@’PLOS | PATHOGENS

CrossMark

click for updates

E OPEN ACCESS

Citation: Mariné M, Brown NA, Riafio-Pachén DM,
Goldman GH (2015) On and Under the Skin:
Emerging Basidiomycetous Yeast Infections Caused
by Trichosporon Species. PLoS Pathog 11(7):
€1004982. doi:10.1371/journal.ppat.1004982

Editor: Joseph Heitman, Duke University Medical
Center, UNITED STATES

Published: July 30, 2015

Copyright: © 2015 Mariné et al. This is an open
access article distributed under the terms of the
Creative Commons Aftribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Funding: We would like to thank the Conselho
Nacional de Desenvolvimento Cientifico e
Tecnolégico (CNPq) and the Fundagao de Amparo a
Pesquisa do Estado de S&o Paulo (FAPESP) for
providing financial support. The funders had no role
in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

On and Under the Skin: Emerging
Basidiomycetous Yeast Infections Caused by
Trichosporon Species

Marcal Mariné', Neil Andrew Brown', Diego Mauricio Riafio-Pachén?, Gustavo
Henrique Goldman'2*

1 Faculdade de Ciéncias Farmacéuticas de Ribeirdo Preto, Universidade de Sao Paulo, Sdo Paulo, Brazil,
2 Laboratdrio Nacional de Ciéncia e Tecnologia do Bioetanol—CTBE, Campinas, Sdo Paulo, Brazil

* ggoldman@usp.br

What Are Trichosporon Species?

Trichosporon species are basidiomycetous, yeast-like organisms capable of filamentous growth,
i.e., dimorphic (Fig 1), that are distributed throughout nature [1]. They are important from a
biotechnological point of view as they are capable of decontaminating polluted environments
by accumulating large amounts of oils [2-5]. A limited number of reports also show their pres-
ence in the human microbiome, such as Trichosporon asahii, which has been isolated from
human fecal samples, the skin of healthy individuals, and patients with atopic dermatitis [1,6—
10]. In addition, Trichosporon spp. can cause white piedra, hypersensitivity pneumonitis,
superficial infections, and invasive trichosporonosis [11].

Designated 150 years ago, the genus Trichosporon was for many years a collection of many
different yeast-like organisms. Until the end of the 20th century, a wide range of species were
included under the name of Trichosporon beigelii or synonyms, which were later shown to be
phylogenetically distinct. With the advent of molecular techniques, the genus was rearranged,
and many of its species were reassigned to other genera and new ones were described. Cur-
rently there are 51 accepted Trichosporon species, 16 of which have clinical relevance [1,12-13]
(these species are highlighted in Fig 2).

Formerly associated with uncommon hair and skin infections, research on Trichosporon has
fallen behind more life-threatening fungi such as Candida or Cryptococcus species, until the
rise of opportunistic, deeply seated, disseminated Trichosporon infections (especially T. asahii)
over the last decades. A lack of background knowledge impairs the proper diagnosis and treat-
ment of Trichosporon infections. Fortunately in the recent years, studies of Trichosporon epide-
miology [14], virulence factors [15,16], antifungal susceptibility [16,17], and animal models of
infection [18,19] have been conducted. There are a few reports of genetic transformation sys-
tems for T. cutaneum, which used both dominant and auxotrophic markers [20,21]. However,
forward and reverse genetics is still not common practice in the study of Trichosporon.

Molecular techniques have already proved necessary for the detection and correct identifica-
tion of Trichosporon species [1,17]. However, the use of whole genome sequencing and gene
manipulation techniques in Trichosporon is in its infancy, in comparison to other fungi, such
as Candida or Aspergillus species. Genome sequences for a T. asahii environmental strain and
a strain isolated from a progressive psoriatic lesion are available [22,23]. Both T. asahii
genomes are of approximately 25 Mbp and are predicted to encode approximately 9,000 genes.
A comparison of these two Trichosporon genomes revealed >99% chromosomal and mito-
chondrial sequence identity. When compared to the genomes of other skin-associated or
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Fig 1. Colony morphology of Trichosporon species. (A) T. asahii, T. asteroides, and T. inkii were grown at 30°C for 15 days on Sabouraud, YNB-+tributyrin
1%, and YPD media, respectively. T. asteroides is releasing lipases, producing a halo where tributyrin is degraded. (B) T. asahii blastoconidia and
pseudohypha. (C) T. asteroides arthroconidia and blastoconidia. (D) T. inkin pseudohypha, branched hypha, and blastoconidia. The blue fluorescence on the
structures is due to their incubation with calcofluor white. Bars, 5 yum.

doi:10.1371/journal.ppat.1004982.9001
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Fig 2. Maximume-likelihood phylogenetic tree of Trichosporon species, based on analysis of the ITS1 and ITS2 regions and the D1/D2 region of the
LSU. Strain names appear after the species name. Trichosporon species of clinical significance appear in bold. See S1 Table for the GenBank accession
numbers. Cryptococcus neoformans was used as an outgroup. Sequences of each individual region were structurally aligned using MXSCARNA [58] and
then concatenated into a supermatrix using FASConCAT [59]. Phylogenetic inference was carried out with the software RAxML [60]. For the loop regions, the
evolutionary model GTR was used. The stem regions were analyzed under the S16 evolutionary model, thus taking into account secondary structure
topology, i.e., compensatory mutations [61-63]. Substitution rate heterogeneity was taken into account using the gamma model of Yang [64]. Bootstrap
values were computed over 1,000 replicates. Grey dots represent bootstrap values 50%—75% and black dot bootstrap values 76%—100%. Bar, 0.07
substitutions per nucleotide position. T: Type strain.

doi:10.1371/journal.ppat.1004982.9002

pathogenic basidiomycetes, the T. asahii genome is larger and is predicted to encode a greater
number of genes than the basidiomycetes Malassezia restricta, M. globosa, and M. sympodialis,
which range from 7.6 to 9.0 Mbp and are predicted to encode around 3,500 to 4,300 genes
[24,25]. In contrast, the genomes of Cryptococcus neoformans and C. gattii are between 17 to
20 Mbp and are predicted to encode around 6,500 to 8,300 genes [26,27].

Along with the advances in health care, rarer opportunistic pathogens are gaining more
attention, and through the anticipated application of modern pathogenomics to the study of
trichosporonosis, this may represent a turning point in the understanding of Trichosporon spe-
cies and their virulence determinants.

What Is the Clinical Importance of Trichosporon?

Skin and hair infections due to Trichosporon were considered rare for a long time, but the mis-
diagnosis of superficial trichosporonosis might have led to an underestimation of its prevalence
[28]. Being a part of the natural microbiota of the skin, these Trichosporon species can be mis-
diagnosed as contaminants, resulting in the infection being attributed to dermatophytes, when
in fact Trichosporon might be the etiological agent in 10%-40% of superficial infections
depending on the geographic area and population [29,30]. The old designation T. beigelii has
been used years after the rearrangement of the genus [29]. The carryover of older names is
common in clinical practice and can interfere in the correct diagnosis and treatment. In order
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to overcome this issue, fast and efficient molecular-based tools are being developed to effec-
tively identify Trichosporon species in clinical settings [31]. In addition, MALDI-TOF mass
spectrometry has proven to be a reliable tool for the identification of Trichosporon species and
could become a cheaper and complementary alternative to gene sequencing [32,33]. Currently
T. inkin, T. cutaneum, T. ovoides, and T. loubieri are considered the most prominent species
involved in superficial trichosporonosis, while T. asahii, T. ateroides, and T. mucoides are asso-
ciated with invasive infections in immunocompromised patients [11]. T. asahii stands out as
the leading cause of disseminated infections and is not usually associated with superficial infec-
tions [2,34]. However, a rare case was recently reported of a T. asahii cutaneous infection that
progressed into subcutaneous tissues and resulted in a fatal outcome in an immunocompetent
patient [35].

The vast majority of cases of disseminated trichosporonosis occur in patients that are
immunocompromised or those that have received cytotoxic chemotherapy, steroids, or broad-
spectrum antibiotics [14,36]. A major risk factor is reported to be the use of venous catheters
or drains that may facilitate the penetration of the fungus beyond the colonized skin [37]. In a
global surveillance study, Trichosporon species accounted for a 0.5% of total yeast isolates and
10.7% of non-Candida species in invasive and mucosa-associated infections [38]. Invasive Tri-
chosporon infections have been reported in 0.4% of patients with acute leukemia and are associ-
ated with a high mortality rate of 64% [14]. This is also a common trend for hematological
patients, since high mortality rates, ranging from 42% to 76%, have been widely reported for
Trichosporon infections [39]. Apart from cancer and neutropenia, other underlying conditions,
such as burns, surgery, and organ failure, were reported to be associated with invasive Trichos-
poron infections and a mortality rate as high as 87.5% in adult patients in Brazil [34].

How Can Trichosporon spp. Infections Be Treated?

Superficial Trichosporon infections, such as white piedra, often respond well to topical or oral
azole treatments combined with improved hygienic habits to avoid relapses [40]. However,
invasive infections represent a therapeutic challenge, and no consensus exists for a recom-
mended treatment. Several studies report minimal success with amphotericin B or fluconazole
[11,37], which correlates with the commonly reported high minimal inhibitory concentrations
for these drugs [34,36]. The echinocandins display minimal activity against basidiomycetes,
and several cases of breakthrough infections caused by Trichosporon on patients undergoing
echinocandin therapy have been reported [41,42]. Only a single case has been reported of the
successful treatment of peritonitis caused by T. inkin with caspofungin alone [43]. Newer azole
drugs such as voriconazole and posaconazole have shown excellent in vitro activity against Tri-
chosporon [16,17]. In vivo efficacy and increasing reports of successful treatments with vorico-
nazole highlight this drug as a potential therapeutic option to combat disseminated
Trichosporon infections [11,44,45]. Posaconazole, on the other hand, has also shown encourag-
ing results in a murine model of infection [19] but lacks clinical evidence of its efficacy. Com-
bined antifungal therapy is considered a way to broaden the antimycotic spectrum of
treatments, especially applicable to cases of rare or refractory fungal infections. However, the
use of multiple antifungal agents can lead to antagonistic interactions and cause interference
with other therapies the patient might be receiving. Hence, this option is only used as a last
resort, unless there is an important patient background that encourages its use [46]. Concomi-
tant or sequential usage of antifungal drugs has been reported for Trichosporon infections and
generally yielded undistinguished results [14,37]. However, experimental results and recent
reports of successful treatments [18,47] suggest that combined therapies are an option to take
into account against trichosporonosis.
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How Do Trichosporon spp. Colonize and Infect the Hosts?

With the exception of C. neoformans, basidiomycete disseminated infections are rare and tend
to occur in patients with severe underlying conditions. Cryptococcus disseminated infections
are generally associated with a primary pulmonary infection that disseminates through the
bloodstream and tends to affect the central nervous system [48]. Several filamentous basidio-
mycetes, such as Hormographiella aspergillata and Tyromyces fissilis [49,50], have also been
reported to cause pulmonary infections in severely immunocompromised patients, supposedly
by spore inhalation. Conversely, several basidiomycetous yeasts, such as Trichosporon, Rhodo-
torula, Malassezia, and Sporobolomyces species, are considered to colonize or even infect the
skin or mucosa, a location from which they take advantage of a barrier disruption caused by
their own means or by trauma, such as a catheter implantation.

The ability of Trichosporon to invade the skin and other tissues requires several pathogenic
traits, such as biofilm formation; enzymatic activities, including phospholipases and proteases;
and the production of hyphae or pseudohyphae. Both Trichosporon and Malassezia are good
examples of host-adapted pathogens that possess, to some extent, all the aforementioned traits.
Biofilm formation has been observed in several Trichosporon species [16], a trait that is closely
related to the ability to grow on exogenous surfaces such as a catheter. Central venous catheter
removal is strongly recommended in cases of blood-positive cultures of Trichosporon, Malasez-
zia, and Rhodotorula in the same manner as it is recommended in bloodstream infections by
Candida [11,51,52]. C. neoformans has a wide array of pathogenic traits that permit it to avoid
the host immune system and to cross natural barriers within the body; however, not much is
known about its ability to form biofilms, which is proposed to be lower than that of the other
pathogenic yeasts mentioned above [8]. Accordingly, clinical reports about C. neoformans asso-
ciation to a central venous catheter are scarce [53]. One of the most well-known virulence traits
of Cryptococcus species is the production of the polysaccharide glucuronoxylomannan that pro-
tects the cells from phagocytosis, collaborates in evasion of the immune system, and promotes
intracellular survival [49]. Trichosporon species also produce glucuronoxylomannan, which if
demonstrated to have a role in virulence, would represent a possible therapeutic target [54].

How Do Trichosporon spp. Adapt to the Host?

The production of enzymes capable of degrading various components of host tissues is also a
major virulence trait present in many pathogenic fungi [11]. A recent study demonstrated that
several species of Trichosporon are capable of producing a variety of proteases, lipases phos-
pholipases, and DNAases [15]. This hydrolytic activity is a well-known trait that allows other
basidiomycetous yeasts, such as Malassezia and Rhodotorula, to obtain fatty acids from host
lipids and breakdown phospholipids present in cell membranes. The proteolytic activity of Tri-
chosporon is a trait shared with dermatophytes that produce a plethora of proteases, which in
accordance with their ecological niche, play an important role in overcoming host immunolog-
ical barriers [25].

In contrast to Trichosporon species, dermatophytes and Malassezia have undergone a severe
loss of genes encoding for carbohydrate-degrading enzymes, which indicates a high degree of
adaptation to animal hosts [25]. The animal skin is the common target of dermathophytes and
Malassezia; however, they adopt different approaches to pathogenesis. Malassezia predomi-
nately obtain nourishment from host fatty acids, to the point that they have lost the metabolic
routes to synthesize them [25]. Dermatophytes, on the other hand, are specialized in the degra-
dation of keratin and other proteins [55]. These ascomycetes also present a wide arsenal of
immunomodulators, antimicrobial and toxic compounds, as well as many of secondary metab-
olites of unknown function that reveal a high degree of specialization to the host environment
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[25]. Differential expression of proteases in various species of dermatophytes has been related
to their adaptation to a diverse range of hosts and course of infections [55,56]. Higher expres-
sion could induce higher inflammatory reactions and immune system responses, while lower
expression might lead to a more subtle and chronic infection [55,56].

Trichosporon species seem to maintain their fitness in a wider range of environments than
other skin pathogens and may possibly be less specialized. In this sense, it was suggested that
the high level of protease expression in Trichosporon might indicate that these species are still
in the process of adaptation to the animal hosts [55,56]. Accordingly, there are prominent dif-
ferences in genome size and predicted encoding genes between Trichosporon spp. and Malasse-
zia. However, further research on Trichosporon-host interactions is required to prove such
hypotheses.

What Can Molecular Biology Do to Improve Our Knowledge about
Trichosporon Infections?

Exciting times are coming in the study of Trichosporon, with the development of biological
tools that will facilitate the enhancement of our understanding of Trichosporon pathogenicity
determinants. Genome and RNA sequencing projects will contribute considerably to the
understanding of which genes are shared between Trichosporon species and/or isolates with
differing virulence profiles and which genes are expressed under different pathogenic condi-
tions. Diagnostics, epidemiology, and drug-resistance studies can take dramatic advantage of
the genome sequencing of multiple clinical isolates. Protocols for genetic transformation and
genetic markers have already been developed for T. cutaneum, and it should become relatively
straightforward to transfer this technology to other Trichosporon species. The construction of
deletion strains will allow us to interrogate about the participation of several genes as virulence
determinants and the role played by the different morphological phases of this fungus in the
infection process. In combination with the already established murine and Galleria mellonella
model systems [19,57], this will permit the use of forward and reverse genetics to interrogate
the determinants of pathogenicity, in turn facilitating the development of novel drugs to com-
bat this important fungal pathogen.

Supporting Information

S1 Table. Trichosporon species with year of description, MycobankID, and GenBank acces-
sion.
(XLSX)
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