
Abstract High throughput technologies, including

array-based chromatin immunoprecipitation, have

rapidly increased our knowledge of transcriptional

maps—the identity and location of regulatory binding

sites within genomes. Still, the full identification of

sites, even in lower eukaryotes, remains largely

incomplete. In this paper we develop a supervised

learning approach to site identification using support

vector machines (SVMs) to combine 26 different data

types. A comparison with the standard approach to site

identification using position specific scoring matrices

(PSSMs) for a set of 104 Saccharomyces cerevisiae

regulators indicates that our SVM-based target classi-

fication is more sensitive (73 vs. 20%) when specificity

and positive predictive value are the same. We have

applied our SVM classifier for each transcriptional

regulator to all promoters in the yeast genome to ob-

tain thousands of new targets, which are currently

being analyzed and refined to limit the risk of classifier

over-fitting. For the purpose of illustration we discuss

several results, including biochemical pathway predic-

tions for Gcn4 and Rap1. For both transcription factors

SVM predictions match well with the known biology of

control mechanisms, and possible new roles for these

factors are suggested, such as a function for Rap1 in

regulating fermentative growth. We also examine the

promoter melting temperature curves for the targets of

YJR060W, and show that targets of this TF have

potentially unique physical properties which distin-

guish them from other genes. The SVM output auto-

matically provides the means to rank dataset features

to identify important biological elements. We use this

property to rank classifying k-mers, thereby recon-

structing known binding sites for several TFs, and to

rank expression experiments, determining the condi-

tions under which Fhl1, the factor responsible for

expression of ribosomal protein genes, is active. We

can see that targets of Fhl1 are differentially expressed

in the chosen conditions as compared to the expression

of average and negative set genes. SVM-based classi-

fiers provide a robust framework for analysis of regu-

latory networks. Processing of classifier outputs can

provide high quality predictions and biological insight

into functions of particular transcription factors. Fu-

ture work on this method will focus on increasing the

accuracy and quality of predictions using feature

reduction and clustering strategies. Since predictions

have been made on only 104 TFs in yeast, new classi-

fiers will be built for the remaining 100 factors which

have available binding data.
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Background

Understanding transcriptional regulation is one of the

key challenges of the post-genomic era. Transcription

factors control the expression of their target genes by

binding specific sequences of bases, typically 10–15 nt

in length, in a region upstream of transcription initia-

tion. Sequences bound by a TF are not identical to

each other and only represent a preferred pattern of

nucleotides within a binding motif. The complete reg-

ulation of a gene will often depend on the co-operative

or antagonistic effects of several transcription factors

with potentially overlapping binding sites. Thus, the

regulatory code for a gene is composed of a pattern of

degenerate motifs concealed within the promoter.

Many methods for predicting additional target sites

for a TF have been proposed. Founding work in TF

binding site representation involved the use of position

specific scoring matrices (PSSMs) (Stormo 2000;

Workman and Stormo 2000; Schneider et al. 1986;

Schneider and Stephens 1990), which contain the fre-

quency of nucleotide bases at each position in a pos-

sible binding site, or motif. New predictions are sites

which match the PSSM based on a score threshold

(Stormo 2000). Supervised learning tools such as sup-

port vector machines (SVM) can be used to categorize

new genes when given a set of genes known to be

regulated by a certain factor and a set known not to be

co-regulated. Unsupervised methods begin with less

well-defined information, for example a set of genes

from a microarray study which show similar expression

over many experiments. Such genes could be hypoth-

esized to be regulated by common factors and thus

contain some set of common but unknown sequence

patterns in their promoters. These patterns can then be

discovered by statistical overrepresentation or by local

search algorithms such as Gibbs sampling. Several

unsupervised techniques for predicting binding sites

have been reported (Conlon et al. 2003; Keles et al.

2004; Wang et al. 2002; Bussemaker et al. 2001;

Birnbaum et al. 2001; Zhu et al. 2002; Pritsker et al.

2004; Elemento and Tavazoie 2005), and a compre-

hensive review of current motif-discovery methods is

available (Tompa et al. 2005).

The approach reported here is a supervised pattern

classification scheme designed to integrate a large

number of heterogeneous data sources in order to

more accurately predict the association of a transcrip-

tion factor and its target. In particular, we explore the

use of support vector machines, which are able to

incorporate high-dimensional data sets (many fea-

tures). SVM classifiers have previously been used for

the prediction of protein homology (Jaakola et al.

1999), secondary structure (Hua and Sun 2001a), and

sub-cellular localization (Hua and Sun 2001b). As

sequence classifiers they have also been useful in pre-

dicting translation start sites (Zien et al. 2000), mRNA

splice sites, and signal peptide cleavage sites (Wang

et al. 2005). More broadly they show good perfor-

mance in the identification of normal and cancerous

tissue samples (Furey et al. 2000) as well as prediction

of gene function (Pavlidis and Noble 2001).

Few groups have published work on supervised

classification schemes for predicting new transcription

factor targets. We briefly reviewed some of these pre-

viously (Holloway et al. 2006). One method includes

linear discriminant analysis (LDA) to select from a set

of potentially co-regulated genes those that are most

likely to share common transcription factors (Simonis

et al. 2004). Another approach uses Bayesian networks

to learn the combinatorial relationships of TFs and

targets that underlie specific gene expression experi-

ments (Beer and Tavazoie 2004). Finally, in an

approach similar to ours, SVMs have been applied to

microarray data in order to predict TF–target associa-

tions (Qian et al. 2003).

Although some of these techniques work well, they

either do not effectively incorporate the large amount

of regulatory data available in ChIP–chip interactions

or they base their classification on only one or two

types of genomic data. Our approach easily combines

26 large genomic datasets, adaptively weighting each

data source based on its ability to correctly classify a

training set. The combination of heterogeneous data

reduces false positive predictions while maintaining

high accuracy. Genomic data combination using SVMs

has been demonstrated before. Protein sequence sim-

ilarity, protein–protein interactions, protein hydro-

phobicity, and gene expression data were successfully

combined to predict the functional group of a set of

proteins, and the combination of data was shown to

significantly outperform individual methods (Lanckriet

et al. 2004).

We provide accuracy measurements on our classifi-

ers based on leave-one-out cross validation, and we

benchmark our results against randomized datasets.

Our full set of predictions for 104 TFs based on

all combined methods can be downloaded from

our website, http://www.cagt10.bu.edu/SSBPaper/Ma-

chineLearningTFSSB.htm.

SVMs: background

We consider 26 different datasets sequentially, train a

classifier on each, and then construct a composite

classifier which is a weighted combination of the 26.
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For each training set, we develop an allocation rule for

every TF. Let N be the size of the training set for a

particular TF (the collection of positive and negative

examples, i.e., genes which do and do not bind it). Each

gene has a set of attributes forming a vector that con-

tributes to the distinction between positive and nega-

tive sets. As an example, an attribute vector for a gene

could be an ordered list consisting of the number of

times each possible 4-mer occurs in the upstream

region. The collection of such vectors is the feature

space, F. Each gene would then be characterized by a

256 component feature vector. The SVM generates a

hyperplane of D = 255 dimensions in the feature space

separating positives from negatives (d will henceforth

be an index over the features of the dataset). We write

a vector in F as xi = (xi1, xi2, xi3... xid), the components

xid representing, for the example above, the count of

the dth k-mer in the ith gene. Then the equation for a

hyperplane has the form

f ðxÞ ¼ w � xþ b ¼ 0 ð1Þ

where x = (x1, x2, …, xd) and w ” (w1, w2, …,wd). For

D = 2, this is a straight line in variables x = (x1, x2)

with slope – w1/w2 and intercept – b/w2.

Geometrically w is a vector perpendicular to the

hyperplane H, the magnitude | wd| of its dth component

weighting the corresponding dimension. The function

f(x) is assumed normalized (through scaling of w) so

that the closest (positive, negative) pair xi
+ and xi

– have

values f(x+) = 1 and f(x–) = – 1, respectively. Then the

SVM problem is to find w and b such that the attribute

vectors of all genes in the positive set are above the

hyperplane H1 defined by

w � xþ b ¼ þ1

and all in the negative set are below hyperplane H2

defined by

w � xþ b ¼ �1

and that the margin (distance between H1 and H2) is

maximal. Thus the goal is to find a separator that

maximizes the margin, or distance between the positive

and negative classes. This construction is essentially a

choice of scaling for w, b, in particular requiring that

the length |w| be minimal, since this maximizes the

margin under the above normalization. Maximizing the

margin is a convex optimization problem which is

generally solved using standard Lagrangian methods

(Sholkopf and Smola 2002). Typically, as in our case,

perfect separation cannot be achieved. When error-

free decisions are not possible the method can be

readily generalized to allow any specified amount of

misclassification, with a suitable penalty function.

An important aspect of the solution is that the data

enter only in the form of a kernel matrix K, whose

entries Kij are dot products of all pairs xi, xj of feature

vectors. In the case that all components of the feature

vector are truly independent, the Lagrangian is a linear

function of the elements of the kernel, and the linear

dot product is used with Kij = xiÆxj. When the elements

are correlated, the Lagrangian is written as a non-

linear function of the inner products of the attribute

vectors (see below). In particular, the non-linear dot

products are defined for data points by Kij = K(xi, xj),

where the given positive definite function K(x, y) is

known as the kernel function. Such non-linear products

are equivalent to assuming that an unspecified higher

dimensional feature space F1 exists into which F is

mapped and in which the separating hyperplane is

linear. This yields a Lagrangian with matrix entries

given by this alternative dot product. The implicit

choice of F1 is made by changing the type of inner

product used (see Table 1). For a more detailed

development of SVMs, see the excellent reference

texts (Sholkopf and Smola 2002, Tan et al. 2005). For a

detailed two-dimensional example see Holloway et al.

(2006).

Post-processing can be an essential task in pattern

classification problems, particularly if one wishes to

extract the highest quality predictions from a classifier.

A naı̈ve way to extract the most significant (positive)

prediction from an SVM classifier is to select those

data points which are most distant from the separator

(distance given by wÆxi + b for data point i). The

interpretation is that those distant points are most

unlike the negative set and contain the strongest

positive character. A more informative method is to

rank data by P(yi = 1|wÆxi + b); i.e. by the posterior

probability of a positive classification, given the

distance of example xi from the hyperplane. Platt

observed that these posterior probabilities could be

Table 1 Four common kernels tested

Kernel Parameters Description

Linear None K(x, y) = xÆy
Polynomial Poly degree d K(x, y) = (xÆy + 1)d

Gaussian radial
basis function
(RBF)

r Kðx; yÞ ¼ exp �jx�yj2
2r2

� �

Gaussian r Kðx; yÞ ¼ 1
2pr2 e�

x2þy2

2r2

These are the four common kernel functions, the parameters
which must be set by the user, and their mathematical
description
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well approximated by fitting the SVM output to the

form of a sigmoid function (Platt 1999), and developed

a procedure to generate the best-fit sigmoid to an SVM

output for any dataset. The result is the posterior

probability P(yi = 1|wÆ xi + b) for each data point in

the training set (see Platt 1999) for further details).

This probability places a confidence level on any new

prediction made in the yeast genome and, most

importantly, results in an ability to identify high-con-

fidence predictions for future experiments.

Methods

We have tested a variety of sequence and non-

sequence based classifiers for predicting the association

of TFs and genes. All together 26 separate data sources

(each yielding a feature map and kernel) are combined

to build classifiers for each transcription factor. The 26

data sources comprise a family of sequence-based

methods (e.g., k-mer counts, TF motif conservation in

multiple species, etc), expression data sets, phyloge-

netic profiles, gene ontology (GO) functional profiles,

and DNA structural information such as promoter

melting temperature, DNA bending, and DNA acces-

sibility predictions (see Table 2).

Our positive and negative training sets are taken

from ChIP–chip experiments (Harbison et al. 2004;

Lee et al. 2002), Transfac 6.0 Public (Matys et al.

2005), and a list curated by Young et al. from which we

have excluded indirect evidence such as sequence

analysis and expression correlation (Young Lab Web

Data, http://www.staffa.wi.mit.edu/cgi-bin/young_pub-

lic/navframe.cgi?s=17&f=evidence). Only ChIP–chip

interactions of p-value £ 10–3 (i.e., a high confidence

level) are considered positives (Harbison et al. 2004).

The Transfac and curated list represent a manually

annotated set which will later be used separately dur-

ing SVM comparison to PSSM performance. For the

purposes of SVM, however, all manually curated and

high-throughput sets are grouped together, making a

total of 9,104 positive interactions.

Negative sets pose a greater challenge since no

defined negatives exist in the literature; however, since

a particular TF will regulate only a small fraction of the

genome, a random choice of negatives seems accept-

able. In fact, test cases with a few TFs show good

classification performance with random negatives

(unpublished work). Nevertheless, a safer set of nega-

tives would be those showing no binding by experiment

under some set of conditions. Along those lines, we

have chosen for each TF 175 genes with the highest p-

values (generally > 0.8) under all conditions tested in

genomic ChIP–chip analyses (Harbison et al. 2004; Lee

et al. 2002). Clearly all experimental conditions have

not been sampled and this does not guarantee that our

choices are truly never bound by the TF, but this

choice of negatives should maximize our chances of

selecting genes not regulated by the TF of interest.

All promoter sequences have been collected from

RSA tools (van Helden 2003), Ensembl (Birney et al.

2006), or the Broad Institute’s Fungal Genome Initia-

tive (Galagan et al. 2003; Dean 2005). For yeast, pro-

moters are defined as the 800 bp upstream of the

coding sequence. The motif hit conservation dataset

required promoter regions from 17 other genomes.

Those genomes, their sources, and the length of the

promoter regions are described in our previous report

(Holloway et al. 2006). Sequences are masked using

the dust algorithm and the RepeatMasker software

(Tatusov and Lipman 2005; Smit et al. 2005) where

appropriate, to exclude low complexity sequences and

known repeat DNA from further analysis. PSSM scans

(for datasets 1 and 2, below) are performed with the

MotifScanner algorithm (Aerts et al. 2003). MotifS-

canner assumes a sequence model where regulatory

elements are distributed within a noisy background

Table 2 Abbreviations of datasets used to generate classifiers

Abbreviation Description

1 MOT Motif hits in S. cerevisiae
2 CON Motif hits conservation 18 organisms
3 PHY Phylogenetic profile
4 EXP Expression correlation
5 GO GO term profile
6 KMER K-mers—4,5,6-mers
7 S1 Split 6-mer 1 gap kkk_kkk
8 S2 Split 6-mer 2 gaps kkk__kkk
9 S3 Split 6-mer 3 gaps kkk___kkk
10 S4 Split 6-mer 4 gaps kkk____kkk
11 S5 Split 6-mer 5 gaps kkk_____kkk
12 S6 Split 6-mer 6 gaps kkk______kkk
13 S7 Split 6-mer 7 gaps kkk_______kkk
14 S8 Split 6-mer 8 gaps kkk________kkk
15 M01 6-mer with 1 mismatch (count 0.1)
16 M05 6-mer with 1 mismatch (count 0.5)
17 ENT Condition specific TF–target correlation
18 BIT Nucleotide sparse binary encoding
19 CRV Promoter curvature prediction
20 HC Homolog conservation
21 HYD Hydroxyl cleavage
22 KPo Kmer median positions from start
23 KPr Kmer Probabilities (– log pval)
24 MT Promoter melting temperature

– 20 bp window
25 DG Promoter melting Delta G

profile – 20 bp win
26 BND Promoter bend prediction

Abbreviations for each dataset and a short description are given
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sequence (Aerts et al. 2003). The algorithm requires

input of a background sequence model, which in this

case is a transition matrix of a third order Markov

model generated from the masked upstream regions of

each genome. MotifScanner only requires one param-

eter be set by the user, i.e. the threshold score for

accepting a motif as a binding site. Several thresholds

have been tested and the results we have used to create

SVM kernels are all at a setting of 0.15, which has been

found to be a reasonable middle ground, making

approximately 560 predictions per TF. Settings beyond

0.2 produce too many false hits to be useful. The

PSSMs themselves are obtained from Transfac 6.0

Public and from (Harbison et al. 2005), which are a mix

of experimentally derived motifs and those generated

by motif-discovery procedures.

Datasets using k-mers rather than PSSMs are gen-

erated using the fasta2matrix (Pavlidis et al. 2004)

program which lists all possible k-mers and counts the

occurrence of each within a set of promoters. Gapped

k-mers are detected using custom scripts written as

Matlab m-files. The expression data used include 1011

microarray experiments compiled by Ihmels and

co-workers, which can be downloaded with permission

from the authors (Ihmels et al. 2005).

Each data set is normalized so that each feature in

the training set has mean of 0 and standard deviation of

1. Gene Ontology, phylogenetic profile, and TF–target

correlation data are not normalized since their data are

binary. Finally, since the ultimate goal is data inte-

gration the number of training examples for a given TF

must be the same for every dataset used to make a

classifier. When examples are missing in a dataset, as is

the case with the GO and COG (phylogenetic profiles

based on the Clusters of Orthologous Groups data-

base) based classifiers, random values sampled from

the rest of the training set are used to fill in the missing

vectors.

All classifier construction and validation was per-

formed in Matlab (The Mathworks: http://www.math-

works.com/) using the Spider machine learning library

(Weston et al. 2005). Mapping of predicted binding

targets to biological pathways was done using the

Pathway Tools Omics Viewer at SGD (Christie et al.

2004). See our supplementary methods section for an

expanded description of the analyses below.

Description of analysis

A separate classifier is developed for each TF based on

each independent dataset. The four kernel functions in

Table 1 (linear, rbf, Gaussian, and polynomial) are

tested using leave one out cross validation, and the

function with the highest F1 score (below) is chosen as

best for that particular TF–dataset combination. A flow

diagram of our method can be seen in Fig. 1. Let TP

denote the count of true positives, FN false negatives,

etc. The F1 statistic is a robust measure that represents

a harmonic mean between sensitivity (S), and positive

predictive value (PPV). It is defined by

F1 ¼
2� S� PPV

Sþ PPV
¼ 2� TP

2� TPþ FPþ FN

If we choose the classifier with the best F1 statistic,

each TF now has one classifier for each type of geno-

mic data (26 classifiers total). For every classifier the C

parameter (the trade-off between training error and

margin) must be specified, and some kernel functions

require a second parameter, e.g., the polynomial

degree k for a polynomial kernel or a standard devia-

tion r (which controls the scaling of data in the feature

space) for a Gaussian or radial basis function (RBF)

kernel. The values for these parameters are chosen by

a grid-selection procedure in which many values are

tested over a specified range using 5-fold cross valida-

tion. The ROC score is used to choose the best values.

As an example for an RBF kernel a range of C values

from 2–5 to 200 is tested with a range of r values from

2–15 to 23. The best combination of values is then

chosen to make the final classifier.

The performance of any parameter-optimized clas-

sifier is determined using leave-one-out cross valida-

tion. Once the best kernel function K(x, y) (with

optimized parameter values) has been chosen for a

particular TF–dataset pair, the next step is to combine

the datasets to create a composite classifier. To that

end, the K(x, y) is used to create a kernel matrix for

each of the 26 datasets. Before weighting and com-

bining kernels for each data set, all kernel matrices are

normalized according to

~Kðx; yÞ ¼ Kðx; yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðx; xÞKðy; yÞ

p :

This normalization effectively adjusts all points to

lie on a unit hypersphere in the feature space F, and

the diagonal elements in every kernel matrix the will

be 1. This assures that no single kernel has matrix

values that are comparatively larger or smaller than

other kernels, so all matrices initially have the same

contribution to the combination.

Datasets can be combined by adding kernel matrices

together; however, an unweighted linear combination

ignores dataset dependent performance—in fact some

datasets do not perform better than random for some

Machine learning for regulatory analysis and transcription factor 29
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TFs. To avoid this problem, we determine whether the

number of true positives predicted using a particular

dataset is significantly different (p £ 0.05) than what

would be achieved by random guessing. We calculate

the probability of observing more than g true positives

given the training set size N, the total number of

known positives L (i.e., TP + FN), and the number of

positively classified examples, M (i.e., TP + FP)

p ¼Pðg � xÞ ¼ 1� Fðx� 1jN;L;MÞ

¼ 1�
Xx�1

i¼0

L

i

� �
N � L

M � i

� �

N

M

� � for x[0;

p ¼1 otherwise:

Here p is the probability of drawing x or more true

positives at random. Datasets that do not meet the p-

value cutoff are eliminated from the analysis for a

particular TF.

Finally, the significant datasets (each represented by

a kernel matrix Kij) must be weighted based on their

performance. Using a scheme (described below) with

weights equal to the F1 score of each classifier, the

underlying 26 kernel matrices are scaled and added

into a single unified kernel corresponding to the given

transcription factor. Once the weighting is complete,

an overall leave-one-out cross-validation is employed

to estimate the error of the combined classifier.

Although individual kernels were tuned on the entire

set of examples for each dataset independently, the C

parameter of the final, combined SVM was determined

only on the training set during cross-validation. Nev-

ertheless, to measure the danger of overfitting the most

useful performance benchmark is perhaps the random

data controls shown in Fig. 2. Also, the use of Platt’s

posterior probabilities as a post-processing filter can

help in choosing the truly relevant targets once the

procedure is applied to the entire genome. As further

validation we employed an alternative scheme for data

combination on a few test cases. The feature vectors

for several datasets were directly concatenated and

recursive feature elimination (Guyon et al. 2002) was

applied to select the most relevant features for classi-

fier construction completely independent of test data.

This is a more computationally intensive procedure

requiring many datasets to be loaded into memory

simultaneously and hundreds of SVMs to be fit itera-

tively in order to weight data features. The results for

these tests appeared similar to the results obtained by

the procedures outlined in this manuscript, and we will

describe these results on a larger set of transcription

factors in a future publication.

Three simple weighting schemes have been com-

pared. In all cases the primary weight for a method is

determined by computing its ratio with the best per-

forming method. Our first weighting scheme is linear

and simply multiplies the mth matrix Km = Kij
m by its

scaled F1 score am and computes a sum, yielding

K¼
P26

m¼1

amKm. A second scheme is non-linear and

Fig. 1 Flow diagram: synthesizing a single classifier for each TF
from several data sets. A classifier is constructed for each
individual TF for each genomic dataset, using every one of four
possible kernel functions (26 datasets · 104 TFs · 4 kernel
functions = 10816 kernels from which SVM classifiers are built).
For each of these classifiers optimal parameters are chosen by

cross-validation. For each dataset and each TF, the best
performing of the four kernel functions is selected, reducing
the number of classifiers to 2704 (26 datasets · 104TFs).
Finally, the datasets are combined based on F1 score of their
best performing kernel so that there is only one classifier per TF

30 D. T. Holloway et al.
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squares the weights of the first method before multi-

plying, yielding K ¼
P26

m¼1

a2
mKm. This will not change

the weight of the best performing method, which will

be scaled to 1, but will decrease the relative weights of

poorer methods. Our third scheme, which is the most

non-linear, takes the squared tangent (an effective

sigmoidal function) of the primary weight, yielding

K ¼
P26

m¼1

ðtan2 amÞKm. This more steeply penalizes

poorly performing methods while increasing relative

weights of the best methods (e.g., instead of weight 1,

the best method will have a weight of 2.43).

Genomic datasets

1 PSSM motif counts (MOT, Table 2 item 1)

Position-specific weight matrices (PSSM) for 104

transcription factors have been used to scan 800 bp

promoters in S. cerevisiae for each gene in a training

set, and the number of hits for each PSSM has been

counted. These counts are the features (i.e., compo-

nents) of 104 dimensional feature vectors. It is clear

that a greater number of ‘‘hits’’ by a PSSM in the

upstream region of a gene will imply a greater like-

lihood that the TF corresponding to the matrix will

actually bind the gene. For each prediction there is a

probability that it will be true, P(True|hit). If a certain

upstream region of a gene has more than one hit, the

probability that the TF binds to the gene will increase

(Supplementary Figure 1). This method aims to better

predict TF binding by taking into account the number

and types of binding motifs in a promoter.

2 PSSM hit conservation (Table 2 item 2)

Conservation of a TF binding site is determined by

counting hits of the TF probability matrix (PSSM) in

orthologous upstream regions from several organisms.

Orthology information was taken from the Homolo-

gene database (Wheeler et al. 2005) for all organisms

except for sensu stricto and sensu lato yeasts, which

was obtained from Washington University and the

Whitehead Broad Institute (Cliften et al. 2003a, b;

Kellis et al. 2003; Kellis 2003).

In this analysis, a hit by a PSSM in the upstream

region of an ortholog is defined as a conserved motif.

In this way, conservation of a potential binding site is

being measured rather than the exact nucleotide string.

This is because a PSSM may identify sequences that

are different in nucleotide composition but still match

the probability matrix. This is a loose conservation

criterion that makes sense biologically, since natural

selection will act to preserve a binding site, and not

necessarily an exact nucleotide string.

Fig. 2 SVM performance. Performance of each dataset and
combined datasets ordered by increasing F1 score. Cumulative
results for all transcription factors were used to plot the
sensitivity, positive-predictive-value, and the F1 statistic for each
dataset and data combination. Dataset abbreviations are given in
Table 3. The combined classifiers, labeled 26st (linear weight-

ing), 26sq (square weighting), and 26t (tangent square weighting)
on the far right, perform better than any dataset alone, with the
squared tangent weighting giving the best result overall. Three
random datasets also appear in the table, R (randomized k-mer
counts), RH (randomized 10% selection of each dataset), and
RN (normally distributed random numbers)
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The stronger the conservation of a potential binding

site, the more likely the site is to be real (See Sup-

plementary Figure 2). These data are assembled into a

104 dimensional feature vector for each gene in yeast.

Each feature represents a transcription factor motif

and the value of the attribute is the number of genomes

in which the binding site is conserved.

3 Kmers, mismatch kmers, and gapped kmers

(Table 2 and 6–16)

PWMs may fail to detect binding sites if the binding

site collection used to generate them is incomplete (in

the case of experimental data) or if the motif discovery

procedure is inaccurate (as may occur in the case of

computationally generated matrices). In this case, the

distribution of all k-mers in a gene’s promoter may be

used to predict whether it is bound or not-bound by a

TF. K-mer counts in promoters have been used pre-

viously with SVMs to predict genes’ functions (Pavlidis

and Noble 2001). Here, several strategies are used to

generate a variety of datasets based on k-mer strings.

First, one dataset of feature vectors is created by

decomposing all yeast promoters into counts of all k-

mers of length 4, 5, and 6. Similarly, 6-mers with var-

iable length center gaps (of the form kkk – {x}n – kkk)

are counted in each promoter to form sequence data-

sets allowing gaps of size 1–8 (Table 2, items 4–11).

This allows detection of split motifs such as the binding

site for Abf1, RTCRYNNNNNACGR. Finally, we

construct two datasets with 6-mer counts allowing one

mismatch in any 6-mer (Table 2 items 12–13). A mis-

matched base pair is counted with a value of 0.1 in the

first dataset, and 0.5 in the second.

Given a set of true positives and true negatives for

each TF, the SVM classifies genes based on their

complete promoter content as represented by these k-

mer distributions. As we point out in the ‘‘Discussion

section’’, k-mer counts are the single best performing

method for distinguishing transcription factor targets.

It should be noted that our sequence based kernels

are very similar to sequence kernels used in previous

work. Specifically, our kernels are inspired by the

spectrum kernel (Leslie et al. 2002), the (g,k)-gappy

kernel (Leslie and Kuang 2003) and the mismatch

kernel (Leslie et al. 2004) which have been proposed

for sequence classification (see Supplementary Meth-

ods for a more complete description). Finally, the

kernels used here take into account the reverse com-

plements of each k-mer. This means, for instance, that

the 3-mers ‘‘AAA’’, and ‘‘TTT’’ are counted together

as one unit since the presence of one necessitates the

other on the opposite strand of DNA.

4 GO annotation (Table 2 item 5)

GO term annotation can be used to detect possible

transcriptional targets. The targets of a transcription

factor have often been shown to have similar function

and a gene’s GO annotation can be used to measure its

functional similarity to known targets (Allocco et al.

2004). For this method, all GO Biological Process

terms in yeast become features for genes, such that

every gene will have a binary vector, with a 1 for the

terms which are annotated to it, and 0 otherwise.

Parent terms of direct annotations also receive a 1.

There are 2,155 possible terms for yeast, giving a vector

of the same length. Since only about one-third of yeast

genes are annotated with GO terms, a feature matrix

generated with GO data is sparse, consisting mostly of

zeros. Imputing zeros for genes unannotated in GO can

potentially bias the result of the classifier (for instance,

if many negatives are missing and hence are described

using zero vectors it may be trivial to separate these

from the positives). Instead, the binary vector is filled

in with random data according to the background dis-

tribution of term annotation in the yeast genome.

Despite using random data, the vectors are still sparse

and the best 800 GO terms are selected using the

Fisher score criterion during the classifier construction

for each TF. The Fisher criterion gives high scores to

features that have large differences in mean between

the positive and negative classes in relation to variance.

This feature selection is performed in the SPIDER

data mining package (Bishop 1995).

5 Phylogenetic profiles (Table 2 item 3)

Co-evolution of a transcription factor’s targets may

indicate regulation. A phylogenetic profile of a gene is

simply the pattern of occurrence of its orthologs across

a set of genomes. Genes with similar patterns have

been shown to participate in the same physical com-

plexes or have similar biochemical roles within the cell

(Wu et al. 2003). It has also been postulated that

transcription factors and their targets co-evolve (Gasch

et al. 2004). Therefore it seems reasonable that a group

of commonly regulated genes could share a similar

pattern of inheritance. Phylogenetic profiles here were

parsed from the COG database, which contains

orthology information between S. cerevisiae and 65

other microbial genomes. Each gene in the positive and

negative set is represented by a 65 component binary

vector, a component being 1 if the gene’s ortholog is

present in the corresponding genome, and zero other-

wise. As with the GO data, gene attribute vectors are

binary, containing 65 elements, one for each genome in
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COG. Also, since many genes have not been annotated

to COG groups, it is necessary to generate random

vectors for missing genes as described for the GO

example above.

6 TF–target expression correlation as a method

to predict regulation

Analysis of transcription factor motif-matching outputs

shows that false positive predictions are numerous

even in cases of low sensitivity. Expression analysis

provides a means to discover targets missed by

sequence based methods. Several studies have shown

that genes with similar expression patterns are likely

to share similar regulation and, conversely, genes

regulated by the same TF are more likely to be

co-expressed (Allocco et al. 2004; Yu et al. 2003).

Two strategies are often useful for discovering

transcription factor targets using expression data.

Often genes are turned on and off as the expression

levels of their controlling TFs are altered. Thus one

method is to find targets of some TFs by finding TF/

gene pairs that have correlated expression patterns

(Zhu et al. 2002). A second approach involves iden-

tifying groups of co-expressed genes, and hypothe-

sizing that this co-expression is due to co-regulation

by the same TF(s) (Ihmels et al. 2002, 2004). In the

two sub-sections below, we describe how each of

these strategies can be used to construct data vectors

for SVM learning.

6.1 TF–target correlations measured by profile

entropy minimization (Table 2 item 17)

The approach described in (Mellor and DeLisi 2004)

addresses the problem of discovering condition specific

regulation by searching for the conditions under which

a regulator’s profile is maximally associated with a

target’s profile, for example, when the TF and target

have correlated expression. This essentially chooses

the set of experiments where the TF most clearly and

significantly controls the expression of a potential tar-

get. In this analysis correlations with a p-value of 10–10

are chosen in order to extract the most significant

regulatory relationships and reduce false predictions.

Significant relationships are coded as 1’s in gene’s

feature vector, so that every gene is described by a

binary list whose length is the number of TFs (104 in

this case).

6.2 Target–target correlations (Table 3 item 4)

For purposes of representing expression correla-

tion between targets, we use normalized log2 ratios

for each gene across 1,011 experiments (Bergman

et al. 2003). Each gene’s expression profile is nor-

malized to a mean of 0 and standard deviation of 1.

This expression profile is then the vector of features

used by the SVM to represent any example gene

(each gene will have 1,011 features). In this case,

the dot product between such gene vectors is anal-

ogous to a Pearson correlation and naturally fits

into the SVM framework. Given many known tar-

gets of a transcription factor as positive cases, the

SVM can identify a new target based on how clo-

sely its expression resembles that of the known

examples.

Standard 
ID 

Gene 
name 

Known Motif 
(SGD) 

K-mers labeled by 
rank 

YKL112W ABF1 RTCAYTNNNNACGW 1   CACT 
2 ATCA 
3    ACTAT 
4  TCAC 
5 ATCAC 
  ATCACT

YDR207C UME6 TAGCCGCCSA 1    GCCG 
2 TAAG 
3    GCCGC 
5    GCCGCC 
6   AGCCGCC 
7  TAGA
  TWAGCCGCC 

YBR049C REB1 CGGGTRR 1    TAAC 
2 GGGTAA 
3  GGTA 
4 GGGTA 
  GGGTAA 

YLR182W SWI6 CACGAAAA No match 1,4,5,6,8
2 AACG    9 GGAA
3  ACGCG 
7   CGCG
  AACGCG

YPR104C  FHL1 TGTAYGGRTG  No match 1-4,6 
5  TGTA 
7   GTACA 
8 ATGTA
  ATGTA

YEL009C GCN4 ARTGACTCW 1 ATGA 
2  TGAC 
3  TGACT 
4   AACT 
5    ACTC 
7    ACTCA 
8   GACT 
9 ATGAC

ATRACTCA

YJR060W CEP1 TCACGTG 1  CACGT 
2    CGTG 
3 TCACG 
4 TCACGT 

TCACGTG 

YOL028C YAP7 MTKASTMA 1     TAGA  
2       GTAA 
3   ATTA 
4 ATATT 
5       CGAA 
6   CTTA
   AMTTASDAA

YER111C SWI4 CACGAAAA 
CGC[G/C]AAA 

1,2,3 match TATA box 
4   GCGCA 
5  CGCG 
7    CGAA 
10  GCGA

CGCGMA

YNL216W  RAP1 CAYCCRTRCA 
RMACCCATACAYY 

1 TAAAAT 
2             ATTC 
3             ATTAA 
4     ACCCA     
6          TACA 
7 TAAAG 
8           ACATC 
9             ATTCC
  TAAARYCCATACATYMM 

Table 3 High ranking k-mer alignment and comparison to
known binding site

Weight vectors for each TF classifier are used to rank all k-mers.
Known TF motifs appear in the middle column and high ranking
k-mers are assembled in the right column showing correspon-
dence with the known motif. Standard nucleotide abbreviations
are used. Some less common abbreviations are W = {A or T},
R = Purine, Y = Pyrimidine, S = {C or G}, K = {T or G}, M = {C
or A}, D = not C
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7 Sparse binary encoding of promoters

(Table 2 item 18)

Efforts to encode strings into kernel representations

have progressed for many applications. The mismatch,

gap, and k-mer kernels mentioned above have been

used mainly for protein classification, translation initi-

ation site detection, and mRNA splice site identifica-

tion. Another straightforward sequence representation

is the sparse bit encoding (Zien et al. 2000). In this

simple scheme each nucleotide in a sequence is en-

coded by 4 bits, only one of which is set to 1. The

nucleotide is identified as A, C, T, or G based on the

position of the ‘‘1’’ in each such set. This leaves an

800Æ4 = 3200 dimensional vector to describe each

example sequence, and the dot product of two vectors

results simply in the number of nucleotides shared

between the two sequences.

8 Promoter curvature and bend predictions

(Table 2 items 19 and 26)

It is well known that sequence-dependent DNA

bending can be an important aspect of protein–DNA

interactions. Some prominent examples of proteins

that induce DNA bending are the TATA-binding

protein (TBP) (Masters et al. 2003), catabolite acti-

vating protein (CAP), and the yeast Mcm1 transcrip-

tion factor (Acton et al. 1997). A specific sequence of

nucleotides that is more prone to bending into the

proper configuration would provide a ready-made site

for transcription factor binding. The particular bend

and curve properties of known target genes may help

discriminate them from non-targets.

Using the ‘‘Banana’’ algorithm in the EMBOSS

toolkit, bend and curvature predictions were made

along the promoters of all yeast genes. These were

used as two separate genomic methods from which to

generate classifiers for all 104 TFs, one based on bend

predictions and one based on curve. Specifically,

bending refers to the tendency of adjacent base pairs to

be non-parallel (twists and short bends of ~3 bp),

whereas curvature refers to the tendency of the double-

helix axis to follow a non-linear path for a distance of

several base pairs (broad loops and arcs, ~9 bp win-

dow). Banana follows the method of Goodsell and

Dickerson (1994) which is consistent with published

experimental data (Satchwell et al. 1986). The output

of the Banana algorithm becomes the feature values

along a promoter for each example gene. For more

details on the method see our Supplementary methods,

reference (Goodsell and Dickerson 1994) or see the

EMBOSS website (http://www.emboss.sourceforge.net/

apps/banana.html).

9 Homolog conservation (Table 2 item 20)

This method is akin to the phylogenetic profiles taken

from the COG database described above. Because

COG uses a strict definition of orthology, namely

bi-directional best hits within a group of at least three

organisms, many genes are not allocated to any

ortholog group. The method described here relaxes the

definition of orthology to allow a profile to be con-

structed for any gene, while still discriminating

between well-conserved sequences and weakly con-

served sequences (Snitkin et al. personal communica-

tion). These phylogenetic profiles are constructed using

BLASTP to compare yeast proteins to 180 prokaryotic

genomes. The resulting best hit E-values are then dis-

cretized by placing them into one of six bins based on

empirically determined E-value cut-offs. The bin

numbers range from 0 (no significant hit) to 5 (very

significant). Thus, a typical example gene will have 180

features, each corresponding to a different genome,

with values ranging from 0 to 5 indicating the strength

of the best BLASTP hit of that gene’s protein to

another genome.

10 Hydroxyl cleavage—DNA accessibility

(Table 2 item 21)

It is possible that strands of DNA sharing little

sequence similarity may still share common structural

motifs. Transcription factors may seek out these

structural cues for binding, thereby identifying

conserved structural motifs when no strong consensus

sequence can be detected. Experiments show that

hydroxyl (OH) radical cleavage is an effective probe

for DNA structure, in that strand breaking mirrors the

accessible surface areas of the sugar-phosphate back-

bone (Balasubramanian et al. 1998; Parker et al. 2005;

Tullius and Greenbaum 2005). A database of DNA

sequences and their hydroxyl cleavage patterns has

been published (Parker et al. 2005). This database al-

lows accurate prediction of backbone accessibility for

any sequence by sequentially examining every 3-mer in

a sequence and looking up its experimental cleavage

intensity as measured by phosphor imaging of cleaved,

radio-labeled DNA separated by electrophoresis

(Balasubramanian et al. 1998).

Predictions of this sort are generated for all

sequences in the yeast genome and the individual 3-mer

cleavage intensities along each promoter serve as

feature vectors for TF–target classification. This method
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could prove useful in identifying potential targets when

k-mer counts and other sequence based methods fail.

11 Kmer median positions from start (Table 2 item 22)

A potential transcription factor binding site may be

functional only when within a certain distance from

other binding motifs or from the start site of tran-

scription. When such positional constraints exist, they

can be used to filter out sites which would otherwise

become false positive predictions.

For each k-mer in a sequence, we record its median

distance from the transcription start. This dataset will

be useful in classifying targets for a transcription factor

only if the factor shows positional bias in promoter

binding.

12 K-mer likelihoods (Table 2 item 23)

Although k-mer counts may describe promoter com-

position, the abundance of non-informative sequences

may hide the few k-mers which meaningfully contrib-

ute to class separation. Those k-mers which are sta-

tistically over-represented in a promoter can often be

transcription factor binding sites, and this fact has been

effectively used to identify biologically significant pat-

terns (Cora et al. 2004; van Helden and Collado-Vides

1998; Haverty et al. 2004). For every possible k-mer 4,

5, and 6 long we calculate the probability that the k-

mer has x occurrences in a gene’s promoter. The neg-

ative log of these probabilities are then the features

used for SVM classification.

Background k-mer counts are obtained from RSA

(van Helden 2003; van Helden and Collado-Vides

1998) tools. The prior probability (f) for a k-mer to be

found in any position is calculated by dividing the total

number of counts in the background sequence set by

the total number of possible positions in the back-

ground set (here, the background set is the full set of

800 bp yeast promoters). Given this prior probability

for a k-mer, the expected number of occurrences of the

k-mer in any sequence can be calculated by

m ¼ f ðL� kþ 1Þ;

where L is the length of the sequence and k is the

length of the k-mer.

The goal is then to calculate the probability of

finding the observed number of counts by chance given

the expected number for a promoter. This can be done

simply by using the probability density function of the

Poisson distribution with mean m. This method for

calculating k-mer likelihoods is similar to the method

described in (van Helden 2004). Thus, for each gene, a

p-value will be calculated for each k-mer which rep-

resents the likelihood that the k-mer appears as many

times as observed by chance. A feature vector for a

gene is then the vector of probabilities describing all

k-mers.

13 Promoter melting temperature profile and promoter

Delta G profile (Table 2 items 24 and 25)

It is widely known that the initiation of transcription by

polymerase involves melting of the DNA double helix.

Several experiments have indicated that differences in

melting temperature (Tm) of DNA can influence the

rate of transcription by assisting or obstructing DNA

melting by polymerase (Flickinger 2005), and there is

evidence that torsional strain can play a role in duplex

destabilization and opening (Benham 1992). Further-

more, it has been shown that sites thought to be sus-

ceptible to stress-induced duplex destabilization

(SIDD) match well with gene regulatory regions

(Benham 1996). It is therefore possible that transcrip-

tion factors binding DNA may induce conformational

adjustments in the promoter which slightly alter the

stability of the helix. This change in stability may

indirectly change the frequency or likelihood of tran-

scription initiation. Indeed, recent models have shown

correlation between sites of local promoter melting,

regulatory sites, and initiation sites (Choi et al. 2004).

If certain transcription factors influence a target’s

expression by altering promoter stability, its targets

may contain a specific melting temperature or free-

energy signature in their promoter regions. This sig-

nature could potentially distinguish targets from non-

targets much as sequence motifs do. To include this

information in a classifier the EMBOSS (Rice et al.

2000) toolbox is used to calculate the melting and free

energy profiles of all yeast promoters using a sliding

window of 20 bp. Thus, for every 20 bp increment

along each upstream region, a Tm value and a Gibbs

free energy (DG at 25�C) is calculated. For these

calculations EMBOSS uses the nearest-neighbor ther-

modynamics from (Breslauer et al. 1986; Baldino

1989). The Tm profile and the free energy profile

become separate feature vectors for each gene, thereby

providing two additional datasets which can be used

for classification.

PSSM comparison

Using the same positive and negative sets as for the

SVM procedure, PSSMs are also used to make pre-
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dictions across the yeast genome at various score

thresholds to serve as a comparison to predictions

made by SVM. The threshold used for PSSM scanning

was adjusted for each TF such that the overall speci-

ficity is held constant at 0.95 to match the SVM results.

Other choices of threshold do not appear to improve

performance. Loosening the threshold begins to dra-

matically increase false positive predictions beyond a

prior of 0.2. By making detection stricter, false pre-

dictions are reduced along with sensitivity.

Results and discussion

After data pre-processing, the analysis begins with

the independent evaluation of each dataset on each

TF. Several kernel functions are tested and any

necessary parameters are optimized before a final

classifier is constructed (see ‘‘Methods’’). A sche-

matic of our procedure is given in Fig. 1. Once

parameter optimized classifiers are constructed for

each TF–dataset pair, all of the datasets, represented

by the optimized kernel matrices, are combined using

a weighting scheme based on their F1 scores. The

hyper geometric test is used to filter out datasets

which do not perform better than random (accept

p-value £ 0.05) for a particular TF. Accuracy esti-

mates for the combined classifier are made using a

final leave-one-out cross validation.

Three simple weighting schemes have been tried

(see ‘‘Methods’’), and the primary weight for a method

is the ratio of its F1 score with that of the best per-

forming method. The first scheme simply multiplies all

kernel matrices by their scaled F1 scores and sums

them. The second scheme squares the weights before

multiplying. This has the effect of decreasing weights

of poorly performing methods. Our third scheme uses

the squared tangent of the primary weight. This will

more severely penalize poor performers while boosting

the weights of the best methods (e.g., instead of weight

1, the best method will have a weight of 2.43).

We have been able to accurately classify the known

targets of many transcription factors in S. cerevisiae.

Figure 2 shows the performance of classifiers gener-

ated on each individual dataset (see also Supplemen-

tary Table 1). The combination of datasets performs

better than any individual type of data, but the best

single method achieves a sensitivity of 71% and a po-

sitive predictive value of 0.82. The combined datasets

are labeled STD for weighting based on simply the

scaled F1 measure, SQU for weighting based on

squared, scaled F1 measure, and TAN for weighting

based on the tangent squared F1 measure, as described

in ‘‘Methods’’. Other abbreviations can be found in

Table 2. Almost all methods perform much better than

random. The exceptions are GO term annotation and

phylogenetic profiles. For phylogenetic profiles this is

not unexpected, since only 30% of the yeast genome

has an established ortholog in the COG database. This

absence of data means that many positive examples

can no longer contribute to classification, leading to

poor performance for most TFs. The situation is similar

for GO term annotation, where many genes are poorly

annotated or have no known function.

The performance statistics mentioned in Fig. 2 are a

summary of those for all 104 combined classifiers. Since

Fig. 3 Percentage of TFs for
which each dataset is
significant (p £ 0.05).
Percentage of TFs is on the
left axis and datasets are
numbered along the bottom
with a key given to the right
of the diagram (see Table 3
for descriptions of method
abbreviations)
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there are 9,104 known positives for all regulators, a

sensitivity of 71% indicates that, considering all 104

classifiers, we recover 71% of the known data. This

means that classifiers for some TFs have much higher

sensitivities or PPVs while other classifiers perform no

better than random.

The most powerful individual data set uses k-mer

counts allowing 1-missmatch per k-mer. However, the

combination of all of the methods shows increased

sensitivity and precision over all individual methods.

The squared-tangent weighting function performs the

best overall, reaching a sensitivity of 73% and a posi-

tive predictive value of 0.89. Looking only at the top 20

TFs, we see a sensitivity and PPV of 88.2% and 0.9,

respectively. Our results show that combining datasets

increases sensitivity only incrementally over classifiers

built on simple k-mer counts alone, and that it pro-

duces a small improvement in positive predictive value.

Thus, combining methods results in the modest

reduction of false positive classifications.

The use of the hypergeometric distribution to test

the significance of a dataset for each TF allows us to

assess how useful a particular data type is for target

identification. Figure 3 plots the percentage of TFs for

which each dataset has been found to be significant at

p £ 0.05. Overall, sequence based methods (k-mer

counts, mismatch and gapped k-mer counts, and k-mer

likelihoods) show the best overall coverage, being

significant for almost all transcription factors. Struc-

tural descriptions of the promoter region differ greatly

in their usefulness, varying from DNA curve predic-

tion, useful for ~15% of TFs, to melting temperature

profiles and free energy values, significant for over

60% of TFs tested.

In work with genomic datasets having large numbers

of features (e.g., k-mer counts, expression measure-

ments) there is always an inherent risk of over-fitting

when the number of positives and negatives are rela-

tively small. To give a more practical portrayal of our

method and prevent an overly optimistic view of the

results, it is illuminating to compare our results with

those from classifiers obtained by training on random

data. Thus three random datasets have been con-

structed as controls and their results displayed in

Fig. 2. The first, abbreviated R is simply randomly

shuffled k-mer count data. The second (RH) is created

by shuffling a composite dataset composed of a random

10% selection of each individual dataset. The third

(RN) is a normally distributed random set of numbers

with mean of 0 and standard deviation of 1.

Although performance is much better than random

it is doubtful from these results that predictions

obtained by applying our classifiers to the entire genome

would yield truly reliable targets without further pro-

cessing. A simple classification of all potential targets

with our 104 classifiers returns, on average, ~800 new

targets for each TF. The conditional probabilities given

as output from Platt’s method (Platt 1999) allows the

selection of possible targets at a desired probability

threshold. For instance, one can select predictions for

which the probability of being a positive is greater than

0.99. In some of the examples below, the top targets

were selected in this fashion and compared to the full

set of known positive genes.

Fig. 4 Random vs. combined
classifiers. (a) Distribution of
F1 scores for normal random
classifiers, (b) the same
distribution on classifiers
made from 26 dataset
combinations for all TFs. (c)
Sensitivity distribution for
normal random classifiers and
(d) the sensitivity distribution
for the 26 dataset classifiers
for all TFs
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Another method to reduce the risk of over-fitting,

which we reserve for our future work, is application of

sophisticated dimension reduction techniques to dis-

cover significant features in different datasets based on

classifier performance. Feature selection and clustering

will allow the most relevant features from different

datasets to be retained while large portions of redun-

dant and irrelevant information are discarded. In some

cases this has been shown to increase classifier accu-

racy. In other cases, the reduction in the complexity of

the problem is worthwhile since other learning algo-

rithms, like k-nearest-neighbors or Bayes networks,

which are difficult to train on large feature sets, could

be compared efficiently on the smaller set of features.

Although it is clear that combination of data slightly

increases performance it is natural to ask whether such

complexity of data is worthwhile when k-mer based

data alone contributes a large portion of the classifi-

cation accuracy. Dimension reduction techniques can

help address this by potentially eliminating thousands

of features. This will make it simpler to classify new

sequences for which not all datasets are available since

only the most relevant features need be present. In

practice, it is likely that only a few data types will be

needed to make useful predictions for most applica-

tions. K-mer counts, k-mer overrepresentation, and an

improved measure of sequence conservation might

comprise a baseline dataset for further refinement.

The dynamics of the individual classifiers can also be

examined based on distributions of sensitivity and F1

score as compared to the random classifier. Figure 4a, c

show the distribution of F1 score and sensitivity,

respectively, for normal random data. Figure 4b, d

show the same distributions but for actual data (26

method combination with tangent weights). The sen-

sitivities and F1 scores for actual data have distribu-

tions heavily shifted to the right as opposed to those for

random data. Although the majority of classifiers are

comparatively good, several TFs have poor perfor-

mance, something which warrants further inspection.

There are four classifiers for which the F1 score and

sensitivity are zero (YHL020C, YNL139C, YER068W,

and YER161C). These factors have comparatively few

known targets compared to others. On average these

four TFs have 10 targets each (one of them has only

three positives) in their training sets compared to an

average of 88 targets for most regulators. This low

number of positive examples is likely the cause of the

poor performance. Figure 5 shows a plot of sensitivity

vs. TF sorted by increasing number of positives for all

classifiers. The general trend shows that classifiers

having more positives give better performance.

Biological insights—promoter melting

Beyond categorizing genomic datasets as useful or not

for classification purposes, the significance of a partic-

ular dataset has potential biological implications for a

TF. To see if this could be explored based on our

results, the factor YJR060W was chosen for further

examination, since the promoter melting temperature

profile is significant for this TF at p = 0.0037. Figure 6

shows a plot of the average promoter melting tem-

perature curve (calculated using a 20 bp window and

Fig. 5 Sensitivity as a
function of increasing
positives. Classifiers for each
TF were sorted according to
increasing number of
positives and the trend in
their sensitivity is shown.
Generally, classifiers with
more positive examples
perform better
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moving in steps of 1 bp) over all genes in yeast (solid

blue), the average curve for genes in this TF’s negative

set (dashed blue), the average in the TF’s positive set

(dashed red), and the average in the most significant 33

predicted targets of the TF (solid red). The top 33

targets have Platt conditional probabilities P (positive |

distance from separator) ‡ 0.99 and are obtained from

the predictions made using the combination of all

datasets, thus representing the best predictions we can

make for this TF. This is equivalent to choosing pre-

dictions significant with a p-value of 0.01. These most

significant targets contain 18 new predictions which are

not part of the original positive set.

Clearly, the positive and negative groups for this TF

contain average differences in promoter melting tem-

perature. This difference is magnified when only the

best targets are examined. The best 33 predictions have

a very different melting signature from the negative set

and the average yeast gene. A two-sample t-test was

used to find the significance of this difference from the

average curve. The purple over bar in Fig. 6 shows the

window positions where the best targets have an

average value which is significant at p £ 0.01. Almost

all positions show a significant increase in melting

temperature, with the exception of several positions

proximal to the transcription start site. Considering

that the transcription machinery must unwind the helix

in this region, it is not unexpected that the melting

temperature here would be smaller, as this would lower

the activation energy needed to dissociate the strands.

As reviewed in ‘‘Methods’’, there is ample support

for the idea that melting temperature can influence

transcription (Flickinger 2005), and that torsional

strain can affect the stability of the DNA duplex

(Benham 1992). Experiments have also shown that

sites susceptible to this kind of destabilization correlate

well with regulatory regions (Benham 1996). In light of

the high melting temperature of promoter targets of

YJR060W, it is possible that duplex destabilization

plays a role in regulation by this TF. Indeed, experi-

ments have shown that YJR060W functions largely in

recruiting chromatin remodelling factors to proximal

promoters (Kent et al. 2004). The exact mechanism for

this recruitment is not fully understood, but it is

required for transcription at some promoters and

complementary to additional binding factors at others

(Kent et al. 2004). In any case a possible hypothesis is

that duplex stability is an important mechanism for

regulation at these promoters and that YJR060W

binding affects this stability either by conformational

change induced by its binding or induced by the

recruitment of chromatin remodelling factors. The

conformational changes may alter the torsional strain

on the DNA and thus affect the melting temperature

prior to transcription.

Biological insights—binding site detection

Our results demonstrate that there is clearly a signal

identifying ChIP–chip positives from other genes.

Other groups have had less success confirming the

validity of the ChIP–chip data, and this has led some to

consider that as many as 50% (Simonis et al. 2004) to

60% (Gao et al. 2004) of the targets produced by

Fig. 6 Melting temperature
curves YJR060W. Using a
20 bp window for DNA
melting temperature
calculation, the temperature
plots are presented for the
average over all 5571 yeast
genes (solid blue), positive
targets for YJR060W (dashed
red), negatives for YJR060W
(dashed blue), and high
confidence targets (solid
red—P(true|distance to
separator) ‡ 0.99) determined
using Platt’s method for
probability assignment to
SVM output. Under the graph
is an indicator displaying hits
to the YJR060W consensus
sequence in the top 33 targets.
Consensus hits are distributed
throughout the 800 bp
upstream space

Machine learning for regulatory analysis and transcription factor 39

123



ChIP–chip are false positives in the assay. The fact that

the high throughput results are chosen to be significant

with p £ 0.001 indicates that the transcription factors

do in fact bind their targets. It is certainly possible that

this binding does not always translate into changes in

gene expression, that the changes are not large enough

to be considered significant, or perhaps that the con-

ditions under which binding would result in expression

change were not tested. In any case, our classifier

appears to pick up the information necessary to identify

target genes.

To find this signal we have looked at the results of

various individual datasets and extracted the attributes

which contribute most to a transcription factor’s clas-

sifier. Support vector machines are often considered a

‘‘black box’’ method, since their results are not as

readily interpretable as, for instance, the probability

assessment of Bayesian classifiers. Nevertheless, the w

vector described above can give an indication of which

features in the data are important to the classification.

Features whose components wi are large correspond to

dimensions in feature space where positives and neg-

atives are more widely separated. Thus by examining a

single dataset, e.g. k-mer counts, it is possible to

determine the k-mer(s) most responsible for differ-

ences between positives and negatives. To this end,

w-vectors from the k-mer count dataset have been

calculated for each linear TF classifier and examined to

determine which k-mers had the largest weights. We

compare these k-mers to known binding sites for each

factor. Results for the best 10 TFs can be seen in

Table 3, where the highest ranked k-mers are manually

assembled to show their correspondence with known

binding motifs. In most cases the k-mers with the

highest weights match closely the reported binding site

for the TF, showing that the algorithm is choosing

meaningful features for classification. For example, the

DNA binding protein Cep1 is known the bind the

consensus TCACGTG and regulate cell cycle and

stress response genes. The highest weighted k-mer in

the classifier is CACGT, and the top 4 k-mers all

overlap precisely with the known site (CACGT,

CGTG, TCACG, TCACGT).

Biological insights—microarray expression

The ability to identify the primary conditions under

which a transcription factor exerts control would be

a critical component of any focused study of gene

regulation. As we have seen, the w vector generated

on a dataset indicates which of its components are

most important for discriminating targets. In the case

of gene expression classifiers, w elucidates which

expression conditions are discriminatory. Intuitively,

Fig. 7 Expression plot of Fhl1 targets over top 25 discriminative
conditions. Average expression is plotted over all 5571 yeast
genes (solid blue), over the negative set for Fhl1 (dashed blue),
the positive targets (dashed red), and the most significant targets
(solid red), P(true | distance from classifier) ‡ 0.99. The best
targets have expression significantly different than the average
or negative genes. The chosen expression conditions, ranked by

w-vector from the expression based classifier, are shown under
the graph with numbers indicating the position of the conditions
in the graph. These conditions make sense since Fhl1 is regulated
by the TOR signalling pathway, which is blocked by rapamycin.
There is also some support in the literature for TOR having a
role in meiosis and stress response
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these are the conditions in which we would expect to

see differential regulation of true targets. Given the

predictions made using the combination of all

methods, and the w obtained from the linear classi-

fier built on expression data alone, we can see

whether the predicted targets have differential regu-

lation, and identify conditions where the TF is likely

to act.

By the hypergeometric test, expression data is a

significant predictor (p = 6.12e – 14) of targets for

Fhl1, a forkhead-like TF known to be involved in

rRNA processing and ribosomal protein gene expres-

sion. The w for this TF’s classifier from expression data

has been calculated and sorted to determine the con-

ditions having the highest weight. Figure 7 shows a plot

of expression values over the top 25 conditions for the

average yeast gene (solid blue), the average for genes

in Fhl1’s negative set (dashed blue), the average in the

positive set (dashed red), and the average in the most

significant (P(true) ‡ 0.99) 48 targets of this TF (solid

red).

For 23 of the top 25 conditions the highly significant

targets show expression which is different from both

the average and the negative sets (t-test p-value

£ 0.01). Most importantly, the best 10 ranked condi-

tions contain six where yeast cells were treated with

rapamycin and two involving meiosis/sporulation. This

result is satisfying since rapamycin treatment specifi-

cally inhibits the Target of Rapamycin (TOR) signal-

ling pathway, which is known to activate ribosomal

protein expression as well as regulate several other

pathways in yeast. Inhibition of TOR directly prevents

Fhl1 from binding at promoter sites, thereby down-

regulating expression of ribosomal protein genes

(Martin et al. 2004), explaining why Fhl1 targets show

differential expression in these experiments. Further-

more, although Fhl1 has not been directly implicated in

meiosis, TOR pathway kinases are required for meiosis

(Zheng and Schreiber 1997), indirectly suggesting that

Flh1 might be involved. This is a reasonable suggestion

since Fhl1 has been shown to alter its activity in

response to factors (mainly Sfp1 which is also under

TOR control) controlling progression to Start in the

yeast cell cycle. Thus the most highly ranked experi-

ments seem to correlate well with the real biological

roles of the TF, indicating that the SVM can correctly

rank important experimental conditions. Our method

can identify differential regulation as an important

predictor of target genes (hypergeometric test) and use

the SVM-based classifier to make testable hypothesis

about which conditions show biological effects of

transcription factor activity.

Biological insights—PSSM comparison

We have found that support vector classification per-

forms better than a simple weight matrix scan, and the

combination of 26 methods outperforms any one

method by itself. In some sense, a direct comparison

with these PSSMs is not entirely fair since a majority of

the weight matrices used here were created by motif

discovery procedures rather than directed experimen-

tation (such as DNA footprinting). Also, carefully

constructed variants of PSSMs, which may take into

Fig. 8 SVM vs. PSSM scan.
Left: PSSMs for 104 TFs
scanned against positive and
negative sets. Overall
specificity is held constant to
0.95 to match that of the SVM
results. Right: Overall results
for SVM classifiers trained on
weighted combination of 18
datasets
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account motif conservation in multiple species or

interdependence of bases, can offer state of the art

motif detection. Unfortunately, sufficient data is not

always available to build such detailed models. The

purpose of our comparison is simply to highlight the

improved performance of classification methods rela-

tive to the commonly available binding site models.

Figure 8 shows the result of a comparison between

simple PSSM scanning using the MotifScanner algo-

rithm and predictions by SVM on combined data. The

leftmost grouping is a result from scans using PSSMs

for all 104 TFs against the positive and negative sets on

which the SVMs were trained. The MotifScanner score

threshold was chosen individually for each TF so that

the specificity on the training set was held constant at

0.95. This makes comparison to the SVM classifiers

more straightforward as overall specificity for the

SVMs is 0.95. The grouping on the right restates the

performance of the SVMs with 26 combined datasets

on the full set of positives. The SVM classifiers out-

perform PSSMs in the number of detected positives. It

is clear that loosening the thresholds for the PSSMs

would allow for better coverage but degrade perfor-

mance by increasing the number of false positive pre-

dictions. Support vector machine classifiers offer a

good balance between sensitivity and false prediction.

Biological insights—pathway control

Finally, we have applied the combined classifier for

each TF to all promoters in the yeast genome in order

to expand the known binding repertoire of each factor.

On average, each classifier produced approximately

884 new targets. Although it is unlikely that this set is

free of false positives, examining the data in the con-

text of biochemical pathways can shed light on signif-

icant predictions, which can quickly elucidate new sites

which are good candidates for further study.

Gcn4 is a transcription factor in yeast known to

control genes in the amino acid biosynthetic pathway

(Hinnebusch 1992), and SVM predictions match well

with the known biology of Gcn4 control mechanisms.

The final classifier for this TF has an F1 score of 0.89,

sensitivity of 0.86, and PPV of 0.92. This TF is a master

regulator which has known targets in at least 12 amino

acid biosynthetic pathways and has been shown by

gene expression to induce at least 1/10th of the yeast

genome (Hinnebusch and Natarajan 2002). Figure 9

highlights some known targets of Gcn4 in methionine/

threonine biosynthesis in the aspartate family pathway.

Branch-points from this pathway can ultimately lead to

the amino acids methionine, threonine, lysine, and

isoleucine. This group is of particular interest to

humans since they are essential and not synthesized in

the human metabolism. Gcn4 is known to regulate the

genes Hom3, Thr1 and Thr4 leading to threonine,

lysine, and isoleucine. However, predictions by SVM

indicate it also directly targets committed steps

of methionine biosynthesis by binding Met2, Met17,

and Met6, which are interesting targets for further

study.

Previously Gcn4 was known to indirectly influence

synthesis of methionine by activating Met4, a tran-

scription factor specific to methionine biosynthesis and

sulphur metabolism (Mountain et al. 1993). It is feasi-

ble that regulation of these enzymes by both Gcn4 and

target Met4 represents a transcriptional feed-forward

loop. Such loops have been described before and

Fig. 9 GCN4 and amino acid
biosynthesis. Predictions by
SVM match well with the
known biology of Gcn4
control mechanisms. Pathway
map generated taken from
the Pathway Tool Omics
Viewer at SGD (Christie
et al. 2004)
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can be advantageous to an organism by exhibiting

sign-sensitive delay, since it may be useful to have a

quick response when shifting to an OFF state and a

slow response when turning back ON (Mangan et al.

2003).

The Rap1 DNA binding factor is a widely known

regulator in the cell cycle, acting as a repressor or

activator depending on its context. Rap1 is also a key

element in the structure of yeast telomeres, where it

plays a role in telomere silencing (Pina et al. 2003). In

a seemingly contradictory role, Rap1 has also been

shown to regulate several glycolytic enzymes, as shown

in Fig. 10. The specificity of this glycolytic regulation is

dependent on a second factor, Gcr2, which binds to the

Rap1/Gcr1 complex but does not contact DNA directly

(Deminoff and Santangelo 2001). New predictions by

SVM in the pathways of sugar metabolism show good

correspondence with expectations for Rap1 (Fig. 10).

Most interestingly, the new predictions include both

isoforms of the enzyme phosphofructokinase. This

step, where fructose-6-phosphase is converted into

fructose-1,6-bisphosphate, is the crucial step in sugar

breakdown where most metabolic flux through the

pathway is controlled (Zubay 1996).

Also of significance is the prediction that Rap1

regulates malate dehydrogenase in the TCA cycle.

Malate dehydrogenase is unique in the TCA cycle in

that it has a very small equilibrium constant, meaning

that the forward reaction from malate to oxaloacetate

is highly unfavorable. This is generally overcome dur-

ing aerobic growth since the subsequent reaction is

extremely favorable (large free energy release). How-

ever, in the absence of oxygen the cell still requires

certain intermediates which can now not be made in

the normal way. Running the malate dehydrogenase

reaction in reverse, a favorable direction, can provide a

way to synthesize these intermediates (Zubay 1996).

Rap1 is already known to regulate the conversion of

acetaldehyde to ethanol via alcohol dehydrogenase,

and the possible complementary control of malate

dehydrogenase suggests a possible role for Rap1 in

regulation of fermentative growth.

Conclusions

We have seen that support vector machines can accu-

rately classify transcription factor binding sites using a

Fig. 10 Rap1 and glycolytic/
TCA cycle reaction.
Glycolysis leading to acetate
and ethanol are shown. The
gray box on the left contains a
pathway overview of
glycolysis, fermentation and
the TCA cycle, where red
connections are known and
yellow are predicted. Rap1
can be seen to regulate key
control points in glycolysis
and the TCA cycle. Pathway
map generated taken from
the Pathway Tool Omics
Viewer at SGD (Christie
et al. 2004)
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wide range of genomic data types. Combining various

information sources can reduce false positives and

incrementally increase sensitivity, while post-process-

ing of the data to assign posterior probabilities allows

the selection of high confidence targets. Although the

maximal margin of SVMs is resistant to over-fitting, it

can be further abrogated by selecting the best features

for classifier construction. Feature selection and clus-

tering techniques can be used in future work to refine

predictions and more efficiently compare the SVM to

other learning machines (KNN, Bayes, and Neural

Network) which do not easily handle high dimensional

or correlated data.

Based on k-mer data, SVMs appear to be isolating

appropriate features for classification where many

known transcription factor binding sites overlap with

highest ranked k-mers. Examination of melting tem-

perature classifiers for YJR060W demonstrates the

unique biological features of targets for that TF. Simi-

larly, expression-based classifiers for Fhl1 show the

conditions under which Fhl1 acts on its targets, pointing

the way to testable hypotheses supported by data in the

literature. Finally, targets of Gcn4 and Rap1, when put

into the context of biological pathways, correspond well

to published experiments and show the effectiveness of

integrated classifiers for building system-wide gene

regulatory networks. Future work will then involve

development of methods to discover biologically

significant features in different datasets based on clas-

sifier performance and intelligent dimension-reduction

techniques to reduce noise and improve accuracy.
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