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Abstract

The upcoming quantification and automation in biomarker based histological tumor evaluation will require computational
methods capable of automatically identifying tumor areas and differentiating them from the stroma. As no single generally
applicable tumor biomarker is available, pathology routinely uses morphological criteria as a spatial reference system. We
here present and evaluate a method capable of performing the classification in immunofluorescence histological slides
solely using a DAPI background stain. Due to the restriction to a single color channel this is inherently challenging. We
formed cell graphs based on the topological distribution of the tissue cell nuclei and extracted the corresponding graph
features. By using topological, morphological and intensity based features we could systematically quantify and compare
the discrimination capability individual features contribute to the overall algorithm. We here show that when classifying
fluorescence tissue slides in the DAPI channel, morphological and intensity based features clearly outpace topological ones
which have been used exclusively in related previous approaches. We assembled the 15 best features to train a support
vector machine based on Keratin stained tumor areas. On a test set of TMAs with 210 cores of triple negative breast cancers
our classifier was able to distinguish between tumor and stroma tissue with a total overall accuracy of 88%. Our method
yields first results on the discrimination capability of features groups which is essential for an automated tumor diagnostics.
Also, it provides an objective spatial reference system for the multiplex analysis of biomarkers in fluorescence
immunohistochemistry.
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Introduction

Automation in immunohistological image processing is current-

ly an essential technological development taking place in the

clinical hunt for objective biomarkers in research and diagnostics.

In cancer research one of the most important but also extreme

challenges is the development of methods for the automatic

separation of tumor and stroma tissue [1,2]. Success here will have

an enormous impact on the applicability of biomarkers in routine

cancer diagnostics and therapy as well the large-scale generation of

histological tissue data for research purposes. An important

method routinely used in this context which we here use to

illustrate the problem is the Tissue Microarray (TMA) technology,

introduced in 1998 [3]. TMAs allow the simultaneous immuno-

histochemical analysis of several hundred tissues on a single slide

[4–6]. But as generally in all fields of pathology, the manual visual

scoring of TMAs is routinely based on the quantitative analysis of

protein levels by pathologists or other experts is subjective, labor-

intensive, is time consuming and most importantly suffers from

intra and inter-observer variability [7]. As a solution, fluorescent

capable microscopic whole-slide scanners have become available

recently but are still only rarely used although they will have a key

role in transforming histological evaluation into objectivity.

Fluorescence based staining here is essential as it overcomes the

key problem of brightfield stains by the objective and automatic

capturing of distinct biomarker signals [8]. Although fluorescence

helps in the quantification of individual cells, it does not per se help

in differentiating tumor and stroma. In fluorescence tissue slides

are frequently counterstained with DAPI (49,6-diamidino-2-

phenylindole) taking the role of a conventional background stain.

This makes the tumor-stroma separation more complex as the

primary visual information of the tissue structure is much harder

to recognize in the DAPI channel than in chromogenic histology.

A histological biomarker which would exclusively stain tumor

tissue is not available. Instead heterogeneity of spatial protein

expression patterns is inherent to cancer. An excellent example

here are the aggressive triple negative breast cancer tissues which

do not express the genes for the most valuable prognostic marker
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like the estrogen receptor (ER), the progesterone marker (PR) and

the human epidermal growth factor receptor type 2 (Her2) [9].

The absence of the expression patterns of these biomarkers

disallows using any single one of them as a reference protein

biomarker and renders it essential to separate the cancerous from

the healthy/connective tissue by the help of objective, standard-

ized processing algorithms based on morphological criteria. Thus,

pathological evaluation routinely uses morphological criteria as a

spatial reference system to determine the tumor area in cancer

histology. We conclude that combining the advantages of

fluorescence with automatic image acquisition and processing

requires the development of algorithms for tumor-stroma

separation solely from a DAPI background stain being frequently

used in immunofluorescence.

Therefore, we here set out to develop such an automatic

algorithm based only on the DAPI channel (Figure 1B–D). Several

methods for the separation of cancerous tissue from other tissue

types by morphological criteria are available in the literature.

Amaral et al. [10,11] present two different methods whereby color

features are used for the classification of whole TMA-cores. In [12]

textural features help to separate different tissue regions on a TMA

and in [13] textural features are used for the detection of

pathologic regions in histological slides. But all these methods work

on chromogenic stained tissue samples where for the classification

of the different tissue types the information of all 3 RGB channels

was obtainable. Classifying tumor tissue only in the DAPI channel

forces us to deal with less information available for the

classification step compared to the previous other approaches.

Only few publications deal with the classification of fluorescently

stained tissues. In [14] the authors use nuclear features obtained

from the DAPI-channel to distinguish whether the whole tissue is

cancerous or healthy instead of classifying the different types

present on the tissue. Most of the published work in biomarker

research use two biomarkers for co-localization or manually

segment the cancerous tissue instead of an automated manner

[15–18].

Gunduz et al. [19] published a novel method for the

classification of chromogenic stained brain tissue samples. They

formed cell graphs based on the topological distribution of the

tissue cells and extracted the corresponding graph metrics to train

a classifier. The classifier was able to distinguish between

cancerous and healthy tissue. A graph here is an abstract

representation of objects (nodes) where pairs of these objects are

linked by edges. The method was further developed in [20] and

[21]. Bilgin et al. [22–23] demonstrated that they successfully

analyzed breast and bone tissue samples by the help of cell graphs.

Figure 1. Microscopic image examples of different TMA-cores. (a) Representation of all 3 channel of a fluorescently stained core in RGB
colorspace. Glyphs originated due to TMA’s preparation. Red representing the stromal marker (Vimentin), green the tumor marker (CK19) and blue
the DAPI channel highlighting the cell nuclei; (b) the DAPI channel of (a) as an intensity image: in general tumor cells are darker and tighter
connected than stromal cells; (c) another DAPI image of a core with a high density of cells; (d) an example of a core with a lower density of cells
shows the high heterogeneity among the cores.
doi:10.1371/journal.pone.0028048.g001
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They evaluated their method on hand-selected and non-biomarker

characterized breast cancer samples.

Here we further developed this approach by developing a novel

method capable of classifying fluorescently stained Tissue Micro-

arrays. Our method uses cell graphs based on three different

categories of features reflecting the properties of the cells contained

in the graph (nodes) and their similarity (edges). From a potential

set of features we determine those which are best capable of

separating tumor and stroma tissue. Clearly, performing an

accurate tumor-stroma separation is already a challenging task.

Using furthermore only the DAPI-channel for this task requires an

even higher performance in segmentation and classification.

As the first step we performed watershed segmentation and then

we built cell graphs by linking the segmented cell nuclei under

each other. The linking of the cells is based on new rules especially

adapted for fluorescently stained TMAs which can consist of

several different tissues types. Instead of using only topological

graph metrics for the cell-graph classification, we also determine

the morphological and intensity based cell features of each cell-

graph. By combining all three feature types we were able to obtain

a successful tissue classifier for fluorescent histological slides.

We demonstrate our method on 180 core images of TMAs from

invasive triple negative breast cancer biopsies containing cancer-

ous tissue as well as stroma (connective tissue). Our method

method was able to separate tumor and connective tissue that

coexist on the same tissue core with a total overall accuracy of

88.80(607.73) %.

Materials and Methods

Tissue samples
The data set total consists of 210 tissue microarray core images

of invasive triple negative breast cancer biopsies obtained from 6

TMAs. The tissue was obtained from the tissue bank of the

National Center for Tumor Diseases (NCT) at the University

Hospital Heidelberg. Obtaining tissue samples was approved by

the ethics committee of the Medical Faculty Heidelberg.

According to the official regulations of the University’s Tissue

Bank determined by said ethics committee no individual consent

has to be obtained from individual patients for patient samples

older than 3 years. Documentation of all procedures are handled

in an ISO certified process by the NCT tissue bank. Each TMA

contains two cores of 1 mm diameter from 42 different patients

(total 84 cores per TMA). One core is obtained from the periphery

of the tumor and the other is obtained from the tumor’s center.

We excluded cores from our data set if their area was below fifty

percent of a regular core or if unusable. Each image is taken in a

20 fold magnification and has an average size of 280062900

pixels. All TMAs are stained with 3 fluorescent dyes. Every TMA

was stained with DAPI highlighting the cell nuclei as a

counterstain The other used antibodies (Vimentin, CK19 and

CK5/6) were conjugated with Alexa FluorH 488 (FITC alterna-

tive, green fluorescent dye) or Alexa FluorH 594 (red dye).

Figure 1A illustrates a tissue core stained with 2 different

biomarkers and DAPI as counterstain. Figure 1B–D illustrates

further representative examples of the DAPI channel of three

different tissue-cores.

Image acquisition
Fluorescently stained TMAs were automatically imaged using

the Nanozoomer HT Scan System (Hamamatsu Photonics,

Hamamatsu Japan) capable of scanning whole slides. Glass slides

were scanned at 20 fold magnification (resolution of 0.46 mm/

pixel). For the scanning of the glass slides, the slide scanner

automatically detects the region of interest that contains the array

of cores and also determines automatically a valid focal plane for

scanning. The resulting virtual slides had an averaged file size of

5 GB. Single core images with an average size of 280062900

pixels were located and extracted from the TMAs using template

matching [24].

General image analysis workflow
The key concept in this manuscript is the cell graph which we

use to capture the topological cell distribution in tissues as well as

the spatially related local cell features for classification. The major

steps in this approach are the segmentation of the cell nuclei in the

DAPI channel using watershed segmentation, the construction of

the cell graphs, extracting the topological and local cell features

from these graphs and use them to train a classifier. Image

processing algorithms were developed using MatlabTM (Math-

works, Natick, Mass., USA) with the image processing toolbox.

Our image analysis pipeline contains the following conceptional

steps (as illustrated in Figure 2):

2.1 Pre-processing: We first applied several image enhancement

methods to prepare the image for the subsequent segmentation

step.

2.2 Cell segmentation: A Watershed-Transformation was

applied for the cell nuclei segmentation.

2.3 Cell graph generation: Based on the segmented nuclei we

generated cell graphs which represent the topological distribution

of the nuclei on the tissue cores. We calculated several features for

every (sub-) graph and also calculated intensity and morphological

base features for every single nucleus on a core.

2.4 Classification and feature selection: A Support Vector

Machine was trained for classification step and the F-Score was

calculated for feature selection.

2.1 Preprocessing
In this first step, we applied several methods to enhance the

quality of the core image for the subsequent classification. We

Figure 2. A Flowchart showing the single steps of our methodology. After obtaining the images, pre-processing steps enhance the image
quality and watershed segmentation for the subsequent segmentation is applied. Accordingly the cell graphs are generated and features are
computerized. The last step uses a SVM to classify the graphs as either tumor or stroma.
doi:10.1371/journal.pone.0028048.g002
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started to remove shading artefacts, which delineate the result of

various optical phenomena such as lens vignetting or photo

bleaching. Shading artefacts in fluorescence imaging can also be

caused due to auto fluorescence of the samples or the mounting

medium. Shading correction (flat field compensation) was used to

compensate for lens vignetting as well as for inhomogeneity in the

illumination. Shading correction was achieved by performing a

black balance calibration using clear background areas. The next

step in the image processing pipeline was the removal of noise

and other small particles which were not suitable for later

analysis. To exclude unspecific and diffuse background staining

all pixels with intensity levels below a threshold of 25 were set to

zero. A Median-Filter with a 363 kernel was used to smooth the

image. The resulting image was converted into a binary image

(by the use of Otsu’s method [25]) in which objects with an area

smaller than 150px (smaller than the size of connective tissue

nucleus) are removed. Objects outside the regular core shape

were removed using morphological operations like closing or

opening combined with area filter. Eventually, isolated nuclei

were observed inside the core. We assumed that these isolated

nuclei belong to non tumerous cells and were thus excluded from

the tumor tissue. To this end, we determined the smallest

bounding box of the objects and expanded it by 20px in each

direction. Based on this new coordinates, an image was cropped

from the original binary image and the present objects in this

image were counted. If only one object was present, the object

was removed while the presence of more than one object implies

contact to other cells and the object remained. Furthermore, in

several cores we discovered large overstained areas with

maximum intensity levels. These areas, which could be caused

by agglomerated connective tissue cell nuclei at the TMA

preparation or to high exposure times, are not suitable for further

analysis and were removed. Figure 3B shows the results of the

preprocessing step.

2.2 Cell Segmentation
Automated cell segmentation in fluorescently stained TMA can

be problematic for reasons that include cell overlapping or

clustered cells, complex tissue structure, debris and uneven

background intensity due to auto fluorescence. Another difficulty

is intensity variation between the nuclei which can lead to over-

segmentation of the cell nuclei. Due to these intensity variations

among nuclei, we first divided the image into one image

representing only objects with a brighter illumination and one

representing the darker objects. We then applied the segmentation

step separately on both of these images. This separation was done

by calculating a threshold based on Otsu’s method [25] ignoring

background pixels. A segmentation algorithm that has proven to

be very useful for many nuclei or cell segmentation cases is the

watershed segmentation [26–28]. We applied seeded watershed

Figure 3. The different image processing steps and the graph generation steps. (a) original image of the DAPI-channel; (b) image after
shading correction and noise removal; (c) result of the watershed segmentation, the segmented cells are highlighted by green contour; (d) the image
after removal of single cells; (e) showing the cells which were connected via the graph generation step in the same color (cells marked with the same
color belong to the same sub-graph); (f) cell graph representation of the cells. The red dots are the nodes which represent the cells, the black lines are
the edges between them.
doi:10.1371/journal.pone.0028048.g003
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segmentation for the segmentation. Seeded watershed segmenta-

tion means, that starting regions, which are called seeds, are given

as input to the watershed segmentation. We set the seeds in an

automated way using the h-maxima transform [29]. The result of

this segmentation step is shown in Figure 3C.

2.3 Cell graph Generation
A graph is denoted as a set of objects where some pairs of

objects are connected by links. The connected objects are

represented by mathematical abstractions called nodes (also

called vertices), and the links that connect some pairs of nodes are

called edges. Formally, a graph is an ordered pair G = (V,E)

where V is the set of nodes and E the set of edges linking the

nodes of V. In our work, each of the former segmented cell nuclei

was used as a node. Figure 4 shows a conceptional representation

of cell graphs.

Different approaches are presented in literature for generating

cells graphs, which represent the topological behaviour of tissues

or cells in different scientific questions [19], [21–23], [30]. In [19]

Gunduz et al. make use of the Waxman model for the cell graph

generation. Bilgin et al. [22] and Gunduz et al. [21] use a

probability function for linking the cells among themselves. In

their approaches the probability of linking cells decays with a

growing Euclidian distance between the cells centroids. In [23],

[30] cells are simply linked if the Euclidian distance between their

centroids is below a specific distance. Tumor cells generally

appear in clusters, accordingly they can be expected in a

marginal distance of another or appearingly ‘‘touching’’ each

other. Thereby, this ‘‘touching’’ of nuclei occurs because of the

three dimensional structure of the histological sections. By using

the nuclei centroids for distance measurements alone it is possible

that cells get linked although they are more apart than typical

tumor cells. In our case, we are performing a pre-classification by

only building links between cell nuclei touching each other and

thereby excluding solitary cells (of connective tissue origin) from

the graph construction step. In our method we test if cells touch

each other by the following steps. We first convert the result of

the watershed segmentation into a binary image and then we

dilate each of the segmented cell nuclei separately. The dilation of

an (cell nucleus)-Image I with a structuring element S, denoted as

I›S, is defined as the set operation I+S~ zj ŜS
� �

z
\I=1

n o
where Ŝ denotes the symmetric structuring element. We chose a
diamond-shaped structuring element with a distance from the
origin of 2. We then determine, if the cell nuclei were in very
close contact (‘‘touching’’ appearance) and set a link between
them, if their pixel intersection was not an empty set after the
dilation step:

E I ,Jð Þ~
1 fxjx E I ^ x E Jg=1

0 otherwise

�
ð1Þ

where I and J are the particular images of two neighboring cell

nuclei. In tissues, tumor cells are eventually tightly surrounded by

connective tissue cells which could, after applying the above

described distance rule lead to structural errors in the cell graph.

Usually, the tumor cells are appearing with lower intensity levels

than the connective tissue cells. Hence we link only cells, if the

difference between their intensity levels is lower than a specific

threshold. This threshold is dependent on variations in staining

and fluorescence signal acquisition efficiency. We here empiri-

cally determined a difference of 30 intensity values as an

applicable threshold for our data set. Concluding, neighboring

cell nuclei with an intensity difference below this threshold are

linked:

E I,Jð Þ~
1 AMI~

1

S

XX{1

x~0

XY{1

y~0

i x,yð Þ{AMJ~
1

S

XX{1

x~0

XY{1

y~0

j x,yð Þ
�����

�����ƒ30

0 otherwise

8><
>: ð2Þ

Where AM is the arithmetic mean of the cell image intensity

level, X the number of rows, Y the number of columns and

S = X*Y. Summing up, setting a link between two cell nuclei in

our model depends on the probability of touching each other and

that the difference of their intensity levels is lower than a specific

threshold. Figure 4D shows an example image whereby single

cells are removed. Figure 4E highlights the cell nuclei, which

were linked through this graph generation step in the same color.

A visual graph representation of this step is shown in Figure 4F.

Cells which were not connected during the graph generation

process were treated in an additional step described in section

‘‘single cell classification’’.

Cell Graph Features
After generating the cell graphs, we computed several features

for the training of the classifier. In total we computed 22 features

which can be divided into three different categories. The first 10

features, in literature usually called graph metrics [19], [23],

capture the topological behavior of the graphs like the number of

cells in a graph, the number of links between them or further

topological relations among the cells (feature category T). The

remaining 12 features capture morphological properties (feature

category M) like area, shape as well as intensity based properties

(feature category I) of the single cell nuclei of a graph and were

Figure 4. Conceptional representation of cell graphs. (a) Artificial sketch of 3 different 3 cell type: tumor cells in blue, lymphocytes in white
and in purple fibroblast. (b) Cell graph representation of (a). Cells are depicted as nodes and links between them represent biological relations.
doi:10.1371/journal.pone.0028048.g004
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chosen based on their expected suitability. The last two categories

of features are first computed for each single cell nucleus and then

the average is used as a feature of the corresponding graph. Keep

in mind that several of these intensity based features depend on the

imaging conditions like the exposure time, the concentration of the

biomarker, time lag between staining and imaging due to photo

bleaching and further more. It requires that those conditions

remain constant across the datasets. In Table 1 the applied

features and graph metrics are described in detail.

2.4 Classification and feature selection
Support vector machines (SVMs) [31] are commonly used as

supervised learning methods for classification in computational biology

and image processing tasks [32–34]. Starting point for the training of a

SVM is a set of training data whose class membership is known:

D~ �xxi,yið Þj�xxi[R2,yi[ {1,z1f g
� �

ð3Þ

where �xxi are the feature vectors and yi their respective class labels

(tumor cells or connective tissue cells). The SVM maps these input

vectors into a higher dimensional space and constructs an optimal

hyper plane separating the data into two groups. By solving a

quadratic programming optimization problem, the SVM calculates

the normal vector �ww and the bias b of the separating hyper plane

�ww�xx{b~0 which maximizes the margin between the support

vectors �xxi of different classes. The width of the margin is equal to
2

wk k2
, thus the widest margin between the vectors is found by

minimizing under the restrictions yi �ww�xx{bð Þƒ1, requiring a

Table 1. Graph metrics used to train the classifier and their description.

Name Description

Graph metrics (topological features)

(1) Nr. of nodes Defines the number of nodes in a graph.

(2) Nr. of edges Total number of edges in a graph.

(3) Average degree The average degree of the nodes of the graph. The degree of a node is defined as the number of its edges. It explains the
number of neighbour nodes.

(4) Diameter The eccentricity e(u) of a graph node u in a connected graph G is the maximum graph distance between u and any other
node v of G: E uð Þ:~ max d(u,v) v[Vjf g The maximum eccentricity is the graph diameter.

(5) Radius The minimum graph eccentricity is called the graph radius: rad(G):~min E(u)ju[Vf g
(6) Nr. of central points Number of nodes that have eccentricity equal to the radius.

(7) Average clustering coefficient Here, the average clustering coefficients of the nodes of the graphs are used as a global metric. The clustering coefficient Ci of a

node vi is given as: Ci:~
2|Ei

k|(k{1)
Where k is the number of neighbours of node i and Ei is the number of existing edges

between its neighbours.

(8) Nr. of end nodes. The number of nodes with degree equal one.

(9) Percentage of end nodes. The percentage of end nodes of a graph.

(10) Hop-plot exponent The hop-plot exponent is computed by the slope of the hop-plot values as a function of h in log-log-scale. The hop-plot
value reflects the size of a neighbourhood between nodes within a hop h. For hop h, the hop plot value is defined as the
number of node pairs such that the path length between these pairs is less than or equal to h hops.

Averaged node features (morphological and intensity features)

(11) Average area The average area of the cells of the graph.

(12) Average eccentricity The eccentricity is the ratio of the distance between the centroid of the ellipse and its major axis length. The value is between 0
and 1 (an ellipse whose eccentricity is 0 is actually a circle, while an ellipse whose eccentricity is 1 is a line segment.). Eccentricity is

given as: ":~2|

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xmax

2

� �2

{
xmin

2

� �2

xmin

vuut
Where xmax is the major axis length and xmin the minor axis length.

(13) Average equivalent diameter
The equivalent diameter specifies the diameter of a circle with the same area as the cell: de~

2|
ffiffiffiffi
A
p
ffiffiffi
p
p Where A is the area of the cell.

(14) Average extent The extent specifies the proportion of pixels in the smallest rectangle containing the cell that are also in the region.
Computed as the cell area divided by the area of the smallest rectangle containing the cell.

(15) Average major axis length Major axis length specifying the length of the major axis of the ellipse that has the same normalized second central
moments as the cell.

(16) Average minor axis length Minor axis length the length (in pixels) of the minor axis of the ellipse that has the same normalized second central
moments as the cell.

(17) Average max Intensity Maximum intensity of the cell.

(18) Average min Intensity Minimum intensity of the cell.

(19) Average mean intensity Mean intensity of the cell.

(20) Average perimeter Perimeter: the distance around the boundary of the cell.

(21) Average STD Intensity Standard deviation of the intensity of a cell.

(22) Average median intensity Median intensity level of a cell.

doi:10.1371/journal.pone.0028048.t001
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separable data set. The hyper plane then is used as a sign function

for the classification of each feature vector of the test set. The

classification function returns either +1 if the test data is member of

the class, or 21 if it is not. When perfect separation is not possible, a

slack variable ji is introduced for each vector �xxi. The constraints for

computing the optimal hyperplane are then formulated as

yi �ww�xx{bð Þƒ1{ji and the hyperplane can be found by minimiz-

ing:

min
1

2
w2zC

XN

i~1

ji

" #
ð4Þ

where C is a cost parameter that determines the effect of outliners on

the resulting hyper plane. The described SVM is capable to separate

linear data. To create a classifier which is able to classify nonlinear

data the kernel trick is applied. The key idea is to transform �xxi into a

higher dimensional space to find a separating hyper plane using a

kernel. This allows the algorithm to fit the maximum-margin hyper

plane in a transformed feature space. Equation 4 can be rewritten as

(5):

minimize : W að Þ~{
XN

i~1

aiz
1

2

XN

i~1

XN

j~1

yiyjaiajk xi,xj

	 

ð5Þ

subject to :
XN

i~1

yiai~0,Vi : 0ƒaiƒC ð6Þ

where the ai values are the Lagrange multipliers, which can be

positive or negative, due to the equality constraints and k xi,xj

	 

is

the kernel function. In this article, we used a radial basis kernel

(RBF) k xi,xj

	 

~ec xi{yik k2

which is also known as Gaussian kernel.

Feature Selection
We calculated the F-score for the selection of the features

included in the SVM. Feature selection is a technique to find a

subset of features by removing most unimportant and redundant

features from the feature space. This technique generally helps to

improve the total performance of the classifier, speeding up the

learning process, allows a better representation of important

features and results in a remaining feature set with maintained

discriminatory power. The F-score measures the discrimination

between two sets of features [35]. A higher F-score indicates to a

higher discriminate feature than a feature with a lower F-score.

We calculated the F-score for each feature i as described in (7) with

the given training vectors xk,k~1, . . . ,m::

F ið Þ: �xxi
t{�xxið Þ2z �xxi

s{�xxið Þ2
1

nt{1

Xnt

k~1
xt

k,i{�xxt
i

� �2

z
1

ns{1

Xns

k~1
xs

k,i{�xxs
i

� �2
ð7Þ

where �xxt
i ,�xx

s
i ,�xxi are the mean values of the ith feature of the tumor,

stroma, and whole data set. xt
k,i is denoted as the ith feature of the

tumor instance and xs
k,i the ith feature of the stroma instance.

Single cell classification
Based on the two criteria for the cell graph generation (intensity

and distance), it can occur that individual cells are not linked to

any other cell. Thus, these cells are not included in the

classification step and we treat them with an additional algorithm

in a separate single cell classification step. We first try to identify

inflammatory cells (lymphocytes e.g.) and fibroblasts which are

part of the stromal class. Usually, inflammatory cell nuclei appear

as small roundish cell nuclei with a very high intensity compared

to other cells on the core. Cell nuclei are therefore classified as

inflammatory cells when: the cell nucleus intensity is higher than a

specific level, a metric which calculates the roundness is higher

than a threshold and the area is smaller than 500 pixels:

IC Ið Þ:~
1 AMI~

1

S

XX{1

x~0

XY{1

y~0

i x,yð Þ
 !

w200^4|p|S

w
w0:8^Sv500

0 otherwise

8><
>: ð8Þ

where AMi is the arithmetic mean intensity, S = X*Y the area and

w the perimeter of a cell nucleus. Fibroblasts generally have an

elliptical shape and were identified by:

F Ið Þ:~ 1 2|

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2

� �2

{
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2

� �2

xmin

vuut
w0:90 ^ Sv3000

0 otherwise
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>>: ð9Þ

where xmax is the major- and xmin the minor-axis of the cell nuclei.

These values are utilized to calculate the eccentricity of an ellipse.

The eccentricity of a circle is 0 and an ellipse which eccentricity is

1 is a line segment. The remaining cell nuclei were classified by the

use of a support vector machine. We used the 12 morphological

and intensity based features already mentioned in section ‘‘Cell

Graph features’’ to classify each single cell nucleus. We trained the

SVM with the single cell nuclei of our training set and evaluated

the algorithm separately as depicted in result section.

Results

The overall goal of our approach was to automatically classify

each cell of a TMA core by the help of the generated cell graphs.

The training and the classification is based only on the DAPI

channel primarily staining the nuclei. Figure 5 illustrates the

results of our approach on 4 different TMA-cores.

Cell segmentation step
The cell nuclei segmentation was evaluated on 3 randomly

selected real core images obtained from one TMA. In total 5162

nuclei were used and ground truth was obtained from one expert

who marked the over- and under-segmented cell nuclei. The

watershed algorithm proposed here can correctly segment

94.1%(63.75) of the nuclei. Table 2 shows the detailed

segmentation results and Figure 3C shows an example of this step

whereby the segmented nuclei are surrounded by a green contour.

Feature selection
Feature selection simplifies and shortens training of a classifier,

and frequently also improves its accuracy. For feature selection

from 30 core image we first generated in total 7888 topologically

disjunct cell graphs leading to use the same total number of feature

vectors. This total set of features comprises 4065 feature vectors for

the tumor class and 3823 for the stroma class. The feature values

occur within largely varying numerical ranges. Therefore we

normalized them to the range of [0,1] to enhance the learning

progress.

We calculated the F-score (discriminative power of a feature) for

each of the 22 features from Table 1 to determine the best feature

set for the classification task. Based on the results shown in Table 3
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we picked the best 15 features for the training of the support

vector machine. Our results allow the comparison the discrim-

inative power of the three studied categories (T, I, M) of features.

We find that the most predictive features are the morphological

and intensity based features like the standard deviation of the

intensity of a cell graph, the minor axis length of the cell nuclei

within a cell graph and the equivalent diameter of them. The

features with the lowest performance belong to the graph metrics:

the number of central points, the number of end nodes and the

number of edges.

Cell-graph Classification
For the training of the SVM we used a training set of 30 cores

obtained from one slide and with the above described feature set.

The remaining 180 cores were used as test set and are obtained

from 5 other slides. Images used in the test set were excluded from

the training set. For training the classifier we manually segmented

the 30 cores into tumor and stroma according to the used

biomarkers. Vimentin was used as stromal marker. Although it is

partly expressed in tumor cells Keratin 5/6 and 19 allowed the

distinct segmentation of the tumor. Cores where no stain for the

keratins was observed were excluded from the study. We

determined the total areas of both classes in the data set averaged

over all cores, the area of tumor is 64.6% whereas the area of

stroma is 35.4%. Table 4 shows the averaged accuracies of the

training set, the 5 slides of the test set and the total averaged values

of the test set. We present the overall accuracies and the

producer’s accuracy of the tumor and the stroma class. Averaged

over the test set, we achieved a total overall accuracy of

88.80(607.73). For the prediction of the tumor class we achieved

Figure 5. The results of the classification. (a–d) showing the original RGB core images; (e–h) showing the corresponding DAPI channel as an
intensity image of the cores (a–d); (i–l) results of the classification step, green = cells classified as tumor cells, blue = cells classified as stroma cells.
doi:10.1371/journal.pone.0028048.g005

Table 2. Accuracy of the watershed cell segmentation.

Total Nuclei Correctly segmented Over-segmented Under-segmented

Sum 5162 4860 272 30

Percentage 100% 94.1(63.75) 5.3(64.0) 0.6(60.3)

doi:10.1371/journal.pone.0028048.t002
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an average accuracy of 88.02(613.51) and for the stroma class an

accuracy of 84.67(611.80).

As mentioned in the method section, some of the cell nuclei

were not linked during the cell-graph generation step with a cell-

graph because they are too far from other cells or the difference

between their intensities does not allow linking them. We added an

optional algorithm for the classification of these cells and present

the results in Table 5. By the use of this single cell classification

algorithm we achieved an overall accuracy of 86.12(607.46), an

accuracy of 86.60(613.22) for the tumor class and 79.75(613.27)

for the stroma class. The use of the single cell classification

therefore reduces the total accuracy but gives the advantage to

classify each cell available on the core.

Discussion

The high throughput analysis of fluorescently stained histolog-

ical slides is becoming of increasing importance. To biomedical

studies it offers the great advantage of objective biomarker

quantification in individual color channels. Unfortunately, it in

the same time results in an increased difficulty of distinguishing

tumor and stroma tissue. We therefore here presented a new

method capable of classifying fluorescently stained histological

slides into tumor and stroma in the DAPI channel. The restriction

to the DAPI channel severely reduces the available information for

the image processing steps compared to the other methods based

on all RGB color channels. We demonstrate that our approach is

capable of separating the tumor from other tissue kinds on the

same core in triple negative breast cancer as an example of higly

heterogeneously expressing tumor tissue.

Technically, we make use cell graphs which have been used

previously deployed for chromogenic tissue. As we did not know

which kind of features might be effective for classifying

fluorescence tissue we combined different kinds of features:

topological features (T), morphological (M) and intensity based

features (I) of the single cell nuclei related to the particular cell

graph. We performed a systematic and quantitative evaluation of

the value the individual features contribute to the discrimination

between tumor and stroma tissue. Our results showed that the

most relevant features indeed do not belong to the previously in

literature used topological metrics but belong to the class of either

morphological or intensity based features. The integration of

morphological and intensity based features into the classification

step significantly contributed to the increase in the classifiers power

to discriminate tumor and stroma. The use of a broad spectrum of

feature types reflects the complex visual tasks pathology perform in

their daily histological assessments.

For segmentation we used the watershed algorithm. Nuclei were

linked if they were close to each other and the difference of their

intensity level is in a certain threshold. The linked cell nuclei then

formed the cell graphs representing the topological structure of the

whole tissue core. After segmentation the support vector machine

was trained using the extracted features. Our evaluation on a total

test set of 180 single core images yielded an overall accuracy of

88.80(607.73) or combined with the optional single cell

classification an overall accuracy of 86.12(607.46).

Compared to other methods classifying cancer tissues we

achieved improved results. But the direct comparison of the

obtained results with previous works is difficult due to different

tissue types, preparations methods and staining protocols used in

evaluations. Bilgin et al. make use of cell graphs [22] for the

classification of chromogenic stained breast cancer tissue samples

Table 3. The F-scores of each feature in descending order.

Features Type F-score

Average STD Intensity I 0.240

Average minor axis length M 0.212

Average equivalent diameter M 0.209

Average area M 0.182

Average max intensity I 0.143

Average mean intensity I 0.108

Average perimeter M 0.063

Average median intensity I 0.056

Average major axis length M 0.051

Hop-plot exponent T 0.039

Average degree T 0.038

Percentage of end nodes T 0.038

Average eccentricity T 0.038

Diameter T 0.038

Radius T 0.038

Average extent M 0.038

Average min Intensity I 0.016

Nr. of nodes T 0.008

Average clustering coefficient T 0.007

Nr. of edges T 0.006

Number of end nodes T 0.004

Number of central points T 0.001

Average morphological features M 0.144

Average intensity features I 0.112

Average topological features T 0.023

The table shows the evaluated features sorted by their decreasing value for
tissue classification (F-score). For each feature it is given whether it is of
morphological (M), intensity (I), and topological character (T).
doi:10.1371/journal.pone.0028048.t003

Table 4. The average classification accuracies.

Training set Test set Average 1–5

1 2 3 4 5

Overall 88.47(606.68) 87.65(608.19) 90.30(606.44) 88.68(607.19) 88.76(606.98) 88.59(609.83) 88.80(607.73)

Tumor 89.26(610.20) 87.56(613.29) 87.83(612.47) 88.00(617.64) 88.98(610.01) 87.71(614.13) 88.02(613.51)

Stroma 85.14(610.95) 81.19(611.62) 91.45(606.21) 82.97(615.12) 80.02(612.35) 86.90(613.69) 84.67(611.80)

The table shows the accuracies of the training set and the accuracies of the slides from the test set.
doi:10.1371/journal.pone.0028048.t004
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and reached an overall accuracy of 79.2% on their data set. Breast

cancer TMA cores stained with chromogenic dyes where

processed in [12] and classification achieved an accuracy of 80%

for standard H&E stains and an accuracy of 78% of IHC stained

tissues. As the direct comparison of the quantitative results

obtained is nearly impossible we here performed the systematic

quantitative feature comparison which clearly shows the impor-

tance of utilizing all three different feature types. From this we

conclude that the challenges arising from working only with DAPI

signals in a single color channel can at least well be compensated

for by using multiple cell graph feature categories.

The standard deviation of the achieved accuracies in our own

data shows an inferior performance on some cores of the SVM.

There are several reasons for the performance-loss on such cores.

Some cores have a squashed boundary due to the manufacturing

of the tissue cores in which cores are pressed into preformed holes.

This eventually leads to a higher concentration of cells at border

regions which again could lead to a misclassification of these cells

due to the wrong topological organization. Another reason for

difficulties in processing individual TMAs is that there are stronger

intensity alterations between the slides caused by different staining

conditions or different imaging conditions such as the exposure

time. By standardized experimental protocols this could be

avoided in a more routine application in future.

It is expected that the method will require further adaptation of

particular parameters and a general improvement when being

challenged with tissues of different topological structures. We

expect that the performance of our method could decrease on

tissues consisting of a greater number of appearingly isolated cells.

In such a case the single cell classification based could be improved

using for example texture based features. Generally the here

presented method could also be deployed for separating not only

stroma and tumor but other cell types like lymphocytes. Therefore,

the here presented method is an important improvement towards

the automated evaluation of new tumor marker in clinical research

and diagnostics.
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