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Transporters expressed in the liver play a major role in drug pharmacokinetics and are

a key component of the physiological bile flow. Inhibition of these transporters may

lead to drug-drug interactions or even drug-induced liver injury. Therefore, predicting

the interaction profile of small molecules with transporters expressed in the liver may

help medicinal chemists and toxicologists to prioritize compounds in an early phase

of the drug development process. Based on a comprehensive analysis of the data

available in the public domain, we developed a set of classification models which

allow to predict—for a small molecule—the inhibition of and transport by a set of liver

transporters considered to be relevant by FDA, EMA, and the Japanese regulatory

agency. The models were validated by cross-validation and external test sets and

comprise cross validated balanced accuracies in the range of 0.64–0.88. Finally, models

were implemented as an easy to use web-service which is freely available at https://

livertox.univie.ac.at.

Keywords: Vienna LiverTox Workspace, web service, machine learning, ABC-transporter, OATP-transporter,

toxicity, classification models

INTRODUCTION

Membrane transporters expressed in the liver play different, but interconnected roles: on the one
hand, basolateral transporters pick up xenobiotics, and endogenous molecules from the portal vein
to the liver, or excrete their substrates into the blood. Apical transporters, on the other hand, take
care of the flux toward the bile duct network (Figure 1). Three main types of substrates are of
interest with respect to liver toxicity: drugs, which enter the hepatocytes at the first hepatic pass or
at the elimination stage; bilirubin, a product of the degradation of the heme; and bile salts, which
circulate between the gastro-intestinal tract, and the liver.

Additionally, to the enzyme family of cytochromes, also the transporters expressed in the
liver are crucial for a fully functional organ. Some of them are e.g., involved in the bilirubin
cycle: OATP1B1 and OATP1B3 uptake bilirubin into the hepatocytes (Briz et al., 2003), where
glucuronidation takes place. MRP2 then excretes the bilirubin conjugate to the bile (Kamisako
et al., 1999). At the basolateral membrane, MRP3 might also excrete it back to the sinusoidal
blood (Keppler, 2014). As a result, inhibition of the uptake OATP transporters or of MRP2 may

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2019.00899
http://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2019.00899&domain=pdf&date_stamp=2020-01-10
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles
https://creativecommons.org/licenses/by/4.0/
mailto:melanie.grandits@univie.ac.at
https://doi.org/10.3389/fchem.2019.00899
https://www.frontiersin.org/articles/10.3389/fchem.2019.00899/full
http://loop.frontiersin.org/people/818779/overview
http://loop.frontiersin.org/people/354959/overview
https://livertox.univie.ac.at
https://livertox.univie.ac.at


Montanari et al. Vienna LiverTox Workspace

FIGURE 1 | Main hepatic transporters. In blue, transporters for which

predictive models (inhibition and/or transport) are available in the Vienna

LiverTox Workspace.

lead to the accumulation of bilirubin (conjugated or not) in the
blood, which is referred to as hyperbilirubinemia. Conjugated
hyperbilirubinemia is a marker of hepatobiliary injury (Dufour
et al., 2000; Ozer et al., 2008; Padda et al., 2011), and predicting it
may allow to flag compounds that could cause liver injury.

Bile acids are synthesized in the liver by catabolism of
cholesterol and then excreted to the bile by the active bile salt
export pump (BSEP) and by the multidrug resistance-associated
protein 2 (MRP2) (Meier and Stieger, 2002). Bile salts have
a pronounced detergent effect, which explains their toxicity
when they accumulate in the liver (Attili et al., 1986). For
their transport in the bile duct, bile salts form mixed micelles
with phospholipids of the outer leaflet of the membrane. The
multidrug resistance protein 3 (MDR3) allows lipid flopping
at the apical membrane of the hepatocyte, and its function is
necessary to avoid bile duct toxicity (Nicolaou et al., 2012). After
reaching the intestine via the bile flow, bile acids are reabsorbed
into the portal vein, and taken up again into the hepatocytes
by the sodium taurocholate co-transporting polypeptide (NTCP)
(Stieger, 2011). Impairment of bile flow leading to a toxic
accumulation of bile salts in the hepatocytes might lead to drug-
induced cholestasis, which is one of the main causes of drug-
induced liver injury (DILI) (Padda et al., 2011).

Apart from playing a role in proper bile flow and bilirubin
elimination, liver transporters also transport drugs that will
then be metabolized and excreted. At this stage, drugs can
inhibit different transporters and cause drug-drug interactions
(König et al., 2013) (in case of co-administered inhibitor and
substrate) or liver injury (by disrupting the bile flow for
example). This is why predicting the inhibition and the substrate
profile for liver transporters might be useful in identifying
potentially problematic compounds. In addition, the Food and
Drugs administration recommends experimental testing of the

Abbreviations: ADME-Tox, absorption distribution metabolism excretion
toxicity; BCRP, breast cancer resistance protein; BSEP, bile salt export pump;
DILI, drug-induced liver injury; ECFP, extended connectivity fingerprint, MDR1,
multidrug resistance protein 1; MDR3, multidrug resistance protein 3; MRP2,
multidrug resistance-associated protein 2; MRP3, multidrug resistance-associated
protein 3; MRP4, multidrug resistance-associated protein 4; NTCP, sodium
taurocholate co-transporting polypeptide; OATP1B1, organic anion transporting
polypeptide 1B1; OATP1B3, organic anion transporting polypeptide 1B3; P-gp,
P-glycoprotein; SMILES, simplified molecular input line entry system.

interactions between drugs and transporters (especially P-gp,
BCRP, OATP1B1, and OATP1B3) to identify potential drug-
drug interactions (U.S. Department of Health Human Services
Food Drug Administration Center for Drug Evaluation Research,
2012). Thus, it definitely would be of value to have a suite
of computational models available which allow the fast and
easy assessment of compounds for their interaction profile with
transporters expressed in the liver.

Here, we present the Vienna LiverTox Workspace, a web
server for the prediction of interactions with liver transporters
as well as selected liver toxicity endpoints. To the best of our
knowledge, it is the first time that such an ensemble of predictive
models for hepatotoxicity and liver transport is made available
to the public. The predictions are made by individual machine
learning models built on publicly available data for each target
of interest.

METHODS

Data Curation
The datasets for the training and testing of the models
were collected from different sources (online tools as well as
publications). The data were cleaned by using an in-house
system combining the molecular operating environment (MOE
2014.09) (Molecular Operating Environment, 2014) wash option
and the Atkinson Standardiser (https://github.com/flatkinson/
standardiser). This approach was used for some of the datasets
and for others the cleaning procedure of already published papers
were used (Pinto et al., 2012; Kotsampasakou et al., 2015). In
general, duplicates were removed from the dataset, including
pairs of stereoisomers. Further, if these compounds share the
same class label, one of the compounds was kept. A detailed
list of references as well as the number of compounds revealed
after the preprocessing of the data is given in Table S1. In
the sections Transporter Models and Hepatotoxicity Models,
the data curation as well as the model generation for the
specific endpoints is given. The datasets are available in the
Supplementary Material (Data Sheet 2).

Transporter Models
The web service allows for the prediction of interactions between
a small molecule and eight different liver transporters (Figure 1,
transporters marked in blue). The lack of publicly available data
for the other transporters explains the absence of respective
models in the Vienna LiverTox Workspace.

All the models predicting whether a compound will be
a substrate of a transporter (BCRP, P-gp, BSEP, MRP2, and
MRP3) were built upon a dataset correlating expression levels
of 47 ABC-transporters with drug toxicity, which can then
be used to infer transported vs. non-transported compounds
(Szakács et al., 2004). For the transport inhibition models
(BCRP, P-gp, BSEP, MRP3, MRP4, OATP1B1, and OATP1B3) the
datasets were collected from literature and, if necessary, manually
aggregated. In both cases, the models predict a binary outcome:
the query compound is a substrate or not, or an inhibitor
or not.

For chemistry encoding of the compounds, we used circular
fingerprints or 2D molecular descriptors as implemented in
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TABLE 1 | Overview of the parameters used for the models.

Descriptors Trainings set Algorithm

INHIBITION

P-gp (MDR1) ECFP8-like fingerprints Broccatelli et al., 2011 SVM

BSEP Molecular descriptors Warner et al., 2012

Dawson et al., 2012

Morgan et al., 2010

Naïve bayes

BCRP ECFP8-like fingerprints Montanari and Ecker, 2014 Logistic regression

MRP3 Molecular descriptors Köck et al., 2014 BayesNet

MRP4 Molecular descriptors Köck et al., 2014 AdaBoost (MetaCost)

OATP1B1 Molecular descriptors De Bruyn et al., 2013 BayesNet

OATP1B3 Molecular descriptors De Bruyn et al., 2013 BayesNet

TRANSPORT

P-gp (MDR1) Molecular descriptors Szakács et al., 2004 Rotation Forest (MetaCost)

BSEP SVM (MetaCost)

BCRP k-nearest neighbors (MetaCost)

MRP2

MRP3

TOXICITY

Hyperbilirubinemia ECFP8-like fingerprints Liu et al., 2011 SVM (MetaCost)

Cholestasis Molecular descriptors SIDER v2 database (Kuhn et al., 2010, 2016) Tree model (MetaCost)

Drug-induced liver injury (DILI) Molecular descriptors Various sources* Random Forest

*see https://livertox.univie.ac.at/ for a detailed list.

RDKit version 2015.03.1 (https://www.rdkit.org/). Different
machine learning algorithms were applied and the one giving the
best cross-validation results was kept as final model. Especially
for the transport prediction, a heavy class imbalancy (most
of the drugs in the training set were non-substrates) was
noted, which was handled by MetaCost (Domingos, 1999). The
exact methodology and cross-validation performance for each
individual transporter model is described in the documentation
available at https://livertox.univie.ac.at, and an overview is given
in Table 1. In some cases, external test sets were collected from
Metrabase (Mak et al., 2015) or from recent publications (time-
split evaluation).

Hepatotoxicity Models
Three models in the web service can be used to assess
human liver damage potentially caused by a test compound:
hyperbilirubinemia, cholestasis, and drug-induced liver
injury (DILI).

For hyperbilirubinemia, 835 compounds were taken from
Kotsampasakou et al. (2017a) and the modeling methodology
was kept as in Kotsampasakou et al. (2017b): ECFP-like
fingerprints were computed with RDKit (https://www.rdkit.
org/), then a combination of feature selection, MetaCost, and
support vector machines with RBF kernel was used for learning.
The cholestasis model uses data from Kotsampasakou and Ecker
(2017) and a combination of MetaCost and a tree algorithm to
predict whether a compound is likely to cause cholestasis or not.
Finally, the DILI model is based on a 966-compound dataset
carefully compiled from literature (Kotsampasakou et al., 2017c).
RDKit molecular descriptors and a random forest of 500 trees are
used for modeling.

Web Service Implementation
The Vienna LiverTox Workspace has been implemented as
Python/php based web service. It consists of two parts, namely
the backend and the frontend. The backend consists of a docker
image which runs the machine learning models on an input SD-
File. It consists of a Python Flask server (https://palletsprojects.
com/p/flask/) which processes the requests from the frontend.
Each request consists of one or more input molecules and a list of
models to run the predictions on. The frontend, also a docker
image, is based on the CakePHP framework (https://cakephp.
org/) and is responsible for the user interface (UI), which sends
the request to the backend and displays the results. The web
service provides, after a login, the possibility to upload a SD-
File of 10 compounds. The service can also be used without
logging in but then it is only possible to draw and predict a single
molecule. JSME (Bienfait and Ertl, 2013) is used as drawing tool.
The web service runs on an Ubuntu Linux based server with two
twelve-core Intel Xeon 64bit processors and 128 GB RAM, and is
hosted at the University of Vienna by the Pharmacoinformatics
Research Group.

The models use the RDKit library (https://www.rdkit.org/)
(version 2015.03.1) for computing the descriptors and handling
the chemistry aspects, while the Weka (Hall et al., 2009) (version
3.7.11) and scikit-learn (Pedregosa et al., 2011) (version 0.14.1)
libraries are used to train and run the predictive models. The
models also include a compound cleaning step, implemented
with the Atkinson Standardiser (https://github.com/flatkinson/
standardiser) (Figure 2).

The steps performed during model building and a test
compound prediction are shown in Figure 2. In both cases, the
compound is standardized and the molecular descriptors are
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calculated. In the case of the model generation, this allows the
training of the model and its development (left workflow). For
the prediction of a test compound, the descriptors are passed to
the available model to predict its class affiliation (right workflow).

In general, the output of the model gives, in addition to
the class prediction, the actual score. This score is a numerical
value between 0 and 1, and roughly corresponds to a probability
of being active (inhibitor, substrate, or toxic compound).
Therefore, a value close to 1 indicates substrate/inhibitor/toxic
properties, a value close to 0 annotates for non-substrates/non-
inhibitors/non-toxic.

Applicability Domain
The Applicability Domain (AD) is used to validate the
reliability of a given prediction model. It defines whether

FIGURE 2 | General steps to build a model (left workflow, dotted line) or

predict a property for a test compound (right workflow, solid line). Figure

adapted from Carrió et al. (2015) published in Journal of Cheminformatics is

licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).

a dataset of interest is in or out of domain, meaning if
it falls within the chemical space of the model or not.
If it is out of Domain, the prediction cannot be regarded
as reliable.

In our study, an Applicability Domain model, using the
approach of Sahigara et al. (2013), was created for each
transporter with the respective training set. RDKit descriptors
were used as molecule representation. This approach combines
the classical, widely used k-Nearest Neighbor (k-NN) method
with a probability density function estimation. It uses three
stages to determine the reliable space of a prediction model.
First, a set of thresholds is defined depending on the diverse
densities of the training set by considering the 15 k-nearest
neighbors using Euclidean distances. This allows the AD to
consider a dense and sparse training region (The threshold
defines if a test sample can be reliable predicted). In a
next step a decision rule is derived to filter out outlier
molecules. Finally, the reliability of the AD is tested by looking
at the model statistics and prediction errors. This feature
is not yet implemented in the Web service, but will be
available soon.

RESULTS

Model Results
The performance of the models was estimated by calculating
statistical performance metrics using a 10-fold cross-validation.
The results are provided in Table 2. The overall accuracy,
corresponding to the rate of correct predictions, ranges from
0.59 to 0.87. Also, the sensitivity of the models was calculated
(0.57–0.85). This parameter gives the number of actual positives
that are correctly identified and is expressed by the number of
true positives divided by the number of positive predictions.
Further, the number of actual negatives was determined by the

TABLE 2 | Performance metrics of the transporter models.

Accuracy Sensitivity Specificity Balanced accuracy MCC ROC AUC

INHIBITION

P-gp (MDR1) 0.87 0.85 0.90 0.88 0.76 0.94

BSEP 0.85 0.77 0.87 0.82 0.60 0.91

BCRP 0.83 0.77 0.87 0.82 0.64 0.90

MRP3 0.82 0.75 0.87 0.81 0.62 0.86

MRP4 0.73 0.86 0.65 0.76 0.49 0.74

OATP1B1 0.77 0.71 0.78 0.75 0.34 0.80

OATP1B3 0.81 0.78 0.81 0.80 0.35 0.81

TRANSPORT

P-gp (MDR1) 0.81 0.81 0.81 0.81 0.44 0.85

BSEP 0.71 0.65 0.72 0.69 0.28 0.69

BCRP 0.73 0.57 0.75 0.66 0.20 0.71

MRP2 0.70 0.60 0.72 0.66 0.27 0.73

MRP3 0.72 0.60 0.74 0.67 0.28 0.72

TOXICITY

Hyperbilirubinemia 0.67 0.64 0.67 0.66 0.20 0.69

Cholestasis 0.59 0.72 0.56 0.64 0.22 0.64

Drug-induced liver injury (DILI) 0.65 0.72 0.58 0.65 0.30 0.70
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FIGURE 3 | Overview of the web service interface. On the left side, test compound is drawn and desired models are selected. On the right side, results table with the

predictions and model scores.

number of true negatives divided by the number of negative
predictions. The so-called specificity ranges from 0.56 to 0.90.
To estimate a metric for the quality of the models, the Matthews
correlation coefficient (MCC) and the Area under the Receiver
Operating Characteristics curve (ROC AUC) were determined.
The MCC is a number between −1 and 1 where 0 indicates a
prediction equal to a random prediction and 1 indicates a perfect
prediction, whereas −1 is a complete miss. The scores for our
models are in the range of 0.20–0.76. The ROC AUC measures
the ability of the model to distinguish between negatives and
positives, while a higher value indicates a better performance.
In the models provided on the Vienna LiverTox Workspace
the ROC AUC ranges from 0.64 to 0.94. Furthermore, if data
was available, the models were also validated with one or more
external test sets. For more details see the documentation on
the website.

Use Case: Prediction of Liver Interaction
for a Propafenone Analog
In this section, we briefly detail how predictions can be generated
for a given compound using the LiverTox web service. In first
instance, the compound is drawn or its SMILES string is pasted
in the Molecule Editor (Bienfait and Ertl, 2013). Then the models
can be selected on the left panel, either one by one or all at the
same time (Figure 3, left side).

By clicking on the SUBMIT button, the data is sent to
the backend server where the predictions are running. Upon
completion of the calculations, a table listing the different models
and corresponding outputs will appear (Figure 3, right side). The
second column in the results table corresponds to the binary
classification, while the third column “Score” gives the actual
output of the model, which corresponds to a probability of
being active. For example, for BCRP inhibition and transport
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TABLE 3 | Comparison of existing free online tools to predict ADME-Tox properties of compounds.

Web service Transporters predictions CYP450

predictions

Hepatotox.

predictions

Batch

prediction

Run time for 1

compound

ProTox-II (Drwal et al., 2014) No No No Yes (max. 100) <5 s

BioZyne (Levatić et al., 2013) P-gp No No Not for free ∼5 s

QSAR DB (http://qsar.food.dtu.dk/) No Yes No Yes N.A.

pkCSM (Pires et al., 2015) P-gp Yes Yes Yes (max. 100) <5 s for 30 models

Lazar (Maunz et al., 2013) No No No No ∼10 s for 6 models

Vienna LiverTox Workspace P-gp, BSEP, BCRP, MRP2, MRP3,

MRP4, OATP1B1, OATP1B3

No Yes Not for free ∼30 s for 15 models

and for DILI, the output score is close to 0.5 (which is the
threshold used to separate predicted actives from predicted
inactives), which indicates an uncertainty of these three models
for the particular query compound. Propafenone derivatives are
frequently reported as inhibitors of P-gp, and indeed the P-gp
inhibition model predicts this particular one to be an inhibitor
with a high score (0.93).

DISCUSSION

Many systems already exist to predict in silico activities or
properties of small molecules. Table 3 compares freely available
ones with our own web service in terms of model offer,
submission and run time. For example, ProTox-II predicts
oral drug toxicity in rodents (lethal dose LD50 and a category
of toxicity between 1 and 6) using similarity to compounds
with known LD50 and recognition of toxic fragments (Drwal
et al., 2014). BioZyne proposes exclusively one model for
P-gp transport prediction based on the same dataset as
ours (Szakács et al., 2004; Levatić et al., 2013). It uses a
Support Vector Machine classifier for the prediction of P-gp
substrates. The Danish (Q)SAR Database contains pre-calculated
properties combined from more than 200 models from both
commercial and free tools (http://qsar.food.dtu.dk/). Predictions
for environmental toxicity, blood-brain barrier permeation,
cytochrome interactions, or human genotoxicity are available.
Unfortunately, new predictions for compounds that are not part
of the database cannot be made. PkCSM is another web service
for predicting pharmacokinetics properties of compounds (Pires
et al., 2015). Models such as P-gp inhibition and transport, blood-
brain barrier permeation, interaction with cytochromes, renal
clearance, or even liver toxicity are available.

In general, our models for the inhibitors show a better
performance especially when looking at the correct prediction of
the positives. The prediction of true negatives is for the inhibitor
and transporter models quite similar which can be explained by
the availability of more negatives if the training set is unbalanced.
This is especially the case for the substrate models. The quality
of the prediction (MCC) is higher for the inhibition models
of P-gp, BSEP, BCRP, and MRP3 since the available dataset is
more balanced. In comparison, the three toxicity models show a
poorer performance due to the complexity of these endpoints and
especially for hyperbilirubinemia and cholestasis which shows
also a lack of positives.

The Transporters selected for this web service were chosen
based on their importance for regulatory agencies such
as FDA, EMA and the Japanese regulatory agency. They
recommend or in some cases request these proteins to
be routinely tested in inhibition—and substrate studies of
new drugs.

CONCLUSION

We have presented the Vienna LiverTox Workspace, a web
service dedicated to the prediction of liver toxicity and
interactions between small molecules and liver transporters. It
is easy to use, fast, web browser agnostic, and well-documented.
Thanks to its modular system, it will be easy to integrate new
models in the future, as well as re-implement existing models
in case new training data becomes available. We hope that
our models will help researchers to flag potentially dangerous
compounds and shed light on the relationships between liver
transporters and toxicity.
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