was 
yet to be fully realized. The lower observed proportions of 
SGTF in the North East, West Midlands, South West, and East 
Midlands may also be impacted by a smaller fraction of tests 
sent to laboratories that report PCR gene targets in these re-
gions (12) which can bias the analyses. 

Strain competition theory predicts that trade-offs be-
tween cross-protective immune responses, immune evasion 
(including from vaccination) and transmission advantages 
that can facilitate coexistence of variants (13, 14). There was 
therefore a realistic possibility that we would have suffered 
parallel winter epidemics of Omicron and Delta in the United 
Kingdom. The antigenic novelty of Omicron may have 
granted an advantage in vaccinated and previously infected 
individuals, with Delta benefitting from a transmission ad-
vantage among the immunologically naïve. However, few in-
dividuals in the United Kingdom are entirely naïve to SARS-
CoV-2 due to widespread vaccine coverage and considerable 
numbers of infections. The rate of Delta cases prior to Omi-
cron’s arrival would have generated not inconsiderable Delta-
specific population immunity. This makes it unlikely that 
Delta could maintain cycles of transmission, and there is cur-
rently no evidence to suggest Delta is more competitive in an 
immunologically naïve population. The changepoints esti-
mated by the model are indicative of a step change in the 
competitive advantage of Omicron over Delta. Although Omi-
cron retains its advantage after the changepoint, it is consid-
erably – 53.56% (95% CrI: 45.38, 61.01) – smaller than before. 
We found that the pre-changepoint rate of replacement was 
16.24% (95% CrI: 9.72, 23.41) faster in those with two or more 
doses of the vaccine. This was not necessarily due to a faster 
rate of spread in absolute terms for this group, rather that 
the fitness advantage over Delta was greatest, causing re-
placement to occur more rapidly. This is compatible with vac-
cine evasion by Omicron and points to this variants ability to 
exploit this population more than Delta was able to. The sig-
nificant evasion of anti-infection immunity was unaccompa-
nied by an equivalent reduction in anti-disease immunity, 
which remains comparatively robust. Reductions in Omi-
cron’s severity are potentially due to it replicating more effec-
tively higher in the respiratory tract (15). 

Interpreting the post changepoint dynamics is challeng-
ing, as many mechanistic explanations are credible and will 
be confounded by vaccine, age, and spatial heterogeneities. It 
is outside the scope of this correlative analysis to allocate one 
or more mechanistic explanations with certainty. We can 
comment that a component of Omicron’s competitive ad-
vantage is likely due to vaccine escape (evidenced by the pre-
changepoint growth rate advantage in those with two or 
more doses) and is supported by real world vaccine effective-
ness (16). The robustness of this estimated effect to age sug-
gests that there is a mechanistic basis to this advantage. What 
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is unclear is why the benefit of vaccine escape reduced to a 
slightly greater extent than the unvaccinated or single doses 
after the changepoint; the post-changepoint rates of replace-
ment are broadly comparable across vaccine groups. It is pos-
sible that fully vaccinated individuals may have temporally 
correlated behavioral responses that would mitigate the com-
petitive advantage of Omicron. We feel confident in suggest-
ing that it is unlikely that a distinct, binary changepoint with 
a significant effect size is associated with a change in vaccine 
induced immunity (such as the waning of infection-blocking 
immunity from previous doses or increased population im-
munity from the rollout of booster doses). Notably, an im-
portant component of immune escape is infection-acquired 
versus vaccine-acquired immunity; among some groups, 
Delta-specific immunity may not provide sterilising immun-
ity against Omicron, but likely will do so against Delta, at 
least in the near term. The feedback of the Delta-induced im-
munity will act against Delta transmission to the benefit of 
Omicron. Among some groups, the attack rate of Delta may 
have been substantial, and is likely to overlap with those who 
led the Omicron wave. 

Dynamics in the under 18s are difficult to interpret, par-
ticularly in relation to vaccination. This group is diverse in 
terms of vaccination policy (for example targeting vaccina-
tion toward clinically at-risk groups). Moreover, there are di-
verse within-group contact patterns; for instance, those 16 
plus may have contact patterns closer to an 18-year-old. It is 
notable that the unvaccinated under 18s had a relatively late 
changepoint (around the 18th of December) at which point 
only around 42% of cases were compatible with Omicron, by 
far the lowest group in England at that time. After the 
changepoint, unvaccinated under 18s had the smallest reduc-
tion in the rate of replacement. 

Preceding the changepoint in the rate of replacement, the 
UK government enacted the “Plan B” policy, a suite of 
measures aiming to curtail transmission (17). This included 
mandatory face covering on public transport and most indoor 
venues from the 10th of December, an advisory work from 
home notice from the 13th and a requirement for proof of a 
negative test or vaccination through the “NHS Covid Pass” for 
large gatherings from the 15th. Moreover, media coverage, 
public health messaging, and a 10-day isolation after a posi-
tive test (18) may have precipitated behavioral change that 
reduced contacts ahead of the upcoming Christmas period. 
Mobility – to the workplace and hospitality – reduced over 
this period (19). The shorter generation time of Omicron may 
mean that behavioral changes may have a disproportionate 
impact on this variant compared to Delta (20, 21). It would 
be expected that a variant with a shorter generation time 
would be more responsive to the observed changing patterns 
of behavior since transmission events would be prevented 
earlier relative to a variant with a longer generation time. 

Crucially, correlative analyses such as the one we present 
here cannot ascribe specific causational impacts of behav-
ioral and policy changes on replacement rates. 

The Omicron variant was detected through SGTF (22) due 
to an S gene deletion, which affects tests that use the TaqPath 
COVID-19 CE-IVD RT-PCR Kit (23). This deletion allows for 
more timely surveillance of this novel variant through the 
routine case data (the lead time on sequencing is between 10 
and 14 days). Low viral load Delta can also produce SGTF and 
analysis therefore must be conducted on low CT (< 30) cases. 
The Alpha variant also carried the 69-70del mutation and low 
CT SGTF may still be the Delta variant, so analysis must ad-
just for a constant background rate of SGTF in the testing 
data. We observed considerable divergence from the back-
ground rate of SGTF that could be attributed to the Alpha or 
Delta variants, and this therefore illustrates the strength of 
the SGTF signal to identify the Omicron variant. Our exclu-
sion criteria for tests ensures high sensitivity and specificity 
of SGTF to Omicron across the period we studied. 

Not all laboratories report PCR gene targets and this data 
has a geographic bias. One study found that the South of Eng-
land, particularly the South West, East Midlands, and East of 
England, have the lowest laboratory reporting of PCR gene 
targets (12). The North West benefits from the highest report-
ing rate, where 90% of all PCR tests reported gene targets. 
There was an increased use of TaqPath laboratories since the 
15th November to detect the Omicron variant, which has im-
proved the geographic reporting coverage. More generally, 
test seeking behavior can be confounded by various demo-
graphic variables. For instance, the older (65+) age group was 
poorly sampled as engagement with Pillar 2 testing is lower 
(these cases are often identified on admission to hospital). 
Moreover, the financial and practical costs of self-isolation 
are often higher for those who cannot work remotely (which 
is often also correlated with socio-economic status), changing 
test-seeking behavior. We have included only low-CT symp-
tomatic cases to minimise any biases from the testing data, 
but no criteria can perfectly compensate for all Pillar 2 testing 
confounders. 

In the models, we allowed for the breakpoint to be esti-
mated within each hierarchically nested variable. These 
breakpoints will represent the best improvement to the 
model fit across the time series with respect to a particular 
level of a geographic or demographic variable. This does not 
preclude the existence of other changepoints in the rate of 
replacement, but we are confident that these modeled break-
points represent the most substantial change in the rate in 
the month of December. 

The replacement of Alpha by Delta coincided with non-
pharmaceutical interventions (NPI) at the start of 2021, 
which may have contributed to Alpha cases declining from 
the 7th January 2021 (12). We observed exponential growth in 
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Delta around step 1a of lockdown easing (24); London, York-
shire and the Humber, North East, and the West Midlands 
experienced the fastest growth in Delta. A similar pattern was 
observed for Omicron, despite differential importation pat-
terns and seeding into different communities. London ap-
pears to have experienced the earliest growth, with Yorkshire 
and the Humber and the North East lagging behind. We also 
observed that LTLAs in the North West of England experi-
enced early exponential growth in Omicron, which were also 
observed in growth patterns of Delta. 

Soon after its introduction, determining the severity of 
Omicron cases from reinfections or vaccine breakthrough 
was essential. However, at that time, the epidemic was pre-
dominantly in the 18-39 age group where clinical outcomes 
were mild. Omicron is capable of substantial immune eva-
sion, however additional “booster” doses of existing vaccines 
confer higher neutralising antibody titers against Omicron, 
albeit to a lesser extent than for other variants (25–27). None-
theless, the interplay between immune responses, evasion, 
and severe disease is complex, particularly in the vulnerable. 
Caution must be exercised when conducting inter-country 
comparisons of severity, as differences in demography, expo-
sure, and vaccine coverage/regimes confound data. Unprece-
dented rates of Omicron cases were associated with a 
concomitant rise in hospitalisations, but at a considerably 
lower rate than under Delta. This was due in large part to 
booster rollouts to the most vulnerable in the UK, existing 
anti-disease immunity (from infection and vaccination), and 
reduced severity of Omicron infection. 

Our analysis highlights the utility of using gene target 
proxies in monitoring an emerging variant. However, our ex-
ercise also demonstrates the challenges involved in estimat-
ing the rate of replacement in real time. In the absence of a 
well-parametrised mechanistic model which captures the 
specific cause of the fitness advantage, we were unable to an-
ticipate impacts of externalities on the rate of replacement. 
Mechanistic models rely on adequate parameterisation and 
credible initial conditions. In the case of Omicron entering 
the UK, the variant invaded a system of high vaccine coverage 
(with various states of waning and booster delivery) and a 
rolling rate of Delta infections (eliciting strong immunity 
against this specific variant); this would need to be accurately 
represented in a mechanistic model and would require sev-
eral key assumptions. The extent to which the fitness ad-
vantage of Omicron comes from faster transmission or 
immune evasion would be key parameters that were not 
quantified ahead of predictive modelling efforts. Moreover, 
to predict the change in fitness advantage, models would 
need to account for host behavior (if that was indeed the 
cause of the changepoint). This leaves a large region of cred-
ible parameter space to explore. Post-hoc analyses are there-
fore more likely to identify the specific mechanistic 

explanations of this takeover as opposed to real-time moni-
toring efforts. Certainly, real-time monitoring can – as it did 
in our case – quickly identify that reality has deviated from 
our modeled expectations, which enables a nimble response 
to changing circumstances. 

Mass testing datasets contain numerous confounders that 
cannot all be accounted for in the model, some of which we 
have documented above. For this reason, we minimised our 
interpretation of absolute case growth, focusing instead on 
the representation of SGTF in relation to all tests. This is be-
cause we anticipated that changes in the representation of 
Omicron in the sample of tests within locations and de-
mographics would be comparatively robust to testing con-
founders, unlike absolute numbers. This precludes us from 
commenting on the effects of the breakpoint on the overall 
burden of cases, or specific vaccine- and age-related differ-
ences in the force of infection during the Omicron wave. 
Moreover, the effect of variables such as vaccination status 
must be parsimoniously represented in the model to maxim-
ise the power of our inference. For instance, we do not ac-
count for the timing of vaccine doses, either in relation to the 
building of the immune response or subsequent waning. Last, 
geographies such as regions are ultimately artificial groups of 
local authorities that do not necessarily reflect the epidemi-
ology of constituent LTLAs, particularly when on a border. 
We have therefore been careful and specific in limiting the 
causative interpretation of our models. 

By the 1st of January 2022 the Omicron variant had be-
come dominant in England, almost entirely replacing the 
Delta variant. We found considerable geographic heterogene-
ity in the timing of Omicron epidemics with similar patterns 
of regional growth observed for the emergence of Delta. Omi-
cron replaced Delta more quickly in the vaccinated before the 
changepoint, strongly suggesting that vaccine escape was a 
key driver of the fitness advantage. We observed a step-
change in the rate of replacement of Delta in mid-December 
when the competitive advantage of Omicron approximately 
halved. The synchrony of the changepoints across regions – 
which were at various stages of Omicron epidemics – suggest 
that Omicron could have suffered a reduction in relative fit-
ness concurrent to changes in host behavior. 

MATERIALS AND METHODS 
Study Design 
This study aimed to determine how the Omicron variant 

spread in England after its introduction in November 2021. 
Specifically, we considered how the frequency of the novel 
variant changed in relation to the then dominant Delta vari-
ant, accounting for geographic and demographic confound-
ers. We analyzed polymerase chain reaction (PCR) testing 
data from Second Generation Surveillance System (SGSS) da-
taset, which is the central database for community, or ‘Pillar 
2’, tests in the United Kingdom. PCR tests were provided free 
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of charge across the study period, but data are confounded by 
test seeking behavior that will vary by demographics (socio-
economic, age etc). These tests provided a proxy for Omicron 
and Delta cases, which we outline below. We analyzed data 
from the 15th of November 2021 up to 1st January 2022; after 
this point, the emergence of the Omicron variant BA.2 would 
have complicated analysis and interpretation. Only data from 
England were included, as complete data was unavailable for 
the devolved administrations of the UK (Northern Ireland, 
Scotland and Wales). 

We extracted information on PCR results from the labor-
atories that use TaqPath RT PCR kits (23) in the United King-
dom: Milton Keynes, Newcastle, Glasgow, and Alderley Park 
Lighthouse Laboratories. Other private sector labs with reli-
able gene target data were also included. Only symptomatic 
cases were analyzed to keep test seeking behavior as con-
sistent as possible. Tests with SGTF (S gene negative) and 
those that were positive for all 3 genes (N, S and ORFab pos-
itive) were used as a proxy from the Omicron variant and 
Delta variant, respectively. Not all regions of England have 
equal coverage of TaqPath tests, meaning the gene-target 
based estimates of Omicron prevalence will be more uncer-
tain in some locations. The outlined combination of inclusion 
criteria yielded a total of 1,542,211 positive PCR tests for the 
analysis; 955,455 of these were SGTF and therefore compati-
ble with being Omicron BA.1. 

There had been a background rate of SGTF in the testing 
data in England prior to Omicron. Since August 2021 this 
background rate had been increasing and was predominantly 
attributable to low viral load cases of Delta where the S gene 
fails to amplify due to degraded RNA in the sample. To in-
crease specificity, we only modeled tests with the CT values < 
30 for both the N and ORF1ab genes, and an S gene CT value 
<30 (triple positive) or a failure to amplify (SGTF). To test the 
sensitivity and specificity of this definition of SGTF for Omi-
cron BA.1, we matched test’s reporting cycle threshold values 
for all three targets with confirmed sequenced cases. Under 
our definition, SGTF was 99.26% (CI: 99.23, 99.30) sensitive 
and 99.92% (CI: 99.91, 99.93) specific to Omicron BA.1. As of 
the end date of our analysis, only 13 cases of Omicron BA.2 
that could be matched to gene target data that had been se-
quenced in England (all triple positive). This makes it un-
likely that the patterns of replacement we describe were 
confounded by the emergence of BA.2. 

Instantaneous Growth Rate 
We determined the time varying instantaneous growth 

rates for triple positive and SGTF cases using Generalised Ad-
ditive Models (GAM) with a negative binomial error structure 
and canonical log-link (12, 28). We fit cubic regression splines 
and tuned the optimal number of knots by assessing the 
model fit to case rates (29). A random effect on the day of 
week accounted for cycles in positive test numbers that 

typically peak mid-week. The model assumed the number of 

cases y(t) is proportional to 
  exp s t

 for some smoother. 
We estimated the instantaneous growth rate as a time deriv-

ative of the smoother  tsr s  , and the instantaneous dou-

bling time is calculated as  log 2Dt s  . The asymptotic 

confidence intervals (CIs) on sr  are indicative of the uncer-

tainty on Dt . 
Bayesian Hierarchical Logistic Growth Model 
We modeled the logistic growth of the proportion of tests 

with SGTF through time. All regions and Lower Tier Local 
Authorities (LTLAs) are fit using a hierarchical model where 
the national model fit is an average of all regional and LTLA 
fits. The model structure allowed for a changepoint in the 
rate of replacement, where the rate could increase or de-
crease beyond a certain point in time. We model the propor-
tion of tests with SGTF in each LTLA (out of the total L) 
nested within region r (out of the total R) using the equa-
tions: 
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Here, 
,l rp gives the estimated proportion of tests with 

SGTF. The parameter ,r l . is the intercept and the 
,r l  pa-

rameters are the rate of increase toward replacement of Delta 
by Omicron, pre or post replacement. Another parameter, 

,r l , determines the timing of a changepoint in the rate of 
replacement, which is region- and LTLA-specific. The coeffi-

cient ,
,

T r l
r l




  is the rate of replacement prior to the change-

point and ,

,

T
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 is the rate on and after the changepoint. 
All parameters for regional and LTLA level fits were 

drawn from hierarchical distributions. The regional trajecto-
ries were taken from distributions where the intercept ( ), 

rate of replacement and T   ) and the timing of the change-

point ( τ .) are the national averages and α
σ R , τβ
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and τ
σ R  are the standard deviations for regional draws from 

the national distribution: 
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Local authority level parameters were drawn from a sec-
ond set of distributions where the mean is now the regional 
average (each LTLA is nested within a partilar region): 
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We assumed that the within-region variance (that is, 

LTLA-level variance) was the same for each parameter. This 
model was fit with a binomial error structure, where the 
number of SGTF cases (S) is predicted by the probability 
given by the changepoint model and the total number of tests 
(N): 

 , , ,,r l r l r lS Binomial p N
 

We were also interested in the effect of vaccine status and 
age in the replacement of Delta by Omicron. However, there 
was insufficient data at the LTLA level to disaggregate the 
full model by these two variables. Instead, we modified the 
above changepoint model such that vaccine groups were in-
cluded as a fixed effect, with unvaccinated, single and two or 
more dose categories. We had to amalgamate those with two 
or more doses into one class as breakthrough infections of 
boosted individuals were comparatively rare. Age was split 
into 5 groups; under 18, 18-24, 25-39, 40-64 and over 65, and 
was included as a random effect nested within vaccine status. 
Spatial heterogeneity was modeled with a regional random 
effect, nested withing the fixed effect of vaccination status 
and random effect of age. This ensured that all confounding 
interactions of age and spatial heterogeneity were considered 
when modelling differences between vaccinated groups. 

As before, we allowed for a changepoint in the rate of re-
placement. We model the proportion of tests with SGTF in 
each region r (out of the total R), nested within each age a 
(out of the total A) nested within each vaccine status v (out 
of the total V). Our rationale is that vaccination status is the 
focal and potentially mechanistic source of fitness ad-
vantages for Omicron, with age-specific trends and regional 
differences generally a matter of timing. The model is there-
fore: 
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Here, 
, ,v a rp  gives the proportion of tests with SGTF in 

vaccine group v, age group a and region r. The parameter 
, ,v a r  is the intercept and 

, ,v a r  is the rate of increase to-
ward replacement of Delta by Omicron. Another parameter, 

, ,v a r , determines the timing of a breakpoint in the rate of 
replacement, which is vaccine status, age- and region-spe-

cific; ,

, ,

T a r
v a r




  is the rate prior to the breakpoint, , ,

, ,

T
 v a r

v a r




 is the 
rate on and after the breakpoint. 

Each vaccine group parameter (intercept, replacement 
rates, and changepoint date) were treated as a fixed effect. All 
parameters for age and region level fits were drawn from hi-
erarchical distributions. The age trajectories were taken from 

distributions where the intercept ( v ), rate of replacement (
v ), and the timing of the breakpoint ( v ) are the vaccine 

group averages and V
 , V

T 


 , V
T 


  and τ

σ V  are the stand-
ard deviations for the draws for each age category from the 
global distribution: 

   , V

a vlogit


   
 

   , V
T

a v
Tlog


 

  


  
 

   , V
T

a v
Tlog


 

  


  
 

   , .V

a vlog


   
 

Regional corrections to the age-dependent trends were 
drawn from a second set of distributions where the mean is 
now the age-group (nested within vaccine status) average: 
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We assumed that the within-age group variances were the 

same for each parameter, denoted α
σ A , A

T 


 , A
T 


  and 

A
 . This model was fit with a binomial error structure, 
where the number of SGTF cases (S) is predicted by the prob-
ability and the total number of tests (N): 

 , , , , , ,, v a r v a r v a rS Binomial p N
 

Logistic growth models were fit in the Bayesian modelling 
program “stan” version 2.21.0 (30) using the statistical pro-
gramming language “R” version 4.0.2 (31). GAMs were fit us-
ing the package “mgvc” version 1.8-31 (29), also interfaced 
through R. Maps were produced using geographical files 
from the House of Commons Library under the Open Parlia-
ment License v3.0. Frequentist results such as the GAM-
derived growth rates are reported with 95% confidence inter-
vals (CI), whereas outputs from the Bayesian model are re-
ported as 95% credible intervals (CrI). Priors are given in 
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Fig. 1. National trends of the relative and absolute growth of S gene target failure cases. (A) The fit of 
the logistic growth model to the proportion of S gene target failure (SGTF) cases through time. This model 
accounts for regional and lower tier local authority (LTLA) level heterogeneities in the replacement of the 
Delta variant with Omicron. The blue lines and ribbons denote the median and 95% credible intervals 
from the model fit; dark blue denotes the trend including the changepoint, the pale blue shows the 
expected path had the rate of replacement not changed. Red intervals show the estimated changepoint 
in the rate of replacement of triple positive with SGTF cases. Boxplots show the variation in the point 
estimates for the percentage of tests with SGTF in each English region. Note that lower and upper outliers 
are typically the North East and London, which respectively lagged and led the national average during 
the Omicron wave (see Fig. 2). (B) Doubling times of triple positive cases (blue) and SGTF cases (yellow) 
in England from the 15th November 2021 to the 1st of January 2022, as estimated by a GAM. The model fit 
is overlaid on case data in (C), with Christmas, Boxing Day, and New Year’s Day not included in model 
fitting as they were likely undercounts (denoted as crosses). Note, these are case rates within the subset 
of tests capable of detecting SGTF, not the total case rate for the England. 
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Fig. 2. The proportion of S gene target failure and the growth rate model with credible 
intervals for each of the 9 regions of England. The blue line and ribbon denote the median 
and 95% credible intervals from the model fit; dark blue denotes the fit with the changepoint, 
the pale blue shows the path had the rate of replacement not changed. Red intervals show the 
model-estimated changepoint in the rate of replacement of triple positive with S gene target 
failure cases. Boxplots show the variation in the percentage of tests with SGTF across the 
lower tier local authorities (LTLAs) within each region. 
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Fig. 3. GAM-estimated doubling and halving times for S gene target 
failure, triple positive, and percentage of S gene target failure cases. 
Doubling and halving times were estimated using a GAM, as outlined in the 
methods. Trends are shown for the nine regions of England on the 14th 
December, approximately when our logistic growth model estimated a step-
change in the rate of replacement of triple positive with S gene target failure 
(SGTF). 
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Fig. 4. Illustration of the effect size associated with the regional changepoints in the rate of 
replacement. (A) Percentage reduction in the rate of replacement post changepoint (pone minus 
the ratio of the pre to post changepoint) with 80 and 95% CrIs. (B) Consequences of the rate 
reduction from (A) on percent S gene target failure (SGTF) after the changepoint with 95% CrIs. 
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Fig. 5. Progression of S gene target failure case growth at the LTLA level. Cartograms are 
presented using population weighted hexagons, displayed spatially based on approximate 
geographic location of the lower tier local authority (LTLA). Blue colors denote under 50%, grey 
50% and red over 50% S gene target failure (SGTF) cases. Left to right are SGTF levels in two-day 
intervals from the 10th to the 22nd of December, modeled at the LTLA level. 
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Fig. 6. The effect of vaccine status on the replacement dynamics of Delta by Omicron. This model splits the data 
by vaccination status, and accounts for the effect of age and regional variation as nested random effects. (A) Vaccine 
status-model fit with 95% credible intervals. Boxplots show the variation in the point proportions in each age group 
and region; this variance is accounted for in the model inference. (B) Comparison of the changepoint split by vaccine 
status. (C) Summary of the percentage change in the rate of replacement after the changepoint for each vaccination 
group. (D) Log-ratio of the pre (blue) and post (red) changepoint rate of replacement in comparison to the 
corresponding reference rate. In this panel, the “reference rate” the will either be the pre or post changepoint rate 
for those 2 or more vaccine doses, while the “rate” is that written on the y-axis. A value of one indicates equal rates, 
greater than one indicates that the reference rate is larger than the comparison rate and less than one indicates the 
reference rate is smaller. 
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Fig. 7. The interaction between vaccine status and age on the replacement dynamics of Delta by 
Omicron. (A) Age and vaccine status stratified percentage of S gene target failure (SGTF) cases at the 
changepoint (dates shown in (B)) with 80 and 95% credible intervals. The reduction in the rate of 
replacement is shown in (C). In (A-C), unvaccinated are shown in blue, single dose in yellow and two 
or more doses in red. (D) Log-ratio of the pre (blue) and post (red) changepoint rate of replacement in 
comparison to the corresponding reference group. Here, the “reference rate” is either the pre or post 
changepoint 18–24-year-olds with 2 or more doses with the rate given on the y-axis. The log ratio is 
the reference rate of replacement divided by the rate for the group written on the y-axis on the log10 
scale. A value of one indicates equal rates, greater than one indicates that the reference rate is larger 
than the comparison rate and less than one indicates the reference rate is smaller. 
 


