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Abstract: The disposal of dyes and organic matter into water bodies has become a significant
source of pollution, posing health risks to humans worldwide. With rising water demands and
dwindling supplies, these harmful compounds must be isolated from wastewater and kept out of
the aquatic environment. In the research presented here, hydrothermal synthesis of manganese-
doped zinc ferrites’ (Mn-ZnFe2O4) nanoparticles (NPs) and their nanocomposites (NCs) with sulfur-
doped graphitic carbon nitride (Mn-ZnFe2O4/S-g-C3N4) are described. The samples’ morphological,
structural, and bonding features were investigated using SEM, XRD, and FTIR techniques. A two-
phase photocatalytic degradation study of (0.5, 1, 3, 5, 7, 9, and 11 wt.%) Mn-doped ZnFe2O4 NPs
and Mn-ZnFe2O4/(10, 30, 50, 60, and 70 wt.%) S-g-C3N4 NCs against MB was carried out to find the
photocatalyst with maximum efficiency. The 9% Mn-ZnFe2O4 NPs and Mn-ZnFe2O4/50% S-g-C3N4

NCs exhibited the best photocatalyst efficiency in phase one and phased two, respectively. The
enhanced photocatalytic activity of the Mn-ZnFe2O4/50% S-g-C3N4 NCs could be attributed to
synergistic interactions at the Mn-ZnFe2O4/50% S-g-C3N4 NCs interface that resulted in a more
effective transfer and separation of photo-induced charges. Therefore, it is efficient, affordable, and
ecologically secure to modify ZnFe2O4 by doping with Mn and homogenizing with S-g-C3N4. As a
result, our current research suggests that the synthetic ternary hybrid Mn-ZnFe2O4/50% S-g-C3N4

NCs may be an effective photocatalytic system for degrading organic pollutants from wastewater.

Keywords: integration; charge separation; degrading organic pollutants; manganese; hydrothermal
technique
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1. Introduction

Water contamination has attracted much attention from researchers since dye emis-
sions from various sectors pose dangers to the public’s health and environment. Organic
compounds, dissolved and suspended particles, and heavy metals are present in the com-
plex effluents produced by the printing and textile dyeing industries [1]. About 15–50% of
the azo dyes used during the dyeing process do not attach to the fabric and are washed
away with the wastewater. This effluent is employed in irrigation processes, although it is
terrible for crop growth and germination. Methylene blue (MB) is a basic cationic dye used
in different sectors. It makes people more prone to cyanosis, tissue necrosis, shock, jaundice,
vomiting, and a faster heartbeat. [2,3]. The wastewater must, therefore, unquestionably be
cleaned of these colors. To treat contaminated effluents, a variety of chemical, biological,
and physical methods have been used [4]. One of the green technologies for the treatment
of industrial wastewater is the photocatalytic destruction of organic contaminants. Due to
its incredible effectiveness and low cost, scientists have shown that photocatalytic decom-
position is a suitable alternative strategy for the effective decomposition of pollutants [5,6].
The employment of alternative techniques to eliminate by-products is not required in pho-
tocatalysis procedures. Numerous nanostructured semiconductor photocatalysts have been
explored, including TiO2, ZnO, CuO, NiS, SnO2, ZrO2, and WO3. Due to their significant
band gaps and quick electron-hole recombination, these photocatalysts have limitations in
visible-light photocatalysis [7,8].

Therefore, creating innovative visible-light-induced photocatalysts with higher activity
has been a hot topic for a long time. Due to the superior cation and anion adsorption
abilities, low band gap energy, and reduced electron-hole recombination, ferrite (Fe2O4)
nanoparticles have particular relevance among photocatalysts [9]. These ferrite NPs have
prospective applications in wastewater treatment, biomedicine, electrical devices, energy
storage, EMR shielding, and the recording medium. They have a band gap of about 1.9 eV
and are highly stable. They are also less harmful and inexpensive, have strong electronic
conduction, are recyclable, and are environmentally benign. Their photocatalytic activity is
unfortunately constrained for practical use by low quantum efficiency [9–11].

Many studies have shown that doping ZnFe2O4 with appropriate metal ions and
combining it with a suitable semiconductor material improve optical and photocatalytic
characteristics. Patil et al. used the co-precipitation approach to manufacture Gd3+-doped
ZnFe2O4 nanoparticles, demonstrating enhanced MB degradation of roughly 99% com-
pared to pure ZnFe2O4 (95% degradation in 240 min.) [12]. According to Ajithkumar et al.,
yttrium-doped zinc ferrite made by solution combustion showed 95% MB degradation in
180 min. The photocatalytic efficiency of Y-doped ZnFe2O4 is greater than that of pure
zinc ferrite [13]. Compared to ZnFe2O4, cobalt-doped zinc ferrite more effectively oxidized
methylene blue under visible light. Numerous studies have found that ZnFe2O4 has a
finite band gap energy and, as a result, may combine with S-g-C3N4 to create an efficient
heterojunction [14]. Similarly, Savunthari et al. constructed (Cu, Bi) codoped ZnFe2O4
nanoparticles via the solution combustion method. The codoped NPs showed an enhanced
degradation of bisphenol A compared to undoped NPs [15].

The g-C3N4 semiconductor has demonstrated remarkable photocatalytic competency
under visible light due to its advantageous traits, such as excellent stability and a lowered
band gap energy that boosts its capacity to absorb visible radiations [16,17]. However, the
rapid recombination of photoinduced e−/h+ pairs in g-C3N4 makes it inappropriate for use
as a photocatalyst [18]. Consequently, many attempts have been undertaken to overcome
this constraint, including vacancy, heterojunction creation, and combining the g-C3N4 with
other metal oxides and nonmetals such as sulphur [19–22]. S-doping modifies the band
gap of g-C3N4 and improves the mobility and separation of the e-h pairs by stacking its 2p
orbitals on the VB of bulk g-C3N4 [23]. A simple molten salt approach was successfully
used by Keke et al. to produce sulfur-doped g-C3N4. The photocatalytic performance of
S-doped g-C3N4 toward methylene blue and tetracycline was 10 and 20 times that of bulk
g-C3N4 [24]. Similarly, Xin et al. successfully synthesized highly active S-doped g-C3N4
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by employing thiourea and melamine as the precursors. The synthesized S-doped g-C3N4
exhibited remarkable photocatalytic efficacy against rhodamine B (RhB) [25]. Basaleh used
soft and hard templates to create ZnFe2O4/S-g-C3N4. The photocatalytic efficiency of
ZnFe2O4/S-g-C3N4 against acridine orange was 4.4 and 6.3 fold that of ZnFe2O4 and bulk
g-C3N4, respectively [26].

Thus, owing to the improved charge separation abilities, it is suggested to produce a
metal-ZnFe2O4/S-g-C3N4 heterojunction to realize a significant photocatalytic performance.
In this study, hybrid Mn-ZnFe2O4/S-g-C3N4 nanocomposites were synthesized successfully
via a surfactant (PEG)-assisted hydrothermal process, and its efficiency for removing MB
under sunlight was investigated. In step one, the manganese-doped zinc ferrite (Mn-
ZnFe2O4) nanoparticles were synthesized with varying chromium percentages (0.5, 1, 3,
5, 7, 9, and 11 wt.%). The effect of Mn2+ substitution on the photocatalytic properties of
zinc ferrite was observed. The 9% Mn-ZnFe2O4 sample manifested the best absorption
of solar light and degradation efficiency. In step two, the 9% Mn-ZnFe2O4 nanoparticles
were homogenized with diverse concentrations of S-g-C3N4 (10, 30, 50, and 70 wt.%)
to produce Mn-ZnFe2O4/S-g-C3N4 with enhanced photocatalytic activity. The 9% Mn-
ZnFe2O4/50% S-g-C3N4 nanocomposite executed the best photocatalytic activity compared
to pure ZnFe2O4, 9% Mn-ZnFe2O4, and S-g-C3N4. The results depicted that the enhanced
photocatalytic activity of the 9% Mn-ZnFe2O4/50% S-g-C3N4 nanocomposite was because
of the improved absorption of sunlight and better separation of e-/h+ pairs between
Mn-ZnFe2O4 and S-g-C3N4. To our knowledge, the synthesis of Mn-ZnFe2O4/S-g-C3N4
heterojunctions via the hydrothermal approach has never been used.

2. Experimental
2.1. Chemicals

Thiourea (CH4N2S), polyvinyl pyrrolidone, methylene blue (C16H18ClN3S), zinc sul-
phate heptahydrate (ZnSO4.7H2O), iron (III) chloride anhydrous (FeCl3), manganese (II)
chloride (MnCl2), and sodium sydroxide (NaOH) were acquired from Merck and used.

2.2. Synthesis of Chromium-Doped Zinc Ferrites

A series of Mn-doped zinc ferrites (Mn-ZnFe2O4) with varying manganese percent-
ages (0.5, 1, 3, 5, 7, and 9 wt.%) were produced using a surfactant-assisted hydrothermal
method [6]. For the preparation of 0.5% Mn-ZnFe2O4, three solutions, A, B, and C, were
made preceding the synthesis. The solutions, A, B, and C, were made by dispersing 0.010 g
of MnCl2.4H2O, 1.865 g of ZnCl2.7H2O, and 2.435 g of FeCl3 in 50 mL of deionized water.
Then, these solutions (A, B, and C) were intermixed, and 10 mL of PVP was added as a
surfactant to prevent the aggregation of nanoparticles. The pH of the solution was adjusted
to 11 by adding NaOH; next, the suspension was loaded to a Teflon-lined autoclave. The
autoclave was heated to 175 ◦C for 10 h and then cooled to ambient temperature. The
resultant precipitates were separated by filtering, rinsed with deionized water and pure
ethanol, and then dried at 85 ◦C in an oven. Other percentages of Mn-ZnFe2O4 (0, 1, 3, 5, 7,
and 9 wt.%) were also synthesized using the same method [27].

2.3. Synthesis of S-g-C3N4

Thiourea was heated to 560 ◦C for 6 h at a rate of 5 ◦C per minute in a muffle furnace
to form S-g-C3N4. After cooling to ambient temperature, the resulting yellowish S-g-C3N4
was stored [17,28].

2.4. Synthesis of Mn-ZnFe2O4/S-g-C3N4

Using a surfactant-assisted hydrothermal technique, 9% Mn-ZnFe2O4 was combined
with various amounts of S-g-C3N4 (10, 30, 50, 60, and 70 wt.%) to produce a range of
Mn-ZnFe2O4/S-g-C3N4 nanocomposites. For the preparation of 9% Mn-ZnFe2O4/10%S-g-
C3N4, firstly, four solutions, A, B, C, and D, were made by dispersing 0.185 g of manganese
chloride in 50 mL of water (Solution A), 1.706 g of zinc chloride in 50 mL of water (Solution
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B), 2.435 g of FeCl3 in 50 mL of water (Solution C), and 0.18 g of S-g-C3N4 in 50 mL of
water (Solution D). Then, three solutions, A, B, and C, were added to solution D and
homogenized for 1 h along with the addition of 10 mL of PVP as a surfactant. The following
steps were the same as for the synthesis of Mn-ZnFe2O4 NPs. Moreover, the same process
was repeated to synthesize the 9% Mn-ZnFe2O4/S-g-C3N4 containing 30, 50, 60, and
70 wt.% of S-g-C3N4. The schematic diagram (Scheme 1) depicts the synthesis procedure
for Mn-ZnFe2O4/S-g-C3N4 NCs, and Table 1 lists the precise composition.
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Scheme 1. Schematic depiction for the production of Mn-ZnFe2O4/S-g-C3N4.

Table 1. Composition of the synthesized Mn-ZnFe2O4/S-g-C3N4 composites.

Sr. No. Nanocomposites Manganese Chloride Zinc Chloride Ferric Chloride S-Doped g-C3N4

1 Mn-ZnFe2O4 0.185 g 1.706 g 2.435 g -

2 S-g-C3N4 - - - 0.52 g

3 9% Mn-ZnFe2O4/10S-g-C3N4 0.185 g 1.706 g 2.435 g 0.17 g

4 9% Mn-ZnFe2O4/30S-g-C3N4 0.185 g 1.706 g 2.435 g 0.52 g

5 9% Mn-ZnFe2O4/50S-g-C3N4 0.185 g 1.706 g 2.435 g 0.87 g

6 9% Mn-ZnFe2O4/70S-g-C3N4 0.185 g 1.706 g 2.435 g 0.94 g

2.5. Photocatalytic Activity

The photocatalytic activity of zinc ferrites, Mn-doped zinc ferrites, sulphur-doped
graphitic carbon nitride, and nanocomposites was studied under solar light irradiation. The
aqueous solution of an organic dye, methylene blue, was used as the standard contaminant.
Then, 0.2 g of each photocatalyst was added to the beaker in which 100 mL of MB solution
(10 mg L−1) was added and allowed to stir in the dark for about 45 min to attain the
adsorption–desorption equilibrium. After that, the suspension was positioned under solar
light in an open atmosphere, and aliquots of 5 mL were collected after every 30 min. A
UV-Vis spectrophotometer was used to evaluate the photocatalytic activity of the collected
samples after centrifugation [29].
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2.6. Characterization

The structure of the synthesized catalysts was determined by applying XRD (Bruker
AXS, D8-S4, Madison, WI, USA) using Cu Kα radiation (k = 1.54056 Å) at 40 kV and 30 mA
at room temperature, whereas elemental content and morphology were found using SEM-
EDS (Hitachi, S-4800,Tokyo, Japan). The UV-visible and photocatalytic absorption spectra
were measured using a UV-Vis-NIR spectrophotometer (UV-770, Jasco, Tokyo, Japan) from
800 nm to 200 nm wavelengths. Using a transmission electron microscope, the surface
morphologies of the photocatalysts were examined (TEM, JEOL-JEM-1230, Peabody, MA,
USA). FTIR spectrometers measured functional groups in the 4000–400 cm−1 range with a
resolution of 1 cm−1 (Perkin 400 FTIR, Waltham, MA, USA).

3. Results and Discussion
3.1. TEM and EDX Analyses

The size, shape, and distribution of the particles and the elemental components of the
as-prepared materials were disclosed by TEM, SEM, and EDX spectra. Due to their large sur-
face area due to their nanoscale size and solid magnetic interaction, undoped ZnFe2O4 and
Mn-doped ZnFe2O4 nanoparticles were observed to be crystalline and included agglomer-
ated, irregular, spherical nanoparticles with an average size of 20–38 nm (Figure 1a,b). The
proper exposure to different hosts made possible by the efficient synthesis of Mn-ZnFe2O4
at the nanoscale also guaranteed the single-domain character of the particles for the increase
in magnetic remanence and decrease in magnetic coercivity. The S-g-C3N4 specimen had
some creases and a beehive-like shape (Figure 1c,d). This supramolecular complex was
synthesized using a mixture of three different precursors, and the pyrolysis of the complex
resulted in the formation of wrinkles. These wrinkles facilitated high interfacial contact
between S-g-C3N4 and other components, which improved the transfer and separation
of charge carriers in the NCs. The 9% Mn-ZnFe2O4/50% S-g-C3N4 NCs’ TEM pictures
showed that several Mn-ZnFe2O4 nanoparticles seemed to be incorporated in the S-g-C3N4
matrix. As shown in Figure 1e, it was clear that S-g-C3N4 had firmly encircled several
Mn-ZnFe2O4 NPs. The 9% Mn-ZnFe2O4/50% S-g-C3N4 NCs had sheet-like clusters with O,
Zn, Fe, C, N, and Mn as their primary components, according to EDX mapping in Figure 1f,
for the 9% Mn-ZnFe2O4/50 % S-g-C3N4 binary hybrid photocatalyst.

3.2. FTIR Analysis

In the wave number range of 4000–450 cm−1, the FTIR spectra of the produced photo-
catalysts were compared (Figure 2). The observed FTIR spectrum of ZnFe2O4 confirmed the
presence of the M-O bond at 879 cm−1 and the absence of all functional groups. The peak
at 3335 cm−1 was due to the O-H bond stretching while the peak at 1696 cm−1 was due to
the bending of the O-H bond (Figure 2a) [5]. When the FTIR spectrum of 9% Mn-ZnFe2O4
was compared to pure ZnFe2O4, there was little difference in the peak positions. The
effective production of Mn-doped ZnFe2O4 was confirmed by the modest shift in peak
positions (Figure 2b) [30,31]. The FTIR spectrum of S-g-C3N4 exhibited a broad band at
3178 cm−1 due to O-H bond stretching; the peaks between 1500 and 2000 cm−1 were due
to the stretching vibrations of C=N, and peaks between 1500 and 1000 cm−1 were due
to C-N bond stretching, as shown in Figure 2c [32]. A peak at 805 cm−1 indicated the
triazine unit. The FTIR spectrum of the composite contained the peaks corresponding to
both Mn-ZnFe2O4 and S-gC3N4, signifying that the Mn-ZnFe2O4/S-g-C3N4 composite was
formed successfully (Figure 2d) [33–36].
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3.3. XRD Analysis

The X-ray diffractogram of the samples of ZnFe2O4, 9% Mn-ZnFe2O4, S-g-C3N4, and
9% Mn-ZnFe2O4/50% S-g-C3N4 is shown in Figure 3. In the XRD spectra of pure ZnFe2O4,
seven peaks were observed with crystal facets (220), (311), (400), (422), (511), (440), and
(533) at 2θ = 30◦, 34.8◦, 42.6◦, 53◦, 56◦, 61.8◦, and 73.2◦, which fitted well with the pattern
of standard zinc ferrites with JCPDS file 22-1012 [12,30,31,37,38]. The distinctive peaks of
zinc ferrites in the XRD spectra of Mn-ZnFe2O4 showed that the structure of zinc ferrite
does not significantly alter when Mn metal is doped into it. Two characteristic peaks
were detected in the XRD pattern of S-g-C3N4; the crystal plane (002) was attributed to
the interlayer assembling of aromatic systems, and the plane (100) was ascribed to the
inter-planar arrangement of aromatic systems (JCPDS file # 00-087-1526) [39,40]. The crystal
phase of Mn-ZnFe2O4 remained intact after coupling with S-g-C3N4, and the (002) crystal
plane of S-g-C3N4 was indicated in the composite systems. In 9%Mn-ZnFe2O4/50% S-g-
C3N4 composites, owing to the high crystallinity of Mn-ZnFe2O4, the characteristic peaks
of Mn-ZnFe2O4 were prominent. The emergence of the distinct peaks of Mn-ZnFe2O4 and
S-g-C3N4 in composites demonstrated the successful production of Mn-ZnFe2O4/S-g-C3N4
composites [34,35,41,42].
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3.4. Photocatalytic Degradation Study

The photocatalytic activity of synthesized samples was detected in two phases. The
photocatalytic activities of ZnFe2O4 and Mn-ZnFe2O4 NPs were first examined in the
presence of sunlight using an aqueous methylene blue solution (Figure 4a). The rate of
dye disintegration was monitored using a UV-Vis spectrophotometer with a wavelength
range of 200–800 nm (Figure 4a). According to the degradation contours (Figure 4b) and
percentile degradation graphs (Figure 4c), when we increased the Mn+2 doping (0.5 to
9 wt.%), there was a gradual improvement in the photocatalytic activity of Mn-doped
zinc ferrite nanoparticles. Since the Mn+2 doping decreased the band gap of ZnFe2O4
and facilitated the enhanced generation of the e−/h+ pair, the photocatalytic efficiency of
Mn-ZnFe2O4 was better than ZnFe2O4. It was observed that the insertion of various metal
ions into the pure ferrite can affect its optical and structural properties, which can enhance
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the ferrite’s photocatalytic ability [43]. When the concentration of doped Mn+2 ions was
increased beyond this point (<9 wt.%), the photocatalytic activity of MnxZn1−xFe2O4 NPs
was reduced (Figure 5a,b). This Mn (9 wt.%) is the optimum doping concentration for
Mn-ZnFe2O4 NPs. The observed degradation efficiencies of Mn-ZnFe2O4 catalysts with
different manganese concentrations (0, 0.5, 1, 3, 5, 7, and 9 wt.%) were 71%, 78%, 81%,
86%, 92%, 91%, 95%, and 89%, respectively, after 210 min of sunlight irradiation. Thus, the
9% Mn-ZnFe2O4 NPs exhibited the maximum photocatalytic efficiency compared to other
nanoparticles (Figure 4c).

In the next phase, the Mn-ZnFe2O4/S-g-C3N4 NCs were produced by mixing 9%
Mn-ZnFe2O4 NPs with diverse amounts of S-g-C3N4 (as given in Table 1. Then, the
photocatalytic activity of the produced NCs was checked every 15 min. The samples were
placed in the dark to establish adsorption–desorption equilibrium between the dye and the
fabricated NCs before sunlight exposure, as described by Mudassar et al. [44]. According to
Figure 5b, the photocatalysts absorbed modest amounts of MB. After that, the samples were
exposed to sunlight, and the 9% Mn-ZnFe2O4/50S-g-C3N4 NCs exhibited the largest dye
degradation relative to the other samples (Figure 5a). It was evident from the degradation
contours (Figure 5a) and percent degradation plots (Figure 5b) that the dye degradation
increased with an increasing S-g-C3N4 concentration in the Mn-ZnFe2O4/S-g-C3N4 NCs up
to 50% and then dropped for ZnFe2O4/S-g-C3N4 NCs containing S-g-C3N4 contents >50%.
After 120 min of exposure to sunlight, the measured degradation efficiencies of S-g-C3N4
and 9% Mn-ZnFe2O4/(0, 10, 30, 50, 60, and 70 wt.%) S-g-C3N4 NCs were 51%, 54%, 65%,
89%, 100%, and 85%, respectively. Better charge separation and transportation via Mn-
ZnFe2O4 and S-g-C3N4 coupling, as well as improved visible light absorption due to
Mn doping in ZnFe2O4, might be responsible for the enhanced photocatalytic efficiency
of 9% Mn-ZnFe2O4/50% S-g-C3N4 NCs [41,42,45]. Figure 5b depicts the percentage of
photocatalytic degradation of MB by the corresponding NCs.

The Langmuir–Hinshelwood model was applied to understand the kinetics of Mn-
ZnFe2O4 (Supplementary Materials: Figure S1) and Mn-ZnFe2O4/S-g-C3N4 NCs, and
Figure 5c shows the resultant graph [38]. Figure 5c exhibits that the dye degradation by the
NCs under sunlight was fit to pseudo-first-order kinetics. The rate constant (k) values of
Mn-ZnFe2O4/S-g-C3N4 NCs are summarized in Table 2.

Therefore, the highest and lowest calculated “k” values were found for ZnFe2O4/50%
S-g-C3N4 NCs (0.0142 min−1) and S-g-C3N4 (0.00515 min−1), respectively. The ZnFe2O4/50%
S-g-C3N4 NCs completely decolorized the MB in 120 min, and its “k” value was 2.1 and
2.75 times more than that of ZnFe2O4 and S-g-C3N4, respectively. The rate of dye degrada-
tion increased as the concentration of S-g-C3N4 increased from 10% to 50% in ZnFe2O4/50%
S-g-C3N4 NCs but then declined for NCs with a greater concentration of S-g-C3N4 (<50%).
Accordingly, the observed optimal concentration for ZnFe2O4/S-g-C3N4 NCs is 50% S-
g-C3N4. A further rise in the concentration of S-g-C3N4 could result in the formation of
e-h pair combination centers, which would gradually reduce the photocatalytic efficiency
of NCs [32,44]. A preliminary study is required to conduct a more in-depth analysis of
this justification. According to Table 3, the photocatalytic efficiency of ZnFe2O4/50% S-g-
C3N4 NC was noticeably superior to that of several previously reported studies [46–48].
The better photocatalytic efficiency of the NC might be due to the development of good
heterojunctions between ZnFe2O4 and S-g-C3N4 as compared to the previously reported
composites. The Mn atoms may also facilitate the transportation and separation of the
e−/h+ in the composite [21,28,29]. Because the ZnFe2O4/50% S-g-C3N4 NC was the most
efficient photocatalyst, it was used in the recycling study.
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Table 2. The rate constant (k) values of the 9% Mn-ZnFe2O4/50% S-g-C3N4 nanocomposites.

Sr. No. Nanocomposites S-g-C3N4
(wt.%) % Degradation k (min−1)

1 S-g-C3N4 100 51 0.00515

2 ZnFe2O4 - 54 0.00673

3 9% Mn-ZnFe2O4/10%S-g-C3N4 10 65 0.00721

4 9% Mn-ZnFe2O4/30%S-g-C3N4 30 89 0.00838

5 9% Mn-ZnFe2O4/50% S-g-C3N4 50 100 0.0142

7 9% Mn-ZnFe2O4/70% S-g-C3N4 70 85 0.0096
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Figure 5. Photocatalytic degradation rate (a), % degradation (b), and kinetic characteristics of MB by
Mn-ZnFe2O4/S-g-C3N4 NCs (c).

The produced Mn-ZnFe2O4/50% S-g-C3N4 NCs are shown in Figure 6a throughout
their stability cycles and photocatalyst reuse. The recycling and stability test was used
to gauge how well the material as prepared performed in real-world applications. Six
sequential cycles of MB dye degradation under direct sunshine irradiation were used to
test the photocatalyst’s stability. After six cycles of the photocatalytic MB elimination test,
Mn-ZnFe2O4/50% S-g-C3N4 NCs’ crystallographic alterations were also examined using
XRD, and the relevant findings are shown in Figure 6b. The stability of the crystal structure
of Mn-ZnFe2O4/50% S-g-C3N4 NCs is shown by the lack of noticeable change in the XRD
curves before and after the photocatalytic test, as shown in Figure 6b.



Molecules 2022, 27, 6925 11 of 16

Table 3. Comparison of photocatalytic efficiency of the Mn-ZnFe2O4/S-g-C3N4 NCs with some
previous works.

Sr. No. Photocatalyst Contaminant Light
Source

Radiation
Time (min.) Degradation % Ref.

1 ZnFe2O4@metyle
cellulose Metronidazole Xe lamp 120 92.65 [49]

2 Bi2WO6/CoFe2O4 Bisphenol A Solar 120 92 [50]

3 ZnNdxFe2−xO4 Rhodamine B Xe lamp 180 98 [51]

4 ZnFe2O4 Toluene Xe lamp 300 57.2 [52]

5 ZnO/Fe3O4/
g-C3N4

MO Visible 150 97.87 [53]

5 Pt-BiFeO3 MG Solar 240 96 [54]

7 Mn–ZnO/RGO RhB Visible 140 99 [55]

8 ZnFe2O4@ZnO MO Visible 240 240 [56]

9 Mn-ZnFe2O4/
S-g-C3N4

MB Solar 120 100 Present
Work
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and separation efficiency of Mn-ZnFe2O4/50% S-g-C3N4 NCs is shown by the fact that their 
EIS curve’s arc is noticeably lower than that of ZnFe2O4. Furthermore, the PL was meas-
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Figure 6. (a) Cyclic stability of the Mn-ZnFe2O4/50% S-g-C3N4 NCs through the sixth cycle. (b) The
structural stability of Mn-ZnFe2O4/50% S-g-C3N4 NCs was determined by comparing XRD pat-
terns obtained before the first cycle and after the sixth recycling experiment. (c) EIS Nyquist plots
of ZnFe2O4, Mn-ZnFe2O4, and Mn-ZnFe2O4/50% S-g-C3N4 NCs and (d) transient photocurrent
responses of ZnFe2O4, S-g-C3N4, Mn-ZnFe2O4, and Mn-ZnFe2O4/50% S-g-C3N4 NCs in visible-
light irradiation.
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The improvements in the Mn-ZnFe2O4/50% S-g-C3N4 photocatalyst’s photocatalytic
MB removal ability were further examined using Figure 6c. The transient photocurrent
responses of the ready photocatalysts are shown in Figure 6c. The law of transient pho-
tocurrent responses and the photocatalytic MB elimination efficiency of the various photo-
catalysts may be compared using the photocatalytic test results shown in Figure 6c. The
photocurrent density of Mn-ZnFe2O4/50% S-g-C3N4 NCs is was highest, indicating the ma-
terial’s best optical responsiveness and output capacity of photogenerated carriers during
the photocatalytic reaction. ZnFe2O4, Mn-ZnFe2O4, and Mn-ZnFe2O4/50% S-g-C3N4 NCs’
EIS spectra are shown in Figure 6d. The outstanding photogenerated carrier migration
and separation efficiency of Mn-ZnFe2O4/50% S-g-C3N4 NCs is shown by the fact that
their EIS curve’s arc is noticeably lower than that of ZnFe2O4. Furthermore, the PL was
measured using a 330 nm excitation wavelength to assess the charge transfer and separation
effectiveness of ZnFe2O4, Mn-ZnFe2O4, and Mn-ZnFe2O4/S-g-C3N4 heterojunctions, as
shown in Figure S3.

3.5. Scavenging Activity

The primary active species for the decomposition of organic pollutants in water are
typically superoxide radicals (•O2), hydroxyl radicals (•OH), and photogenerated holes
(h+) [46]. Therefore, the active species-generating capacity was examined by incorporating
the appropriate scavengers into the suspensions of the MB degradation in the presence
of the Mn-ZnFe2O4/50% S-g-C3N4 photocatalyst. In particular, isopropanol (IPA) was
specifically utilized to trap •OH, EDTA-2Na to trap holes (h+), and benzoquinone (BQ) to
trap •O2. After adding benzoquinone, the efficiency of MB degradation was lowered by
90%. IPA and EDTA-2Na, on the other hand, only suppressed the degradation rates of MB
by 61% and 37%, respectively. The effect of trapping chemicals on the dye degradation
reaction is depicted in Figure 7. The outcomes demonstrated that •OH and •O−2 are the
main reactive species involved in photocatalytic dye degradation rather than the holes (h+).
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4. Photocatalytic Degradation Mechanism

The accelerated degradation of methylene blue by photocatalysts may be attributed to
the production of e−/h+ pairs in the synthesized photocatalysts as predicted via a schematic
sketch (Figure 8). Both Mn-ZnFe2O4 and S-g-C3N4 were excited and e−/h+ pairs were
produced on their respective conduction bands (CB) and valence bands (VB) when solar
light was irradiated on Mn-ZnFe2O4/S-g-C3N4 [47]. Based on the CB/VB edge potentials,
the photo-induced electrons easily migrated from the conduction band (CB) of Mn-ZnFe2O4
to the CB of S-g-C3N4 since the CB of Mn-ZnFe2O4 was lower in potential than that of
S-g-C3N4. In addition, the holes that were created in the VB of S-g-C3N4 had the potential
to migrate to Mn-ZnFe2O4 [48]. In the hybrid composite, the presence of Mn atoms not
only lowered the value of Eg but also served as the facilitator for the transit of electrons
from S-g-C3N4 to ZnFe2O4. Therefore, by increasing the separation of photoexcited e−/h+

pairs, doping could significantly lower the chance of charge recombination. The produced
e−/h+ pairs combined with the oxygen and water molecules taken up on the surface of the
photocatalyst to generate (•OH and •O−2) the reactive oxygen species (ROS) [1]. Then, the
generated radicals were consumed in the degradation of MB via an oxidative mechanism.
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5. Conclusions

In summary, ZnFe2O4, Mn-ZnFe2O4 nanoparticles, and a series of Mn-ZnFe2O4/S-
g-C3N4 nanocomposites were developed via a straightforward hydrothermal technique.
XRD, TEM, EDX, and FTIR techniques were used to investigate the structure and purity of
the samples. The degradation of MB at room temperature was carried out using ZnFe2O4,
Mn-ZnFe2O4, and Mn-ZnFe2O4/S-g-C3N4. The synthesized samples were tested photo-
catalytically against MB, and it was discovered that the 9%Mn-ZnFe2O4/50% S-g-C3N4
had a very high catalytic efficiency. It was established through the radical scavenging
experiment that the 9%Mn-ZnFe2O4/50% S-g-C3N4 utilized electrons, holes, and ROS for
MB degradation. For six sequential catalytic cycles, the nanocomposites shown exceptional
stability and continuously high levels of MB degradation. The separation and mobility
of photoinduced e−/h+ pairs in 9%Mn-ZnFe2O4/50% S-g-C3N4 may be considerably en-
hanced by the fine interfaces produced and the synergistic effect between Mn and ZnO as
supported by transient photocurrent responses. Both for NPs and NCs, it was found that
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a rate constant for the dye reduction reaction was pseudo-first order. As a result, the 9%
Mn-ZnFe2O4/50% S-g-C3N4 heterojunction is a promising contender and may find use in
the photocatalytic destruction of organic pollutants to purify water.
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