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Abstract: The antioxidant activity (AA), total phenolic content (TPC), and total flavonoid content
(TFC) of selected Indonesian Zingiberaceae herbs were determined. An optimization extraction pro-
cedure was conducted by using Taguchi L16 orthogonal array. Four chemical assays were applied,
including 2,2-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity assay, H2O2 scavenging
activity assay, Folin–Ciocalteau (F–C) assay, and NaNO2-AlCl3-NaOH assay, which revealed remark-
able differences in AA, TPC, and TFC. The result indicated the diversity of AA composition among
the herbs, and C. longa exhibited the highest AA. HPLC-PAD analysis revealed that curcumin was
present in five high antioxidant herbs, and the highest amount was in C. longa. Pearson correlation
analysis indicated that the identified TPC and TFC were significant contributors to AA, and curcumin
was likely the main contributing antioxidant compound. Our approach concluded that C. longa is the
greatest source of natural antioxidants among 12 Indonesian indigenous Zingiberaceae herbs. The
use of a mixed-method approach to augment the findings of solitary methods might facilitate future
researchers to uncover deeper and hidden meanings.

Keywords: antioxidant activity; correlation analysis; flavonoid; Indonesian herbs; phenolic; mixed-
method

1. Introduction

The antioxidants are generally known as natural or synthetic compounds which avoid
or prolong the damage of cells in the presence of reactive oxygen by opposing the oxidation
process or inhibiting the reaction promoted by oxide or peroxide species, mostly known as
free radical oxygen species [1]. The free radicals generated during cell metabolism will be
deactivated and stabilized by the antioxidants before and after attacking the targets in the
biological system [2]. Effective antioxidants break down the radical chain reaction and act
as radical scavengers [1,3]. Antioxidants therefore play a predominant role as stabilizers to
maintain biological functions without fail.

Antioxidants are from either natural or synthetic source. Natural plant extracts are
usually rich in antioxidants, which are good sources for food additives, medicine, and
cosmetics purposes [4]. In food, antioxidants are needed to prevent food deterioration
during storage or processing and maintain the food quality of freshness, nutrients, texture,
aroma, and functionality [5]. Antioxidants are present in food itself or by external addition.
In medicinal use, antioxidant activity is generally due to their ability to exhibit radical
scavenging capacities. The phytochemicals such as phenolics, flavonoids, anthocyanins,
carotenoids, ascorbic acids, terpenoids, tannins, and tocopherols in medicinal plants are
known for preventing and curing disease [6]. In cosmetics, the effective use of topical
antioxidants to improve the protection system of endogenous cutaneous is well known [7].
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Synthetic antioxidants are ineffective in some formulations because of their instability and
low absorption in the aqueous media. Furthermore, some active ingredients in synthetic
antioxidants might exhibit contradictory reactions leading to problems such as allergies,
irritant contact dermatitis, phototoxicity, and photo allergies [7,8]. Natural plant antioxi-
dants and their derivatives used in anti-aging cosmetics exhibit better performance and
less toxicity over synthetic antioxidants and are gaining interest worldwide [2,9].

Indonesia, located in Southeast Asia, inherits rich biodiversity and traditional medicine.
Around 2500–7500 plant species out of 30,000–40,000 plant species are medicinal plants [10].
The Indonesian indigenous Zingiberaceae herb family is the most widely applied and known
for its potency as a natural antioxidant. These plants contain mainly phenolics, terpenoids,
and alkaloids [11,12]. Studies investigating Zingiberaceae as prospective antioxidant sources
have increased significantly. The antioxidant activity (AA) property of Zingiberaceae plants
is related to their chemical composition primarily attributed to their richness in total
phenolic content (TPC), total flavonoid content (TFC), terpenoids, alkaloids, and organic
acids, with curcumin as the main antioxidant constituent in most of the plants from this
family [3,11,13,14]. Ultrasonic extraction [15] is one of the prominent extraction techniques
along with supercritical fluid extraction [16], microwave-assisted extraction [17], and hot
water extraction [18].

The purpose of this study was to determine the AA as well as the TPC and TFC by
chemical assays in 12 Indonesian indigenous Zingiberaceae herbs, to find promising natural
antioxidants for future use in diverse fields such as food, medicine, and cosmetics. It
was desirable to select the specific assay based on fitness for purpose. For example, cell
lines testing might be needed for cosmetic purpose. Herein, we used a mixed-method
approach [19] integrating both qualitative and quantitative methods for sample collection,
chemical analysis, correlation analysis, and result interpretation. Optimum ultrasonic ex-
traction conditions efficiently obtained via Taguchi experiment design [20] was adopted for
antioxidant extraction first. The preliminary chemical assay results were further confirmed
by high-performance liquid chromatograph−photodiode array detector (HPLC-PAD) in-
strumental analysis and correlation analysis to find out the major active compounds and
components causative to the AA.

2. Materials and Methods
2.1. Chemicals and Reagents

All chemicals of either LC grade or analytical grade have been purchased from various
suppliers. In brief, 2,2-diphenyl-2-picrylhydrazyl (DPPH, ≥99%), Folin–Ciocalteau reagent,
formic acid (ACS reagent purist. p.a.), aluminum chloride anhydrous, ethanol (LC grade,
99%), sodium phosphate dibasic (99%), hydrogen peroxide (technical, 30% (w/w), in water),
and sodium phosphate monobasic (99%), were purchased from Sigma Aldrich (St. Louis,
MO, USA); gallic acid monohydrate (ACS reagent, 98%), naringin, curcumin (≥99%), and
quercetin (≥95% HPLC, solid) were from Fluka (Buchs, Switzerland); ascorbic acid and
methanol were from Tedia (Fairfield, OH, USA). Ferulic acid was from TCI (Tokyo, Japan),
chlorogenic acid was from Acros organic (Schwerte, Germany); sodium hydroxide was
from Macron Fine Chemicals (Lehigh, PA, USA); sodium carbonate anhydrous was from
Merck (Darmstadt, Germany); and sodium nitrite from Showa (Tokyo, Japan).

2.2. Herb Sample Collection and Preparation

The rhizome part of Zingiberaceae species of 12 Indonesian indigenous herbs tradition-
ally used in cosmetics and medicines was used. The species included Zingiber officinale (Z.
officinale), Zingiber zerumbet (Z. zerumbet), Zingiber cassumunar (Z. cassumunar), Curcuma
aeruginosa (C. aeruginosa), Curcuma xanthorrhiza (C. xanthorrhiza), Curcuma longa (C. longa),
Curcuma manga (C. manga), Curcuma heynana (C. heynana), Curcuma zedoaria (C. zedoaria),
Alpinia purpurata (A. purpurata), Boesenbergia rotunda (B. rotunda), and Kaempferia galangal
(K. galangal) (Figure 1), and all were purchased in August 2018 at a traditional market in
Jember, East Java, Indonesia. Before extraction, the samples were cleaned, chopped, dried
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for two days, grinded into powder, and stored in vacuum plastic bags. The water content
of the samples was determined by using an oven at 105 ◦C in triplicate.

Antioxidants 2021, 10, x FOR PEER REVIEW 3 of 17 
 

aeruginosa (C. aeruginosa), Curcuma xanthorrhiza (C. xanthorrhiza), Curcuma longa (C. longa), 

Curcuma manga (C. manga), Curcuma heynana (C. heynana), Curcuma zedoaria (C. zedoaria), 

Alpinia purpurata (A. purpurata), Boesenbergia rotunda (B. rotunda), and Kaempferia galangal 

(K. galangal) (Figure 1), and all were purchased in August 2018 at a traditional market in 

Jember, East Java, Indonesia. Before extraction, the samples were cleaned, chopped, dried 

for two days, grinded into powder, and stored in vacuum plastic bags. The water content 

of the samples was determined by using an oven at 105 °C in triplicate. 

 

Figure 1. The rhizome part of 12 Indonesian indigenous Zingiberaceae species herbs: (1) K. galanga, (2) B. rotunda, (3) C. 

longa, (4) Z. cassoumounar, (5) C. heynana, (6) A. purpurata, (7) Z. officinale, (8) Z. zerumbet, (9) C. manga, (10) C. aeruginosa, 

(11) C. xanthorrhiza, and (12) C. zedoaria. 

2.3. Taguchi Experimental Design for Ultrasonic Extraction 

A popular Taguchi L16 orthogonal array experimental design was adopted to find the 

optimum ultrasonic extraction [15]. This design involved three variable factors (ethanol 

concentration, extraction time, and solid-to-liquid ratio), each at four levels, with a total 

of 16 experimental measurements using C. zedoaria as a representative sample. Three fixed 

factors were temperature (32 °C), frequency of the ultrasonic bath (40 Hz), and volume of 

ethanol added (10 mL). Our primary goal was to identify herbs with high AA by a mixed-

method approach; we therefore focused on AA optimization first. The larger-the-better 

signal-to-noise ratio (SN ratio) for AA was selected to find the optimum extraction condi-

tions, and described as follows: 

𝑺

𝑵
=  −𝟏𝟎 𝐥𝐨𝐠 (

𝟏

𝒏
 ∑

𝟏

𝐲𝐢
𝟐

𝐢=𝐧
𝐢=𝟏  )  (1) 

where yi denotes the ith measured AA, and n is the total number of measurements. 

Figure 1. The rhizome part of 12 Indonesian indigenous Zingiberaceae species herbs: (1) K. galanga, (2) B. rotunda, (3) C. longa,
(4) Z. cassoumounar, (5) C. heynana, (6) A. purpurata, (7) Z. officinale, (8) Z. zerumbet, (9) C. manga, (10) C. aeruginosa, (11) C.
xanthorrhiza, and (12) C. zedoaria.

2.3. Taguchi Experimental Design for Ultrasonic Extraction

A popular Taguchi L16 orthogonal array experimental design was adopted to find the
optimum ultrasonic extraction [15]. This design involved three variable factors (ethanol
concentration, extraction time, and solid-to-liquid ratio), each at four levels, with a total of
16 experimental measurements using C. zedoaria as a representative sample. Three fixed
factors were temperature (32 ◦C), frequency of the ultrasonic bath (40 Hz), and volume
of ethanol added (10 mL). Our primary goal was to identify herbs with high AA by a
mixed-method approach; we therefore focused on AA optimization first. The larger-the-
better signal-to-noise ratio (SN ratio) for AA was selected to find the optimum extraction
conditions, and described as follows:

S
N
=−10 log(

1
n

i=n

∑
i=1

1
yi

2 ) (1)

where yi denotes the ith measured AA, and n is the total number of measurements.
The appropriate amounts of powdered samples were weighed and soaked with differ-

ent concentrations (50%, 60%, 70%, and 80%) of 10 mL ethanol in a tube and ultrasonically
extracted in an ultrasonic bath Delta DC150H (Delta Ultrasonic CO., Ltd., Taiwan). The
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obtained extracts were filtered by using Whatman™ no. 42 filter paper and dried using N2
fluxes. The dried extract was then weighed (approximately 2–5 mg); an aliquot of 10 mL
99% methanol was added, vortexed, and filtered by using a PTFE 0.22 µm syringe filter.
The herb extract stock solutions were stored in glass containers at 4 ◦C prior to analysis.

2.4. Determination of Antioxidant Activity

The antioxidant activity (AA) was determined by using both DPPH free radical and
H2O2 scavenging activity assays. In the following, AA represented the measured AA by
DPPH free radical scavenging assay result, whereas AA (H2O2) represented the H2O2
scavenging activity assay result as a comparison use.

In the DPPH free radical scavenging assay, prior to AA determination, 0.2 mL herb
extract stock solution was diluted with 0.2 mL of 15% methanol to yield 10 mg/mL herb
extract solution. The 0.5 mg/L test solution was prepared by adding 0.20 mL herb extract
solution to 3.80 mL DPPH solution. The solution was shaken vigorously and allowed to
stand for 30 min at room temperature in the dark. The DPPH solution and ascorbic acid
were used as the control and standard, respectively. Daily prepared standard calibration
curves of ascorbic acids (40 to 250 µg/mL) were used to calculate the AA. The absorbance
was measured at 515 nm in a T60 UV-Visible spectrophotometer.

Similarly, in the H2O2 scavenging activity assay, a 40 mM H2O2 solution was prepared
before the AA (H2O2) determination by dissolving 0.453 mL of 30% H2O2 in 100 mL of
0.1 M phosphate buffer (pH 7.4). A 0.5 mL herbs extract stock solution was diluted with
0.5 mL methanol to obtain a concentration of 10 mg/mL herbs extract solution. The test
solution was prepared by adding 1.0 mL of herb extract solutions to a 0.6 mL of 40 mM
H2O2 solution and 3.40 mL phosphate buffer (pH 7.4). The solution was shaken vigorously
and allowed to stand for 10 min at room temperature in the dark before measurement. The
H2O2 solution and ascorbic acid were respectively used as the blank control and standard.
Daily prepared standard calibration curves of 50 to 800 µg/mL ascorbic acid were used
to calculate the AA (H2O2). The absorbance was measured at 230 nm in a T60 UV-Visible
spectrophotometer.

The antioxidant activity of both DPPH free radical and H2O2 scavenging activity
assays can be calculated as follows:

Antioxidant activity (%) =

[
(A0 − A)

(A0)

]
×100% (2)

where A0 is the blank control absorbance and A is the sample absorbance.

2.5. Determination of TPC

The total phenolic content (TPC) was determined by using the Folin–Ciocalteau (F–C)
assay described by Li, et al. [3], but with minor modifications. An aliquot of 400 µL extract
was mixed with 2.0 mL of 10% F–C reagent and 1.60 mL 7.5% Na2CO3 solution. The
mixture solution was shaken for 5 min and allowed to stand for 15 min at 37 ◦C followed
by incubation in the dark for 1 h. The same T60 UV-Visible spectrophotometer was used
to measure the absorbance at 725 nm to determine the TPC. Daily prepared standard
calibration curves of gallic acid in methanol (20 to 250 µg/mL) was used to calculate the
TPC, expressed as milligrams of gallic acid equivalents per gram of dried powdered sample
(mg GAE/g).

2.6. Determination of TFC

The total flavonoid content (TFC) was determined by using the NaNO2-AlCl3-NaOH
assay by Li et al. [3], but with minor modification. An aliquot of 0.40 mL extract (or
standard) was mixed with 0.3 mL 5% NaNO2 and 2.0 mL distilled water. The mixture
solution was allowed to stand for 5 min and followed by the addition of 0.3 mL 10% AlCl3
and stood for another 6 min. After 1 min, the mixture solution was mixed with 2.0 mL
1.0 M NaOH and 3.2 mL distilled water, mixed with a vortex and stood for 15 min at
room temperature. The same T60 UV-Visible spectrophotometer was used to measure
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the absorbance at 422 nm to determine the TFC concentration. Daily prepared standard
calibration curves of quercetin (20 to 600 µg/mL) were used to calculate the TFC, expressed
as milligrams of quercetin equivalents per gram of dried powdered sample (mg QE/g).

2.7. Determination of SPC Content

The selected phenolic compounds (SPC) content was separated and identified on
HPLC-PAD system consisting of a Shimadzu Nexera-i LC-2040C LC, a LC-2040 autosam-
pler, a LC 2040 column oven, and a LC-2030/2040 PDA. An aliquot of 10 µL extract was
injected into the HPLC followed by separation performed at a flow rate of 1.0 mL/min on
an Agilent Zorbax Eclipse Plus C18 column (5 mm particle size, 150 mm length × 2.1 mm
ID). Mobile phase A was 1.0% formic acid in deionized water and mobile phase B was
methanol. The initial mobile phase was 5% B and increased to 90% B in 20 min gradient
elution time. The column oven temperature is accordingly increased from initial 25 ◦C to
final 90 ◦C. The absorbance was scanned in a range from 190 to 800 nm. Five SPCs, namely
curcumin, ferulic acid, naringin, gallic acid, and quercetin were used daily to prepare the
standard calibration curves. Other eluting peaks were tentatively identified by comparing
their retention time to the respective literature reported retention time.

2.8. Statistical Analysis

All experiments were performed in triplicate, unless otherwise stated. The results
were presented as mean ± SD (standard deviation). Taguchi experimental design results
were analyzed by using Minitab 19 from Minitab, LLC (State College, PA, USA). The
correlation analysis results of AA with TPC, TFC, and SPC were expressed as Pearson
correlation coefficients using SPSS Version 24.0 (SPSS, Chicago, IL, USA). The slope of the
calibration curve and the coefficient of determination (R2) were obtained by using MS Excel
2010 from Microsoft (Redmond, WA, USA).

3. Results
3.1. Optimum Conditions for Ultrasonic Extraction

An orthogonal array L16 design was implemented to the ultrasonic extraction. Solvent
concentration, extraction time, and solid-to-liquid ratio (S-L) were selected parameters that
could affect the antioxidant compounds extracted [21]. Using C. zedoaria, one of Indonesian
indigenous herbs that is already known as a traditional medicine, with high AA as a
representative sample, we see that the measured TPC, TFC, and AA values differ to a large
extent with varying extraction parameters (Table 1).

Table 1. Experimental design (orthogonal array L16) and measured results using C. zedoaria.

Exp. No
Parameters TPC

(mg GAE/g)
TFC

(mg QE/g)
AA
(%)Solvent (%) Time (min) S-L (g/mL)

1 50 50 0.02 4.81 8.96 12.85
2 50 60 0.04 3.87 9.27 11.35
3 50 70 0.06 2.02 3.45 9.36
4 50 80 0.08 1.51 2.59 8.86
5 60 50 0.04 3.55 7.82 11.06
6 60 60 0.02 8.25 15.83 11.06
7 60 70 0.08 1.80 4.02 7.97
8 60 80 0.06 2.30 4.60 8.96
9 70 50 0.06 2.81 14.48 10.86

10 70 60 0.08 2.79 15.25 11.45
11 70 70 0.02 7.70 25.27 15.94
12 70 80 0.04 1.95 3.63 8.86
13 80 50 0.08 3.55 14.48 14.14
14 80 60 0.06 5.14 21.75 13.84
15 80 70 0.04 4.42 21.35 13.05
16 80 80 0.02 4.45 12.76 12.65



Antioxidants 2021, 10, 1530 6 of 15

The overall optimum conditions selected were based on the main effects plot of SN
ratio. Herein, we selected the larger-the-better SN ratio approach to find the optimum
conditions for AA (Figure 2).
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Ethanol concentration exhibited positive effect on higher AA (Figure 2A) was also
obtained from previous AA compounds (phenolics, flavonoids, tannin, alkaloids) isolated
from various samples such as the extraction of 93 Chinese medicines [3], Zingiberaceae
species [11,20], Ipomoea batata leaves [12], and Algerian medicinal plants [22].

The calculated SN ratio of the AA response (Table 2) shows that the influence of solvent
concentration has the main effect on the antioxidant activity of the sample, followed by the
solid-to-liquid ratio (S–L) and the extraction time.

Table 2. The calculated SN ratio of AA response for solvent concentration, extraction time, and
solid-to-liquid ratio.

Level Solvent (%) Time (min) S–L (mg/mL)

1 20.42 21.69 22.89
2 19.71 21.50 20.81
3 21.22 20.95 20.50
4 22.55 19.75 20.29

Delta 2.84 1.94 1.99
Rank 1 3 2

3.2. TPC, TFC, and Antioxidant Activity

TPC and TFC have been considered major contributors to plant AA [3]. The TPC
(as mg GAE/g) was 32.57, i.e., the highest, in C. longa and was 2.55, i.e., the lowest, in Z.
zerumbet (Figure 3A). The TFC (as mg QE/g) was 279.87, i.e., the highest, in C. longa and
was 1.31, i.e., the lowest, in Z. officinale (Figure 3B).
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The plant AA was caused by the presence of different antioxidant components in
plant tissue. It was measured based on the well-known DPPH assay [23] and H2O2 assay.
The AA (as %) was found to be 94.85, i.e., the highest, in C. longa and 8.45, i.e., the lowest,
in Z. zerumbet (Figure 3C), while the AA (H2O2) (as %) was 64.46, i.e., the highest, in C.
longa and 11. 27, i.e., the lowest, in C. manga (Figure 3D).

Among the 12 Indonesian herbs investigated, the C. longa, C. xanthorrhiza, A. purpurata,
B. rotunda, and K. galangal presented the highest AA, TPC and TFC obtained.

3.3. Correlation Analysis of AA with TPC and TFC

Typical TPC contributing more to plant AA were mainly phenolic acids and flavonoids.
We adopted the Pearson correlation coefficient (PCC), also referred to as Pearson’s r, to
express the strength and direction of the linear relationship of correlation. The PCC scatter
plots of AA, TPC and TFC are shown in Figure 4.
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3.4. Correlation Analysis of AA with SPC

The C. longa, B. rotunda, A. purpurata, C. xanthorrhiza, and K. galanga exhibiting high
TPC, TFC, and AA were further confirmed and quantified for five SPC. The analytical
figures of merit (Table 3) of the adopted HPLC-PAD method fit our research purpose. The
chromatograms of the five SPC standards and five highest AA herbs are shown in Figure 5.
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Table 3. Analytical figures of merit of HPLC-PAD method.

Compound Retention
Time (min)

LOD
(µg/mL)

LOQ
(µg/mL)

Repeatability
(RSD%, n = 3)

Recovery
(%)

Gallic acids 8.20 ± 0.014 0.20 0.52 <2% 98 ± 1
Naringin 10.30 ± 0.004 0.29 0.44 <5% 97 ± 4

Ferulic acids 10.41 ± 0.003 0.02 0.02 <4% 100 ± 3
Quercetin 11.24 ± 0.003 0.02 0.02 <4% 100 ± 4
Curcumin 12.02 ± 0.002 0.18 0.33 <6% 98 ± 5

The SPC content measured by HPLC-PAD (Table 4) revealed that curcumin and
quercetin were the most detected SPCs.

Table 4. SPC content (mg/g) measured by HPLC-PAD.

SPC Gallic Acid Naringin Ferulic Acid Quercetin Curcumin

C. longa ND ND ND ND 10.34 ± 0.02
B. rotunda ND ND ND 0.29 ± 0.007 0.61 ± 0.06

A. purpurata ND ND ND 0.07 ± 0.002 0.38 ± 0.022
C. xanthorrhiza ND ND 0.04 ± 0.005 0.43 ± 0.026 3.78 ± 0.553

K. galangal ND ND ND 0.32 ± 0.02 0.99 ± 0.08
ND: not detected.

The correlation relationships between AA and curcumin/quercetin as well as between
TPC and curcumin are shown in Figure 6.

Antioxidants 2021, 10, x FOR PEER REVIEW 12 of 17 
 

 
Figure 6. Pearson correlation scatter plots of relationship between (A) AA and curcumin, (B) AA 
and quercetin, (C) AA (H2O2) and curcumin (D) AA (H2O2) and quercetin, and (E)TPC and curcu-
min. 

4. Discussion 
The adoption of L16 orthogonal array design in ultrasonic extraction of Indonesian 

selected herb was a realistic alternative to reduce the experimental trials while achieving 
similar optimum conditions [15]. We selected the less reported C. zedoaria as a representa-
tive sample for initial optimization, as we were also interested in studying the matrix ef-
fect. C. zedoaria might contain AA compounds different from C. longa, the most common 
herbs in Zingiberaceae family. Table 1 that shows the measured TPC, TFC, and AA values 
differ to a large extent with varying extraction parameters. In a set of 16 experiments, the 
corresponding change ranged from 1.51 to 8.25 mg GAE/g, 2.59 to 25.27 mg QE/g, and 
7.97 to 15.94%, respectively. The results indicated that under respective optimum condi-
tions the enhancement factors (the ratio of the highest to the lowest measured values) were 
TPC~6, TFC~10, and AA~2. The increasing AA activity of C. zedoaria indicated that the 
number of extracted AA compounds was highly affected by the extraction conditions 
which were dictated by the characteristics of the targeted antioxidant compounds. This 
observation also holds true for known TPC and TFC compounds. Figure 2 shows that the 
overall optimum conditions selected, based on the main effects plot of SN ratios of AA 
was 80% ethanol concentration, 50 min extraction time, and 0.02 S-L. The ethanol concen-
tration exhibited a positive effect on higher AA (Figure 2A). This result was reached pre-
sumably because at higher concentration; the ability of ethanol to degrade the nonpolar 
cell walls via semi-polar interactions was enhanced, leading to the increasing release of 
intracellular phenolic and flavonoid compounds. Ethanol was among the best extraction 
solvents irrespective of the extraction method [3,11,13,15,17], and increasing ethanol con-
centration generally led to higher TPC yield [13,15,17]. Longer extraction time exhibited a 

Figure 6. Pearson correlation scatter plots of relationship between (A) AA and curcumin, (B) AA and
quercetin, (C) AA (H2O2) and curcumin (D) AA (H2O2) and quercetin, and (E)TPC and curcumin.



Antioxidants 2021, 10, 1530 11 of 15

4. Discussion

The adoption of L16 orthogonal array design in ultrasonic extraction of Indonesian
selected herb was a realistic alternative to reduce the experimental trials while achieving
similar optimum conditions [15]. We selected the less reported C. zedoaria as a representative
sample for initial optimization, as we were also interested in studying the matrix effect.
C. zedoaria might contain AA compounds different from C. longa, the most common herbs
in Zingiberaceae family. Table 1 that shows the measured TPC, TFC, and AA values differ
to a large extent with varying extraction parameters. In a set of 16 experiments, the
corresponding change ranged from 1.51 to 8.25 mg GAE/g, 2.59 to 25.27 mg QE/g, and 7.97
to 15.94%, respectively. The results indicated that under respective optimum conditions the
enhancement factors (the ratio of the highest to the lowest measured values) were TPC~6,
TFC~10, and AA~2. The increasing AA activity of C. zedoaria indicated that the number
of extracted AA compounds was highly affected by the extraction conditions which were
dictated by the characteristics of the targeted antioxidant compounds. This observation also
holds true for known TPC and TFC compounds. Figure 2 shows that the overall optimum
conditions selected, based on the main effects plot of SN ratios of AA was 80% ethanol
concentration, 50 min extraction time, and 0.02 S-L. The ethanol concentration exhibited
a positive effect on higher AA (Figure 2A). This result was reached presumably because
at higher concentration; the ability of ethanol to degrade the nonpolar cell walls via semi-
polar interactions was enhanced, leading to the increasing release of intracellular phenolic
and flavonoid compounds. Ethanol was among the best extraction solvents irrespective of
the extraction method [3,11,13,15,17], and increasing ethanol concentration generally led to
higher TPC yield [13,15,17]. Longer extraction time exhibited a negative effect of lower AA
(Figure 2B), which was presumably due to the resultant prolonged heat exposure leading
to the decreasing amount of targeted AA compounds [21,24]. The larger S–L also exhibited
a similarly negative effect of lower AA (Figure 2C), presumably due to the smaller solvent
volume available to penetrate the sample and leading to reduced solubilizing of the AA
compounds.

The calculated SN ratio for each factor (Figure 2) is presented numerically in Table 2.
The table contains a column for each factor (solvent %, time min, and S–L g/L), and each
table contains six rows for SN ratio at each factor level followed by delta and rank. Delta is
the difference between the maximum and minimum average SN ratio for the factor. The
factor with the largest delta ranks as the first, which means the highest influencing effect
on AA. Briefly, solvent concentration exhibits the highest effect, followed by solid-to-liquid
ratio, and extraction time.

TPC and TFC are widely present plant substances and have been considered as
significant contributors to AA [3], mainly due to their unique redox properties [8,14,25].
Plant TPC depends on their species/genetics and environmental conditions [26]. The F–C
assay commonly used to measure the TPC; however, this assay measures the total reducing
capacity of the sample, not just TPC. The TPC (as mg GAE/g) was 32.57, i.e., the highest
in C. longa and was 2.55, i.e., the lowest in Z. zerumbet (Figure 3A). The ~13 times TPC
difference was similar to previous studies on TPC and AA in various herbs and spices that
C. longa had the highest TPC [23,27]. Other high TPC herbs such as C. xanthorrhiza [27,28],
A. purpurata [29], B. rotunda [30], and Z. cassoumounar [31] were also reported.

Flavonoids are a group of phenolic compounds that exhibit important biological effects
and promising AA owing to their capability to scavenge reactive oxygen species effectively.
The AlCl3 assay measures the absorbing species in the final solution, not just TFC. Among
12 selected Indonesian herbs samples, the TFC (as mg QE/g) was 279.87, i.e., the highest
in C. longa and was 1.31, i.e., the lowest in Z. officinale (Figure 3B) similar to reported high
curcuminoid content. Previous studies have found lesser TFC in Z. officinale, Z. zerumbet,
and C. heynana [27,29,30]. The ~214 times TFC difference might be attributed to the type
of flavonoids present in the herbs. The less polar ones (isoflavones, flavanones, flavones,
and flavanols) could be better extracted by nonpolar solvents, whereas the more polar
ones (such as glycosides and aglycones) are better extracted by alcohol or water-alcohol
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solvents [32]. The range of TFC is largely affected by genetic diversity, as well as biological,
seasonal, and year-to-year variations [33].

The plant AA is caused by the presence of different antioxidant components in plant
tissue. Previous studies have found that the AA of bioactive components such as TPC,
tannin, anthocyanin, TFC, phenols, alkaloids, and pro-anthocyanins are mainly due to
their unusual redox properties [2,8,11]. The AA was measured in an exact concentration-
dependent manner based on the well-known DPPH assay [23] by reducing violet-color
DPPH solution to yellow-colored product, diphenyl picryl hydrazine. The grade of color
is equal to the synergetic effect by antioxidant ability and concentration of reducing com-
ponents in the sample [2]. The AA (as %) was 94.85, i.e., the highest in C. longa and 8.45
i.e., the lowest in Z. zerumbet (Figure 3C). The ~11 times AA difference was close to the
~13 times TPC difference. Meanwhile, the AA (H2O2) obtained the highest value (as %),
which was 64.46 in C. longa, and it obtained 11.27, which was the lowest in C. manga
(Figure 3D). The different results of AA by DPPH and peroxide assay were probably due to
peroxide’s weak reactivity in aqueous solutions [34]. Nevertheless, the variation pattern
between these two AA results appeared similar except for Z. zerumbet, indicating the AA
was mainly contributed by the phytochemicals or substances essential in the herbs. A
notable difference was an AA (%) range, specifically, 100% for DPPH assay and 70% for
H2O2 assay, presumably due to the higher sensitivity of DPPH assay.

Typical TPC contribute more to plant AA are mainly phenolic acids and flavonoids.
The matrix difference among plant species from different geographical origin and variance
in genetics and cultivation conditions make the correlation analysis between AA with TPC
and TFC a challenging work [21,23,28,29,31,35,36]. We adopted the Pearson correlation
coefficient (PCC), also referred to as Pearson’s r, to express the strength and direction of
the linear relationship of correlation. The PCC between AA and TPC (Figure 4A) was
0.699 (p-value < 0.011) revealing a strong positive relationship. Similar result of PCC 0.869
(p-value < 0.000) between AA (H2O2) and TPC in Figure 4C, revealed a strong positive
correlation. According to this result, plant AA was contributed mainly by TPC [1,3] and
was highly influenced by the number and position of the hydrogen-donating hydroxyl
groups. However, TPC was not the sole contributing component, and other substances
cannot be ignored, especially at lower TPC (<10 mg GAE/g), which might elucidate the
associated pronounced scattering extent. Another possible cause was that no sample clean
up procedure was followed before TPC determination, allowing other plant substances
to contribute to the TPC falsely. The PCC between AA and TFC (Figure 4B) was 0.541
(p-value < 0.069) revealing a moderate positive relationship, while the PCC between AA
(H2O2) and TFC (Figure 4D) was 0.844 (p-value < 0.000), revealed a strong positive correla-
tion. The stronger AA and TPC relationship compared to AA and TFC relationship might
indicate that TFC contributes less AA than TPC, according well with previous studies that
TFC plays a less substantial AA contributing role [2,3]. The PCC between TPC and TFC
(Figure 4E) was 0.913 (p-value < 0.000) revealing an expected strong positive relationship
as both classes all contribute to plant AA. Plausible contributors from other families of
compounds such as anthocyanins, carotenoids, ascorbic acids, terpenoids, tannins, and
tocopherols in medicinal plants [6] cannot be excluded. Confirmative analysis of these
compounds warrants advanced MS analysis or using standard compounds in the future.

C. longa, B. rotunda, A. purpurata, C. xanthorrhiza, and K. galanga exhibiting high
TPC, TFC, and AA, were further confirmed and quantified their five SPC content using
HPLC-PAD. The chromatograms of the five SPC standard solutions (Figure 5A) and herbs
mentioned before disclose that the highest curcumin (peak e) amount was found in C.
longa (Figure 5C) and C. xanthorrhiza (Figure 5E) as reported in previous studies [23,37].
The intensive peak at 12.700 min RT in B. Rotunda (Figure 5F) was uncertainly assigned
as antioxidant active panduratin, alpiretin, pinocembrin, or cardamonin [35,36]. The high
peak at 12.191 min RT in A. purpurata (Figure 5D) was tentatively assigned as kaempferol,
rutin, or oliconide [32]. At 12.199 min RT in K. galangal (Figure 5B), the peak was tentatively
assigned as ethyl-p-methoxycinnamate [38]. Confirmative analysis of these tentatively
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assigned compounds warrants relevant standard compounds and elaborated MS analysis.
The measured SPC content (Table 4) revealed that curcumin and quercetin were the most
detected SPC. Curcumin, a flavonoid polyphenol, was present in all five herbs with the
highest being 10.34 mg/g in C. longa and the lowest being 0.38 mg/g in A. purpurata. The
~10 times curcumin content difference is much larger than the ~2.5 times TPC difference.
Quercetin, a flavonoid compound present in most plants [30], was present in 4 herbs
(except C. longa) with the highest amount being 0.43 mg/g in C. xanthorrhiza and the lowest
being 0.07 mg/g in A. purpurata. The ~6 times quercetin content difference was similar
to the ~6.7 times TFC difference. The PCC between AA and curcumin (Figure 6A) was
0.849 (p-value < 0.069), and PCC between AA (H2O2) and curcumin (Figure 6C) was 0.943
(p-value < 0.016), revealing a strong positive relationship which indicated that AA was
likely contributed mainly by curcumin. The PCC between AA and quercetin (Figure 6B)
was −0.209 (p-value < 0.559), revealing a weak negative relationship, while the PCC
between AA (H2O2) with quercetin (Figure 6D) was 0.248 (p-value < 0.807), revealing weak
correlation. This unexpected result was presumably due to the fact that quercetin was in
flavonol glycoside form such as quercetin-3-O-β-D-glucoside [39] which cannot be detected
by the free quercetin specific HPLC-PAD method used in this study.

The PCC between AA (H2O2) and curcumin (Figure 6C) was 0.943 (p-value < 0.026),
revealing a strong positive relationship which indicated that AA (H2O2) was likely con-
tributed mainly by curcumin. The PCC between AA (H2O2) and quercetin (Figure 6D)
was 0.248 (p-value < 0.807), revealing a weak positive relationship. The PCC between TPC
and curcumin (Figure 6F) was 0.921 (p-value < 0.026), revealing a strong positive linear
relationship between TPC and curcumin. A strong positive linear relationship between
TPC and curcumin (Figure 6E) was revealed with PCC 0.921 (p-value < 0.026). The practice
of the mixed-method approach finds and confirms C. longa as the best natural antioxidant
source in Indonesian indigenous Zingiberaceae herbs.

5. Conclusions

The chemical assay revealed a remarkable difference in AA, TPC and TFC in 12 In-
donesian indigenous Zingiberaceae herbs and the highest individual measured values in
C. longa. HPLC-PAD analysis revealed curcumin in the five top antioxidant herbs with
the highest concentration in C. longa. Correlation analysis showed a strong positive linear
relationship between AA and TPC (or curcumin) and revealed TPC (or curcumin) to be
the major antioxidant compound (or component). Our integration of a mixed-method
approach concludes C. longa as the best source of natural antioxidants in 12 Indonesian
indigenous Zingiberaceae herbs. We argue that the mixed-method approach can be useful
for antioxidant studies as it can help deal with complexity and facilitate a more profound
understanding of individual results from chemical assay, instrumental analysis, and corre-
lation to obtain more comprehensive explanations. The use of the mixed-method approach
to augment the findings of solitary methods might facilitate future researchers being able
to uncover deeper and hidden meanings.
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