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Inference of tumor and edema areas from brainmagnetic resonance imaging (MRI) data remains challenging owing to the complex
structure of brain tumors, blurred boundaries, and external factors such as noise. To alleviate noise sensitivity and improve
the stability of segmentation, an effective hybrid clustering algorithm combined with morphological operations is proposed for
segmenting brain tumors in this paper.Themain contributions of the paper are as follows: firstly, adaptiveWiener filtering is utilized
for denoising, andmorphological operations are used for removing nonbrain tissue, effectively reducing the method’s sensitivity to
noise. Secondly, K-means++ clustering is combined with the Gaussian kernel-based fuzzy C-means algorithm to segment images.
This clustering not only improves the algorithm’s stability, but also reduces the sensitivity of clustering parameters. Finally, the
extracted tumor images are postprocessed using morphological operations and median filtering to obtain accurate representations
of brain tumors. In addition, the proposed algorithm was compared with other current segmentation algorithms. The results show
that the proposed algorithm performs better in terms of accuracy, sensitivity, specificity, and recall.

1. Introduction

Brain tumor is one of the most serious diseases, which often
have lethal outcomes. At present, more and more attention
has been paid to the study of brain tumor image. Nowadays,
MRI is especially useful for brain imaging [1], which can be
performed without injecting radioisotopes. MRI is based on
multiparameter imaging, which can form different images by
adjusting different parameters and contains a large amount
of information. Figure 1 exemplifies brain MRI with tumors,
and the images were obtained in four different modalities: T1,
T1c, T2, and FLAIR. The FLAIR modalities are usually used
for finding the extensions of tumors and edemas. Here, we
use segmentation of FLAIR images in BRATS 2012 [2].

As shown in Figure 1, MRI images usually have low
contrast, and it is difficult to diagnose lesion areas owing to
noise accurately. Therefore, accurate tumor segmentation is
essential. Nowadays, many image segmentation techniques

have been widely applied to segmentation of medical images.
Examples include the threshold segmentation algorithm
[3], edge-based segmentation algorithms [4], and neural
network-based segmentation [5]. However, there is no effi-
cient and versatile method of brain tumors based on imaging.

The threshold-based segmentation algorithm determines
the segmentation threshold based on certain pixel features.
Thepixels’ feature values are comparedwith the segmentation
threshold to determine which parts of the image to categorize
the pixels. This method is simple to implement and execute.

Since the characteristics of the boundary pixels are dis-
continuous, the pixel features on both sides of the boundary
will have relatively obvious differences. Therefore, the basic
idea of the edge-based segmentation algorithm is to find the
boundaries using some method and to specify the directions
of the boundary first. Then, the pixels on one side of the
boundary are divided into one subimage, while the pixels on
the other side are considered to belong to another subimage.
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(a) T1 (b) T1c (c) T2 (d) FLAIR

Figure 1: Brain MRI images containing tumors in four different modalities.

Although this algorithm is fast, it is sensitive to noise and
usually obtains incomplete information.

In recent years, image segmentation using neural net-
works has become increasingly popular. The basic idea in
this approach is to train a neural network on a training
set and then modify the architecture and weights of con-
nections between the network’s nodes. New image data are
segmented using a trained neural network. Convolutional
neural networks (CNNs) have been particularly popular
among different neural network methods [5]. Yet, one of the
most difficult issues related to neural networks is constructing
the network. Neural networks are computationally intensive
and time-consuming, which hinders implementation.

Clustering algorithms are commonly used for segmen-
tation of medical images. Commonly used clustering algo-
rithms include fuzzy C-means clustering (FCM), K-means
clustering, and expectation maximization (EM) [6–8]. The
K-means algorithm is a hard clustering algorithm, which
iteratively calculates the gray scale means of different clus-
ters, computes the distances from the image’s pixels to the
clusters’ centroids, and assigns the image’s pixels to classes
that correspond to the nearest centroid. Fuzzy C-means
clustering utilizes the fuzzy set theory, which allows soft
segmentation. The EM algorithm assumes that data can be
described as a mixture of probability distributions. Then, the
algorithm iteratively calculates the posterior probability and
estimates themean, covariance andmixture coefficients using
the maximal likelihood estimation approach and clustering
criteria [9]. However, this clustering algorithm is sensitive to
noise.

In order to improve the instability clustering and to allevi-
ate its sensitivity to noise, an effective clustering segmentation
algorithm is proposed in this paper. The main contributions
of this paper are as follows:

(i) A hybrid clustering algorithm based on K-
means++ and Gaussian kernel-based fuzzy C-means
(K++GKFCM) is proposed.

(ii) K-means++ algorithm is utilized to initialize the
clustering center, which greatly improves the stability
of the algorithm.

(iii) Gaussian kernel-based fuzzy C-means is proposed,
which improves the sensitivity to noise.

(iv) The proposed method is combined with morpholog-
ical operations for preprocessing and postprocessing,
which further improves the accuracy of segmentation.

As a result, the accuracy of image segmentation is signif-
icantly improved.

The remainder of the paper is organized as follows:
Section 2 depicts the related work of the paper. Section 3
details the methods used in this article. Section 4 presents the
experimental results and assessments. Finally, conclusions
and outstanding issues are listed in Section 5.

2. Related Work

Segmentation of medical images is a very popular research
topic, and many methods have been developed. Clustering
algorithms for image segmentation are very popular among
scholars, and many of these algorithms have been employed
for image segmentation. Dhanalakshmi and Kanimozhi [10]
proposed an algorithm for automatic segmentation of brain
tumor images based on K-means clustering. During pre-
processing, a median filter is used to remove artifacts and
sharpen the image’s edges. Seed points are randomly selected
for K-means in this method. A binary mask is applied for
identification of high-contrast categories. However, K-means
clustering is more affected by abnormal points and is more
sensitive to initialization.

Kalaiselvi and Somasundaram [11] applied fuzzy C-means
(FCM) to segmentation of brain tissue images, which is
computationally more efficient owing to the initialization of
seed points using the image histogram information. Yet, this
method still does not address the sensitivity to noise and
intensity inhomogeneity (IIH). Noreen et al. [12] introduced
a hybrid MR segmentation method based on the discrete
wavelet transform (DWT) and FCM for removal of inhomo-
geneity.Thismethod applies theDWT to the inputMR image,
to obtain four subbands; then, the inverse discrete wavelet
transform (IDWT) is applied to obtain a high-pass image.
Finally, FCM clustering is performed to segment the image.
Although this method addresses the sensitivity problem of
intensity nonuniformity, it does not consider the uncertainty
of the data space information. Christe et al. [13] combined
K-means with fuzzy C-means. They defined the number
of clusters, ambiguity, distance, and stopping criteria. Their
method can handle overlapping intensities, but it cannot
clearly define tissue boundaries. Wilson and Dhas [14] used
K-means and FCMtodetect iron in brain SWI, and compared
the two algorithms. The experimental results showed that
the FCM algorithm is better at detecting iron-containing
regions, compared with K-means. Abdel-Maksoud et al.
[15] reconsidered the advantages and disadvantages of
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Figure 2: The framework of the algorithm proposed in this paper.

K-means clustering and FCM clustering. They also proved
that the K-means algorithm can detect brain tumors faster
than the FCMalgorithm,while the FCMalgorithm can detect
tumors that are not detected by K-means. They proposed
to combine K-means clustering with FCM for segmentation.
Their experimental results showed that the combination of
the two algorithms is more advantageous than the individual
algorithms. The disadvantage of this approach is that the
two algorithms select their seed points in a random manner,
which can easily result in overfitting.

Chuang et al. [16] proposed to add spatial information
to the FCM algorithm and update the membership func-
tion twice, which significantly improved the effect of FCM
clustering. On this basis, Adhikari and Sing [17] introduced
the conditional space fuzzy C-means (csFCM) clustering
algorithm. The underlying idea is to apply an adjustment
effect to the auxiliary variables corresponding to each pixel,
which effectively reduces the algorithm’s sensitivity to noise
and intensity nonuniformity with respect to MRI data. Bai
and Chen [18] proposed an improved FCM segmentation
algorithm based on the spatial information for infrared ship
segmentation (sFCM), which introduced improvement from
the viewpoint of the following two aspects: (1) addition of
nonlocal spatial information based on ship targets (2); refin-
ing of the local space constraints through theMarkov random
field using the spatial shape information of the ship's target
contour. Ghosh and Mali et al. [19] put forward a new FCM
clustering application, which uses the firefly algorithm and
a chaotic map to initialize the firefly population and adjusts

the absorption coefficient to improve the mobility of global
search.The algorithm is called C-FAFCM.Al-Dmour andAl-
Ani [20] proposed a fully automatic algorithm for brain tissue
segmentation, based on the clustering fusion methodology.
They combined three clustering techniques (K-means, FCM,
and self-organizingmap (SOM)) with neural networkmodels
for training and testing. Classification was performed using a
voting strategy, which significantly improved the algorithm’s
segmentation performance. Still, the stability of the algorithm
remained unresolved.

Although the current medical image segmentation algo-
rithm reduces the sensitivity of noise to some extent, the
stability of segmentation is still a huge challenge. For the
purpose of alleviating the sensitivity of the clustering algo-
rithm to noise and for improving the stability of the clustering
algorithm, here we propose to the K++GKFCM algorithm,
benefitting from the advantages of the two clustering algo-
rithms. In addition, morphological operations are applied
for preprocessing and postprocessing, to further improve the
accuracy of segmentation. Finally, the proposed method is
compared with the K-means algorithm, the FCM algorithm,
and the improved clustering algorithm in recent years. The
results of this comparison show that the proposed algorithm
performs better.

3. Proposed Method

As shown in Figure 2, the segmentation algorithm proposed
in this paper is mainly divided into three parts.
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(a) MR image (b) Image with noise (c) Denoised image

Figure 3: Image denoising, accomplished by adding noise and using adaptive Wiener filtering.

(a) MR image (b) Image with noise (c) Image after pre-
processing

Figure 4: Example of adding Gaussian noise (variance, 0.02) to the MR image for denoising and the resulting image obtained after
preprocessing.

Step 1 (preprocessing and completing the brain surface extrac-
tion (BSE)). The original noisy brain MR image is denoised
using adaptive Wiener filtering, and the part corresponding
to the skull is removed by morphological operations, to
obtain a denoised image of brain parenchyma.

Step 2 (clustering and extraction of the tumor image).
K++GKFCM are used for cluster segmentation. The tumor
region is extracted according to a threshold.

Step 3 (postprocessing). Morphological operations and
median filtering are applied as postprocessing to obtain the
final segmentation results.

3.1. Preprocessing and Morphological Operations. Medical
images are often noisy, which greatly affects segmentation of
lesions and diagnosis of patients' conditions. In this paper,
adaptive Wiener filtering is used for denoising MRI brain
images; this filtering allows to effectively eliminate Gaussian
noise, while protecting the texture of the original image.
Figure 3 shows an image with Gaussian noise (noise variance,
0.02) and the corresponding denoised image obtained using
adaptive Wiener filtering.

Furthermore, MR brain images often contain images of
nonbrain tissues such as the skull and outer membrane, as
shown in red in Figure 3. To reduce computational complex-
ity and improve segmentation, morphological operations are
utilized for removal of nonbrain tissue.Morphological opera-
tions are utilized for identifying the boundaries and skeletons
of objects in an image [21].Themost commonmorphological
operations are expansion and corrosion. Expansion enlarges

the image’s edges, filling the edges of the target or its internal
depression. Corrosion erodes the image’s boundaries [22]; the
goal is to erode the sawtooth of the target’s edges.The opening
operation is an extension of the expansion and corrosion
operations, where etching is performed first and then the
same structural elements are used for expansion [23]; this
operation is denoted as 𝑋 ∘ 𝑌 and is defined by

𝑋 ∘ 𝑌 = (𝑋 ⊝ 𝑌) ⊕ 𝑌 (1)

where X is the image of the brain, Y is the structural
element, “∘” means the corrosion operation, and “⊕” means
the expansion operation.

The morphological opening operation is applied to
remove the images of nonbrain tissue from the MR brain
image, and the hole-filling technique is used for repair, to
obtain a complete brain parenchymal region. The purpose
of this step is to reduce the complexity of the algorithm,
and the accuracy of the proposed clustering algorithm is also
improved to some extent.

For example, consider a random MR image, to which
Gaussian noise (variance, 0.02) was added, as shown in
Figure 4(b). Using the above-described preprocessing steps,
the noise and nonbrain structures are effectively removed,
while at the same time the texture features of the MR image
are preserved. The result of this preprocessing is shown in
Figure 4(c).

3.2. Cluster Segmentation and Postprocessing. The proposed
K++GKFCM clustering algorithm first uses K-means++ for
deterministic initialization of cluster centroids to avoid
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overfitting and then uses the Gaussian kernel-based fuzzy
C-means algorithm to perform clustering, which further
improves the classification ability.

The classical K-means algorithm accepts the set of sam-
ples (data), the number of clusters k into which to partition
the data, and the maximal number of iterations N; the
algorithm outputs data classification into clusters [24]. The
K-means algorithm is simple and easy to operate, but it
also has certain drawbacks. Firstly, the number of cluster
centroids k in the K-means algorithm needs to be specified
in advance, which significantly limits treating unknown
data (with unknown number of clusters). Secondly, before
clustering using the K-means algorithm, k cluster centroids
need to be initialized, and, typically, numbers ranging from
minimal to maximal values of data are selected randomly as
data centroids. However, the choice of cluster centroids may
significantly affect the clustering classification of theK-means
algorithm.

In classical clustering algorithms, whether K-means
or FCM, cluster centroids are uncertain. There are three
methods to initialize cluster centroids, (1) K-means; (2) K-
means++; (3) clustering with the hierarchical clustering or
Canopy algorithm, and then select a point from each cluster,
which may be the cluster centroid or the closest point to
the cluster centroid. The traditional K-mean algorithm ran-
domly selects k clustering centers, which has poor clustering
effect. The latter two methods have similar effects, but the
complexity of K-means++ is lower and the method is easy
to implement. Thus, K-means++ is adopted to initialize the
cluster centroid in this paper.

K-means++ is based on K-means, which can initialize
the centroids deterministically. The basic principle of the
K-means++ algorithm for initialization of cluster centroids
is to maximize the distance between the initial cluster
centroids. This method allows deterministically initializing
cluster centroids, overcoming the shortcomings of the K-
means algorithm associated with its initialization instability
[25, 26]. The initialization process of the K-means++ algo-
rithm is as follows:

(1) Randomly select a sample point from the data set as
the first initialized cluster centroid.

(2) Select the remaining cluster centroids:
(a) Calculate the distance between each sample point in

the sample and the cluster centroid that has been initialized,
and then select the shortest distance among them, denoted as𝑑𝑖.

(b) Select the sample with the largest distance by proba-
bility as the new cluster centroid.

(c) Repeat the above process until k cluster centroids are
determined.

(3) For the 𝑘 initial cluster centroids, the final cluster
centroids are calculated using the K-means algorithm.

In addition, we introduce the Gaussian kernel method
based on the original FCM algorithm [27, 28].The traditional
FCM algorithm dismisses the hard clustering paradigm by
introducing the concept of a fuzzy set. The so-called fuzzy set
can be defined as follows: Let𝑀 be the mapping of a set X
to [0, 1], with the mathematical operation expressed as 𝑀 :𝑋 → [0, 1], 𝑥 → 𝑀(𝑥), where𝑀(𝑥) is the membership

function of the fuzzy set 𝑋. Then, X is said to be a fuzzy set
on𝑀. The FCM algorithm divides the 𝑋 pixels in the image𝑇 into 𝑐 fuzzy clusters, finding the cluster centroid of each
fuzzy cluster and obtaining the objective function [29, 30] by
iteration. The objective function can be expressed as

min 𝐽𝐹𝐶𝑀 = 𝑐∑
𝑖=1

𝑁∑
𝑗=1

𝑢𝑛𝑖𝑗 𝑥𝑗 − V𝑖
2 (2)

where 𝑥𝑗 represents the j-th pixel, v𝑖 represents the i-th
cluster centroid, 𝑢𝑖𝑗 represents the membership degree of 𝑥𝑗
in the i-th fuzzy cluster, the constraint is given by (3), and n is
the fuzzy index, which controls the algorithm’s flexibility. The
value of n affects clustering. The cluster centroid v𝑖 and the
corresponding membership degree 𝑢𝑖𝑗 can computed from
(4) and (5)

𝐶∑
𝑖=1

𝑢𝑖𝑗 = 1, 0 ≤ 𝑢𝑖𝑗 ≤ 1 (3)

V𝑖 = ∑
𝑁
𝑗=1 𝑢𝑛𝑖𝑗𝑥𝑗
∑𝑁𝑗=1 𝑢𝑛𝑖𝑗 (4)

𝑢𝑖𝑗 = 𝐶∑
𝑘=1

( 𝑥𝑗 − V𝑖𝑥𝑗 − V𝑘
)2 (5)

Based on the traditional FCM algorithm, a fuzzy clus-
tering algorithm based on a Gaussian kernel is introduced
to efficiently reduce the sensitivity of the algorithm’s scaling
parameter. The objective function can be expressed as

𝐽𝐾𝐹𝐶𝑀 = 𝑐∑
𝑖=1

𝑁∑
𝑗=1

𝑢𝑛𝑖𝑗 𝜑 (𝑥𝑗) − 𝜑 (V𝑖)2 (6)

where 𝜑(𝑥) is a nonlinear mapping with constraints as in
𝜑 (𝑥𝑗) − 𝜑 (V𝑖)2
= (𝜑 (𝑥𝑗) − 𝜑 (V𝑖))𝑇 (𝜑 (𝑥𝑗) − 𝜑 (V𝑖))
= 𝜑 (𝑥𝑗)𝑇 𝜑 (𝑥𝑗) − 𝜑 (V𝑖)𝑇 𝜑 (𝑥𝑗) − 𝜑 (𝑥𝑗)𝑇 𝜑 (V𝑖)
+ 𝜑 (V𝑖)𝑇 𝜑 (V𝑖)

= 𝐾 (𝑥𝑗, 𝑥𝑗) + 𝐾 (V𝑖, V𝑖) − 2𝐾 (𝑥𝑗, V𝑖)

(7)

Here, 𝐾(𝑥, 𝑦) is the inner product of the kernel func-
tion. Furthermore, 𝐾(𝑥, 𝑦) can be expressed as 𝐾(𝑥, 𝑦) =𝜑(𝑥)𝑇𝜑(𝑦), which has the property 𝐾(𝑥, 𝑥) = 1. Therefore,
the target function is given by

𝐽𝐾++𝐺𝐾𝐹𝐶𝑀 = 2 𝑐∑
𝑖=1

𝑁∑
𝑗=1

𝑢𝑛𝑖𝑗 (1 − 𝐾(𝑥𝑗, V𝑖)) (8)

Since a Gaussian kernel is introduced in this paper,𝐾(𝑥, 𝑦) here can be defined as in

𝐾 (𝑥, 𝑦) = exp(−𝑥 − 𝑦22𝜎2 ) 𝜎 ∈ 𝑅 and 𝜎 ̸= 0 (9)
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(a) (b) (c) (d)

Figure 5: Results of segmentation after postprocessing: (a) MR image, (b) ground truth, (c) tumor area extracted without postprocessing,
and (d) tumor area obtained after postprocessing.

Table 1: Pseudocode of the image segmentation procedure.

(1) Input: MR image
(2) Output: Segmented tumor image
(3) Preprocessing: Perform adaptive Wiener filter and

morphological operation.
(4) Set the value of clusters k, the degree of fuzziness𝑚, the

error 𝜀, and the value of objective function 𝐽(0)
𝐾++𝐺𝐾𝐹𝐶𝑀

(5) Initialize the cluster centroid using K-means++:
(6) Choose an initial center 𝑐1 = 𝑥 ∈ 𝑅 at random from image R,

where x represents the pixel of the MR image
(7) Begin
(8) Calculate the probability of each remaining pixel using
𝐷(𝑥)2/∑𝑥∈𝑅𝐷(𝑥)2, where𝐷(𝑥) is the distance between the
pixel 𝑥 and the nearest center, 𝑥’ represents the next pixel.

(9) Choose the pixel with the highest probability as the next
initial center

(10) Update the the i-th cluster centroid 𝑐𝑖
(11) If k initial centers are calculated
(12) Then Break
(13) End if
(14) Cluster the obtained images using K++GKFCM:
(15) Begin:
(16) CalculateK(x, y) using Eq. (9)
(17) Update the membership degree u𝑖𝑗 using Eq. (5)
(18) Update the the i-th cluster centroid v𝑖 using Eq. (4)
(19) If |𝐽(𝑖)

𝐾++𝐺𝐾𝐹𝐶𝑀
− 𝐽(𝑖−1)
𝐾++𝐺𝐾𝐹𝐶𝑀

| ≤ 𝜀, where 𝐽(𝑖)
𝐾++𝐺𝐾𝐹𝐶𝑀

represents
the function of the i-th iteration

(20) Then Break
(21) End if
(22) End

Here, we need to choose a suitable Gaussian parameter𝜎2 to ensure accurate clustering. The pseudocode of the
proposed method is shown in Table 1.

Using the clustering algorithm shown in Table 1, four
functionally different regions are segmented: (1) gray matter,
(2) white matter, (3) cerebrospinal fluid, and (4) tumor and
edema areas. We extracted edema and tumor areas using
thresholding.

Due to various factors, such as noise and intensity
nonuniformity, the segmented images obtained using the
above clustering algorithm may feature small holes or over-
segmentation, as shown in Figure 5(c). To improve the
accuracy of segmentation, hole-filling and median filtering
are used for postprocessing. After the postprocessing, the
small holes in the extracted tumor areas are filled and some
missegmented areas are filtered.

The results of the segmentation algorithm after postpro-
cessing are shown in Figure 5(d). Furthermore, Figure 5(a)
shows the original MR image and Figure 5(b) shows the
ground truth image.

4. Experimental Classification
Results and Analysis

The proposed method is implemented in Matlab R2016a
software, which is run on an Intel Core i5 CPU 2.5 GHz
with 8 GB of RAM. The algorithm is tested on the BRATS
2012 open source image library (http://www.slicer.org/pages/
Special:SlicerDownloads), which contains brain MR images
of different modalities. The work described in this paper
is used for segmentation of FLAIR images in BRATS 2012.
About 100 pairs of MR images of twenty different patients
containing tumors are selected for testing the segmentation
algorithm.

4.1. Testing the Algorithm’s Stability and Robustness to Noise.
Whether with FCMorK-means clustering, the choice of clus-
ter centroids is uncertain. If K-means is used first for centroid
initialization and is then combined with the Gaussian kernel-
based FCM clustering algorithm, two different segmentation
results are obtained, as shown in Figure 6.

Figure 6 shows the two types of results of the segmen-
tation procedure, where Figure 6(b) shows the first image
obtained after postprocessing and Figure 6(c) shows the
tumor region extracted using the first clustering result.
Figure 6(e) shows the tumor region extracted using the
second clustering result, and Figure 6(f) shows the second
result after postprocessing. Figures 6(a) and 6(d) are the
original MR image and the ground truth image, respectively.

To improve the stability of the segmentation algorithm,
this paper proposes to use K-means++ for deterministic
initialization of cluster centroids. Experiments show that the
proposed method exhibits very good stability. The specific
segmentation results are shown in Table 2.

http://www.slicer.org/pages/Special:SlicerDownloads
http://www.slicer.org/pages/Special:SlicerDownloads
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(a) (b) (c) (d) (e) (f)

Figure 6: Generation of two unstable results from cluster centroids using K-means: (a) MR image; (b) tumor region extracted from the first
result; (c) tumor region after postprocessing extracted from the first result; (d) Ground truth image; (e) tumor region extracted from the
second result; (f) tumor region after postprocessing extracted from the second result;

MRI K-means FCM sFCM csFCM Proposed

Patient 1

Patient 2

Patient 3

Figure 7: Clustering results of the K-means, FCM, SFCM, and CSFCM algorithms and the proposed clustering algorithm.

In addition, MR images are often corrupted by Gaussian
noise, which greatly affects medical image segmentation.
However, a common disadvantage of conventional clustering
algorithms is that they are sensitive to noise. To alleviate this
shortcoming, adaptive Wiener filtering and morphological
operations are used for preprocessing in this paper. To further
verify the robustness of the proposed algorithm to noise,
we added Gaussian noise with variances of 0.005, 0.01, and
0.02, to the MR image. Table 2 lists the effect of adding
Gaussian noise with the above variances. The segmentation
results remain stable across a range of noise variances. It is
easy to see that the proposed algorithm is highly robust to
noise.

4.2. Comparison with Some Recently Proposed Clustering
Algorithms. Many clustering algorithms have been proposed
recently. We compared the proposed method with some
commonly used clustering algorithms, to verify the effec-
tiveness of the proposed clustering algorithm. Three brain
MR images were randomly selected for analysis. Figure 7
shows the clustering effect of the proposed algorithm and
its comparison to the FCM, K-means, sFCM, and csFCM
clustering performances. It is not difficult to see that the algo-
rithm proposed in this paper more accurately treats texture

details, compared with the other algorithms. Specifically, the
currently proposed clustering algorithm better captures the
area marked in red in Patient 3.

To further verify the effectiveness of the proposed
algorithm, four evaluation indicators of Dice, Sensitivity,
Specificity, and Recall were used to evaluate the quality of
segmentation. The Dice value is the most frequent evaluation
index, which indicates the ratio of the area where the two
objects intersect to the total area. The Dice value for a perfect
division is 1. Sensitivity quantifies the number of true positives
(TPs), pixels that are correctly identified by the algorithm as
belonging to the region of interest; higher number of true
positives implies higher Sensitivity. Specificity quantifies the
number of false positives (FPs), pixels that in truth do not
belong to the region of interest but are classified as belonging
to it; higher number of false positives lowers the Specificity.
The Recall is a ratio of TPs to all positives, which is the sum
of TPs and false negatives (FNs) [20, 31]. These indicators are
calculated as follows:

𝐷𝑖𝑐𝑒 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (10)

𝑆𝑒𝑛𝑠𝑖𝑡𝑖V𝑖𝑡𝑦 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 (11)
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Table 2: The effect of adding noise.

Noise variance MRI Noisy image Preprocessing Clustering Tumor extraction Postprocessing

Img1

0.005

0.01

0.02

Img2

0.005

0.01

0.02

Img3

0.005

0.01

0.02
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Table 3: Comparison of four clustering algorithms and the proposed algorithm.

Clustering methods Evaluations Patient 1 Patient 2 Patient 3

K-means

Dice 0.9001 0.9316 0.8298
Sensitivity 0.9630 0.9064 0.9424
Specificity 0.9952 0.9984 0.9780
Recall 0.8449 0.9583 0.7412

FCM

Dice 0.9137 0.9341 0.9004
Sensitivity 0.9263 0.8905 0.9336
Specificity 0.9971 0.9994 0.9880
Recall 0.9015 0.9823 0.8694

sFCM

Dice 0.8169 0.9258 0.9144
Sensitivity 0.7112 0.8645 0.9290
Specificity 0.9968 0.9994 0.9878
Recall 0.9597 0.9965 0.9002

csFCM

Dice 0.8069 0.9179 0.9166
Sensitivity 0.6960 0.8540 0.9290
Specificity 0.9971 0.9996 0.9880
Recall 0.9597 0.9922 0.9045

Proposed

Dice 0.9261 0.9400 0.8978
Sensitivity 0.9622 0.9184 0.9380
Specificity 0.9971 0.9996 0.9881
Recall 0.8926 0.9625 0.8608

Table 4: The mean of four clustering algorithms and the proposed algorithm on 100 images.

Clustering methods Dice Sensitivity Specificity Recall
K-means 0.7988 0.9421 0.9812 0.7159
FCM 0.9061 0.9257 0.9927 0.8931
sFCM 0.9045 0.9097 0.9932 0.9079
csFCM 0.8890 0.9063 0.9916 0.8834
Proposed 0.9256 0.9460 0.9941 0.9087

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝐹𝑁𝑇𝑁 + 𝐹𝑁 (12)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (13)

where TP, TN, FP, and FN are defined as follows:

(i) TP is tumor exists and is detected correctly.
(ii) TN is tumor does not exist and is not detected.
(iii) FP is tumor does not exist but is detected.
(iv) FN is tumor exists but is not detected.

In this paper, brain images of three different patients
were taken as examples, for comparison of several clustering
algorithms with the proposed algorithm. Table 3 shows the
comparison of the K-means, FCM, sFCM [17], and csFCM
[16] algorithms with the proposed algorithm. The proposed
algorithm exhibits higher values on the Dice, Sensitivity, and
Specificity indicators. However, the Recall of the proposed
method is slightly lower than those of the FCM, sFCM, and
csFCM algorithms.

To better quantify the segmentation performance, the
segmentation results of 10 pairs of images with Gaussian

noise with the variance of 0.005 were randomly selected, for
generating curves that correspond to the four evaluations.
The results are shown in Figure 8, where the red curve
represents the result of the proposed algorithm. Due to the
unclear texture of some images, the clustering effect will
be reduced. However, except for Sensitivity values of some
images that are slightly lower than those of some comparison
algorithms, the other evaluations are still higher than other
comparison algorithms. Compared with other clustering
algorithms, the proposed algorithm performs better overall.

To further prove the validity of the algorithm, Table 4 lists
the average of the four evaluation indicators for all 100 images.

It is not difficult to see that the proposed algorithm
performs better in Dice, Sensitivity, Specificity, and Recall.

5. Conclusion

In this paper, a hybrid clustering algorithm combined with
morphological operations was proposed for segmentation of
brain tumor images. The algorithm first uses morphological
operations to remove the outer membrane, which reduces
the computational complexity and the number of clustering
iterations. In the clustering stage, the K-means++ clustering
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Figure 8: Comparison of four evaluations for the K-means, FCM, sFCM, and csFCM algorithms and the proposed algorithm, for MRI brain
images with Gaussian noise with the variance of 0.005: (a) Dice; (b) Sensitivity; (c) Specificity; (d) Recall.

algorithm is exploited to initialize the clusters’ centroids.
Thismethod solves the problem of unstable clustering, which
arises owing to the uncertainty associated with initialization
of cluster centroids. Each cluster only produces a stable clus-
tering result. Furthermore, the proposed method prevents
overfitting. Next, the algorithm uses fuzzy C-means cluster-
ing based on a Gaussian kernel. The sensitivity to clustering
parameters is greatly reduced for the proposed algorithm,
and the algorithm’s robustness is further improved. Finally,
morphological operations and median filtering are applied
as postprocessing, which further improves the accuracy of
segmentation.
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