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Abstract: Three decades have passed from the initial discovery of a microRNA (miRNA) in Caenorhabditis
elegans to our current understanding that miRNAs play essential roles in regulating fundamental
physiological processes and that their dysregulation can lead to many human pathologies, including
cancer. In effect, restoration of miRNA expression or downregulation of aberrantly expressed miR-
NAs using miRNA mimics or anti-miRNA inhibitors (anti-miRs/antimiRs), respectively, continues
to show therapeutic potential for the treatment of cancer. Although the manipulation of miRNA
expression presents a promising therapeutic strategy for cancer treatment, it is predominantly reliant
on nucleic acid-based molecules for their application, which introduces an array of hurdles, with
respect to in vivo delivery. Because naked nucleic acids are quickly degraded and/or removed from
the body, they require delivery vectors that can help overcome the many barriers presented upon their
administration into the bloodstream. As such, in this review, we discuss the strengths and weaknesses
of the current state-of-the-art delivery systems, encompassing viral- and nonviral-based systems,
with a specific focus on nonviral nanotechnology-based miRNA delivery platforms, including lipid-,
polymer-, inorganic-, and extracellular vesicle-based delivery strategies. Moreover, we also shed light
on peptide carriers as an emerging technology that shows great promise in being a highly efficacious
delivery platform for miRNA-based cancer therapeutics.

Keywords: microRNA; miRNA therapeutics; miRNA delivery; RNA silencing; cancer; cell-penetrating
peptides; CPPs

1. Introduction

Since the reported finding of the first human miRNA in 2000 [1] and, subsequently,
the discovery of cancer-associated miRNAs several years later [2], miRNAs have come
into focus as feasible therapeutic drug candidates and/or therapeutic targets for cancer
intervention. With the global incidence of cancer burden and cancer-related deaths rising
to 19.3 million and 10 million in 2020, respectively, and due to a predicted ~50% increase in
cancer burden worldwide by 2040, according to the most recent GLOBOCAN estimates
from the International Agency for Research on Cancer (Global Cancer Observatory; Lyon,
France) [3,4], it is evident that continued therapeutic efforts are needed to help combat
this devastating disease. Thus, with miRNAs being found to be aberrantly expressed in
many cancer types [5–9], it is not surprising that miRNA therapeutics has evolved and
developed into a promising approach (via its manipulation of miRNA expression levels)
for cancer treatment.

Despite the progress made in the preclinical development of miRNA therapeutics
over the past several decades [10–13], its transition to the clinic still faces significant
hurdles. Presently, of the 11 developed miRNA therapeutics that have reached clinical
trials (Table 1) [10,12,14,15], four studies have been terminated/discontinued/withdrawn,
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five have completed phase I or II trials, and two are currently undergoing active phase I or
II trials. Notably, though, none have yet reached phase III trials, nor are being apparently
further developed and/or advanced for cancer-related treatments. This slow transition to
the clinic could be in-part due to the numerous pharmacological challenges confronted by
miRNA-based cancer therapies, which can include rapid degradation by ribonucleases in
the bloodstream, renal and reticuloendothelial system (RES) clearance, poor penetration
into tumor tissues due to mechanical and biological barriers, immunotoxicity, neurotoxicity,
cell/tissue-type specific delivery, poor intracellular delivery, and endosomal entrapment,
with subsequent degradation in lysosomes [13]. Notwithstanding, continued advancements
in RNA chemistry, and in particular, delivery technologies, are enabling miRNA therapies
to overcome these limitations, making the application of this form of therapy in the clinic
for cancer treatment that much more a possible reality. In this context, the main focus of this
review is on the advancements of varied miRNA delivery platforms for cancer intervention,
along with a discussion of the emergence of peptides as potential carriers for miRNA-based
cancer therapeutics.

Table 1. Status of miRNA therapeutics-based clinical trials in USA.

Drug miRNA Therapeutic Delivery System Disease Status * Manufacturer

Lademirsen
(RG-

012/SAR339375)
anti-miR-21 AMO a inhibitor Alport Syndrome

Phase II
(active)

NCT02855268

Regulus
Therapeutics;

Genzyme

AZD4076/RG-125 anti-miR-103/107 GalNAc-conjugated
antimiR

Type 2 diabetes;
nonalcoholic fatty

liver diseases

Phase I (active)
NCT02612662;

Phase I/IIa
(completed)

NCT02826525

AstraZeneca;
Regulus

Therapeutics

Remlarsen
(MRG-201) miR-29 mimic Cholesterol-conjugated

miRNA duplex Keloid
Phase II

(completed)
NCT03601052

miRagen
Therapeutics

Cobomarsen
(MRG-106) anti-miR-155 LNA-modified

antimiR
Lymphomas;
Leukemias

Phase I
(completed) NCT02580552;

Phase II
(terminated)

NCT03837457
NCT03713320

miRagen
Therapeutics

MRG-110 anti-miR-92a LNA-modified
antimiR Skin wound

Phase I
(completed)

NCT03603431

miRagen
Therapeutics

MesomiR-1/
TargomiR miR-16 mimic EDVs-nonliving

bacterial minicells

Mesothelioma;
non-small cell lung

cancer

Phase I
(completed)

NCT02369198

EnGeneIC; Asbestos
Diseases Research

Foundation

Miravirsen anti-miR-122 LNA-modified
antimiR Hepatitis C

Phase I and II
(completed)

NCT01646489
NCT01200420
NCT01872936
NCT02031133
NCT02508090

Santaris Pharma A/S;
Hoffmann-La Roche

RGLS4326 anti-miR-17 AMO inhibitor Polycystic kidney
disease

Phase I
(completed)

NCT04536688

Regulus
Therapeutics

RG-101 anti-miR-122 GalNAc-conjugated
antimiR Hepatitis C Phase I and II

(discontinued)
Regulus

Therapeutics

MRX34 miR-34 mimic
Lipid-based
nanoparticle
(liposome)

Cancer

Phase I
(terminated)

NCT01829971
NCT02862145

Mirna Therapeutics

pSil-miR200c and
PMIS miR200a

Plasmid DNAs
encoding miR-200c and a

miRNA
inhibitor targeting

miR-200a

Biodegradable
sponge Tooth extraction

Phase I
(withdrawn)

NCT02579187
University of Iowa

* ClinicalTrials.gov government identifier numbers are listed for each miRNA therapeutic, if applicable.
a Abbreviations: AMO, antisense miRNA oligonucleotide; GalNAc, N-acteyl-D-galactosamine; LNA, locked
nucleic acid; EDVs, EnGeneIC delivery vehicles.



Cells 2022, 11, 2332 3 of 22

2. RNA Silencing and miRNAs

RNA silencing is an evolutionary conserved eukaryotic post-transcriptional gene regu-
latory mechanism by which noncoding RNAs (ncRNAs) induce the sequence-specific inhi-
bition of target gene expression and/or protein synthesis. One particular class of ncRNAs
that can induce RNA silencing and affects many cellular processes and developmental path-
ways are the small (20–25 nucleotides (nt) in length) ncRNAs known as miRNAs [16–19].
Specifically, miRNAs regulate gene expression by either repressing translation or induc-
ing mRNA degradation, depending on the degree of sequence complementarity with the
target mRNAs [16,20]. To date, >60% of human protein-coding genes are predicted to
contain miRNA binding sites and the total number of human miRNAs are estimated to be
~2300 [21–24].

The biogenesis of mature miRNAs initiates from long primary transcripts, termed
primary-miRNAs (pri-miRNAs), which harbor hairpin structures comprising the miRNA
sequences that are transcribed predominantly by RNA polymerase II, but also by RNA
polymerase III [17,20,25]. Many canonical miRNAs are derived from the introns/exons of
long ncRNA transcripts, as well as the introns of protein-coding precursor-mRNAs, where
these pri-miRNAs can consist of either a single miRNA gene unit or a cluster of often related
miRNA genes [17,19,20]. Following transcription, the hairpin structures within the pri-
miRNAs are recognized and processed by the nuclear microprocessor complex, comprising
an RNase III enzyme, Drosha, in complex with DGCR8, resulting in the liberation of
~70 nt stem-loop precursor miRNAs known as pre-miRNAs [26]. Subsequently, the pre-
miRNAs are exported to the cytoplasm by the action of Exportin-5 [27–29], where they
undergo final processing by another RNase III enzyme, Dicer, to generate ~20 base-pair
miRNA duplexes [17,30–32]. Afterward, the miRNA duplex is then incorporated into
an Argonaute (AGO) protein, where one strand (i.e., the “guide” strand) is selected to
become the mature miRNA and its complementary strand (i.e., the “passenger” strand) is
discarded, thus forming the mature RNA-induced silencing complex (RISC) [17,19,20,33–35].
Strand selection preference is given based on the strand possessing the least stable paired
5′-end [36,37], as well as a 5′-terminal A or U residue [38,39]. Once loaded in the RISC,
the mature miRNA subsequently pairs to target sites generally located in the 3′-UTR of
mRNAs to direct RNA silencing [16,23,40].

The interactions of miRNAs with their mRNA targets are largely based on their
seed sequence, which comprises nucleotides 2–8 (from the 5′-end), and whose sequence
similarities are used as a basis for grouping miRNAs into families [16,17]. In addition, other
atypical sites on the miRNA, such as the 3′-supplementary site, can further supplement
the seed interactions through additional base pairings [16,17,41–43]. Thus, the extent of the
pairing between the miRNA and its mRNA target will ultimately dictate the mechanism
of gene silencing, where very extensive pairings will result in cleavage/slicing of the
mRNA target and less extensive pairings will induce translational repression or mRNA
decay via deadenylation, decapping, and 5′-3′ exonuclease activity [17,20,44,45]. Although
both the translational inhibition and mRNA decay modes of miRNA-mediated repression
are thought to be interconnected [20,45], the mechanism of mRNA decay appears to be
generally responsible for 66–90% of silencing in cells [17,20,46,47].

3. miRNAs, Cancer, and Therapeutic Approaches to miRNA Replacement/Inhibition

miRNAs can form complex, intertwined networks of interactions in their abilities
to regulate gene expression [48], as a single miRNA can silence many different mRNAs,
and one mRNA can be regulated by multiple miRNAs [20]. Moreover, individual miR-
NAs and miRNA clusters can regulate entire cellular pathways, with multiple miRNAs
also being able to control intermeshed regulatory networks [20,48]. Hence, through this
network-regulatory role of miRNAs, combined with miRNAs also having been implicated
in regulating practically every cellular process and being essential for animal develop-
ment, cell differentiation, and homeostasis [17,20,48,49], it is not surprising that alterations
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in miRNA expression have been associated with different human diseases, including
cancer [48,50].

An overwhelming amount of evidence indicates that miRNAs exhibit abnormal ex-
pression levels in malignant cells and tissues and that they are deeply involved in tumor
onset and progression through their tumor-promoting and/or tumor suppressive behav-
iors [10,50]. More specifically, the dysregulation of miRNA expression levels in cancer
has been associated with a number of biological hallmarks of human cancer development,
including sustained proliferative signaling, evasion of anti-growth signals and immune
destruction, resistance of apoptosis, activation of invasion/metastasis, induction of angio-
genesis, and promotion of genomic instability and inflammation [5,10]. The underlying
mechanisms that contribute to the dysregulation of miRNA expression levels in human
malignancies are often attributed to the amplification, deletion, or translocation of miRNA
genes (i.e., the alteration of genomic miRNA copy numbers or gene locations) [5]. How-
ever, the perturbation of other cellular mechanisms can also contribute to their abnormal
expression, which can involve changes to their transcriptional or epigenetic control, as well
as defects in the miRNA biogenesis machinery [5].

Based on their modulating effect on the expression of their target genes, tumor-
associated miRNAs can be classified into two categories: (1) oncogenic miRNAs (on-
comiRs) and (2) tumor suppressor miRNAs (TS miRNAs) [8,10]. In general, oncomiRs
are typically found to be overexpressed in malignant cells/tissues and promote cancer by
silencing mRNAs encoding tumor suppressor proteins, whereas TS miRNAs are usually
downregulated and result in increases in the translation of their target oncogenic mRNAs
(Figure 1a) [8,10,50]. Deep sequencing and miRNA profiling studies have provided di-
rect evidence that miRNA expression is dysregulated in cancer and that its varied and
unique signatures can be used for tumor classification, diagnosis, and prognosis [5–7,9].
More importantly, the dysregulation of miRNAs in cancer has also been harnessed as
a potential therapeutic modality, by either miRNA replacement therapy using miRNA
mimics or inhibition of miRNA function by antimiRs to restore TS miRNA or suppress
oncomiR activities, respectively (Figure 1b) [10,50–53]. Approaches to enhance TS miRNA
activity via miRNA replacement therapy have been achieved through the use of chemically
synthesized/modified, double-stranded miRNA mimics, as well as through the use of
plasmid or viral vectors engineered to encode specific TS miRNAs that can replenish the
lost miRNAs within the cancer cells, thus inducing silencing of the targeted oncogenic
mRNAs and impairing tumor progression [54–58]. Alternatively, approaches to antagonize
oncomiR activity via the use of antimiRs capable of restoring tumor suppressor protein
expression and halting cancer progression have been achieved through the use of anti-
sense miRNA oligonucleotides (AMOs), antagomiRs, locked nucleic acid (LNA)/peptide
nucleic acid/morpholino-modified anti-miRNAs, miRNA sponges, small RNA zippers,
small-molecule inhibitors, or miRNA masks [59–69]. Nonetheless, although advances have
been made in the abovementioned strategies in circumventing the abnormal expression of
miRNAs in cancer cells, the intracellular delivery of these therapeutic miRNA mimics and
antimiRs still presents a challenge to the development of effective miRNA-based cancer
therapeutics, especially in vivo, that must be overcome in order to make them clinically
relevant. Fortunately, there has been and continues to be much progress made in the
development of highly efficacious delivery systems that are making miRNA therapeutics a
clinical reality for cancer intervention.
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Figure 1. Graphical depictions highlighting the different types of cancer-associated miRNAs and the
molecular therapeutic approaches to alleviating their abnormal expression in cancer. (a) Classes of
tumor-associated miRNAs and their mechanisms of promoting cancer. Tumor-associated miRNAs
are classified as either oncogenic miRNAs (oncomiRs) or tumor suppressor miRNAs (TS miRNAs),
and the dysregulation of the expression levels of these tumor-associated miRNAs leads to cancer
onset and progression. In particular, oncomiRs are typically overexpressed in malignant cells/tissues
and promote cancer by silencing mRNAs encoding tumor suppressor proteins (green curved arrow),
whereas TS miRNAs are downregulated and result in increases in the translation of their target
oncoprotein-encoding mRNAs (red curved arrow). (b) miRNA inhibition and replacement therapies
for cancer treatment. miRNA inhibition and replacement therapies are molecular interventions
designed to either suppress oncomiR or restore TS miRNA functions, respectively. Approaches to
enhance TS miRNA function via miRNA replacement therapy have been achieved through the use of
chemically synthesized/modified, double-stranded miRNA mimics, as well as through the use of
plasmid or viral vectors engineered to encode specific TS miRNAs that can replenish the lost miRNAs
within cancer cells. Alternatively, approaches to antagonize oncomiR function via the use of antimiRs,
resulting in the impairment of cancer progression, have been achieved through the use of antisense
miRNA oligonucleotides (AMOs), antagomiRs, locked nucleic acid (LNA)/peptide nucleic acid
(PNA)/morpholino-modified anti-miRNAs, miRNA sponges, small RNA zippers, small-molecule
inhibitors, or miRNA masks. Select images within the figure were acquired from BioRender.com.
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4. Delivery Platforms for miRNA-Based Cancer Therapeutics

Some of the most significant barriers to the widespread use of miRNA replace-
ment/inhibition therapies for the treatment of cancer are consequences of systemic delivery
and limitations in tumor-tissue specificity. Thus, because the therapeutic manipulation
of miRNA expression is predominantly reliant on nucleic acid-based molecules, delivery
vectors are needed to help them overcome not only the systemic barriers, such as rapid
renal clearance, but also clinical barriers, such as biosafety [13]. The following section
highlights the current state-of-the-art viral and nonviral delivery systems that have been
demonstrated to deliver miRNA-based cancer therapies in vitro and in vivo, with a focus
on nonviral nanotechnology-based miRNA delivery systems. The graphical depictions of
these varied delivery systems, including their generalized modes of cell entry, as well as
their strengths and weaknesses, can be found in Figure 2 and Table 2 below.
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Figure 2. Graphical depictions highlighting the varied miRNA delivery platforms developed for
cancer therapeutics, as well as their mechanisms of cellular internalization. Schematic diagram
illustrating the generalized modes of cell entry for both viral and nonviral miRNA delivery systems.
To cross the plasma membrane of the targeted cell, many of the delivery systems utilize multiple
different cellular entry routes, but in general, utilize either direct cellular entry mechanisms or
endocytosis-based uptake pathways [70,71]. For example, viral vectors, such as adenovirus (AV),
adeno-associated virus (AAV), and lentivirus (LV), can utilize either direct entry mechanisms or
endocytosis-based uptake pathways in their delivery of miRNA mimic-encoded RNA/DNA cargo
into cells. Other examples, in terms of nonviral delivery systems, can include direct cytoplasmic
entry via lipid fusion of a lipid-based vector with the plasma membrane or direct cellular entry
of a polymer (e.g., polyamidoamine (PAMAM))-based vector in the delivery of antagomiR cargo.
Additionally depicted are examples of cellular internalizations via endocytosis of inorganic (e.g. gold
(Au)), extracellular vesicle (EV), and peptide-based vectors in complex with miRNA mimic cargo.
Select images within the figure were acquired from BioRender.com.
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Table 2. The highlighted advantages and disadvantages of both viral and nonviral delivery systems
in their transport of miRNA-based therapeutics for the treatment of cancer.

miRNA Delivery Platforms for Cancer Therapeutics

A
dv

an
ta

ge
s

Viral Nonviral

Virus Lipid Polymer Inorganic EV Peptide

• Highly
efficacious
gene delivery

• Non-
immunogenic
• Control of
size, lipid
composition
and functional
groups, and
drug loading
• Co-delivery of
multiple drugs

• Non-
immunogenic
• Control of
size, polymer
composition
and functional
groups, and
drug loading
• Co-delivery of
multiple drugs

• Non-
immunogenic
• Ease of
production
• Control of
size,
composition
and
functional
groups, and
drug loading

• Non-
immunogenic
• Control of
functional
groups and
drug loading
• Co-delivery
of multiple
drugs
• Tissue/organ-
specific
delivery

• Ease/cost of
production
• Control of
physiochemical
properties
and functions
• Tissue/organ-
specific
delivery

D
is

ad
va

nt
ag

es

• Immunogenic
• Biosafety
concerns

• Non-specific
delivery
• Low in vivo
efficacy
• Cytotoxicity

• Non-specific
delivery
• Low in vivo
efficacy
• Cytotoxicity

• Low in vivo
efficacy

• Lack of
experimental
data/studies
• Inherent
diverse
composition
of EV cargos
• Cost of
production

• Lack of
experimental
data/studies

4.1. Viral Delivery

Virus-mediated delivery of miRNAs has been shown to be highly efficacious, where
viral vectors can be designed to deliver miRNAs at different stages of biogenesis (i.e.,
pri-miRNAs and pre-miRNAs). Driven by a viral promotor, pri/pre-miRNA cloned within
a plasmid can be transcribed and further processed to the mature miRNA form, enabling it
to subsequently act on the target mRNA [57]. Adenoviruses (AdVs), particularly oncolytic
AdVs (OAdVs), have been successful in the delivery of antimiRs and miRNA mimics. In
fact, OAdV-mediated delivery of antimiRs in the form of long ncRNAs (lncRNAs), which
has the therapeutic design advantage of targeting multiple copies of the same miRNA or dif-
ferent miRNAs within a single lncRNA molecule, has been shown to inhibit tumor growth
in xenograft murine models of triple-negative breast cancer (TNBC) by simultaneously
suppressing oncomiR levels of miR-9-5p, miR-10b-5p, miR-21-5p, miR-23a-3p, miR-29a-3p,
miR-155-5p, miR-222-3p, miR-301a-3p, and miR-373-3p [72] and to decrease sorafenib
resistance in sorafenib-resistant hepatocellular carcinoma (HCC) by concomitantly target-
ing miR-21, miR-153, miR-216a, miR-217, miR-494, and miR-10a-5p [73]. Virus-mediated
overexpression of miRNAs can also have its advantages by suppressing particular onco-
genes, as it has been shown that overexpression of miR-143 can inhibit cell growth and
induce apoptosis by targeting KRAS in human colorectal cancer, in vitro [74]. Moreover,
virus-mediated overexpression of miR-199 and miR-34a has been found to lead to control
of tumor growth by targeting mTOR, c-MET, HIF-1α, and CD44, as well as complete tumor
regression by targeting Bcl-2 and SIRT1 in xenograft murine models of HCC [75,76], respec-
tively. Similarly to AdV, adeno-associated virus (AAV)-mediated delivery systems have
also had success in the treatment of HCC, as overexpression of miR-342-3p and miR-26a
has each demonstrated anti-tumor effects in murine models [77,78] by targeting MCT1 and
cyclins D2 and E2, respectively. Additionally, Bhere and colleagues recently showed that
AAV-mediated delivery of anti-miR-21 and miR-7 resulted in decreased cell proliferation,
migration, and invasion of human prostate and colon cancer cells, in vitro, and a significant
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reduction in tumor burden in glioblastoma murine models [79] through targeting of the
PI3K/AKT and JAK/STAT3 signaling pathways (via anti-miR-21) and down-regulation
of EGFR and p-AKT (via miR-7). Lentivirus-mediated delivery of miR-15a and miR-16 in
murine models of chronic lymphoid leukemia [80] and a miRNA sponge targeting miR-494
in murine models of breast cancer [81] have also resulted in beneficial therapeutic effects;
however, concerns of lentiviral integration into the host genome have limited their clinical
application as a delivery vector.

4.2. Nonviral Delivery

Despite being highly efficacious, virus-mediated miRNA-based therapeutic delivery
platforms lack clinical desirability due to a number of biosafety concerns, including viral
immunogenicity. Although classically thought of as inefficient compared to viral vectors,
recent advancements in nonviral delivery platforms, however, are paving the way for
nucleic acid-based therapies that make their application that much more feasible in the
clinic [13]. As such, the following sections highlight and discuss the pros/cons of the
varied nonviral delivery technologies that have been developed for miRNA-based can-
cer therapeutics, including polymer nanoparticles, lipid-based nanoparticles, inorganic
nanoparticles, extracellular vesicles, and an emerging technology, which is of particular
relevance to our own studies—peptide carriers.

4.2.1. Polymer Nanoparticles

Polymeric delivery systems have found success as suitable vectors for delivery of
nucleic acids due to their high stability and flexibility, and the facile ability to make
substitutions and/or additions of functional groups [82]. In fact, one particular polymer,
poly lactic-co-gycolic acid, has gained FDA approval as a delivery vector and is in phase
II clinical trials for the delivery of therapeutic small interfering RNA (siRNA) molecules
(NCT01676259) [83]. The ability to control the molecular weight, polymer composition,
and architecture of polymers allows for the manipulation of size, morphology, charge, pKa,
membrane interactions, and biodegradability [84]. Moreover, polymer-based vectors are
composed of a variety of materials, including natural polymers, such as collagen, gelatin,
and chitosan, synthetic polymers, and combinations of natural and synthetic polymers. The
following subsections pertaining to polymer nanoparticles detail polymer-based vectors
that have found success in the delivery of specific miRNA-based cancer therapies.

Polyethylenimines

Polyethylenimines (PEI) are second-generation cationic polymers that are frequently
utilized for therapeutic gene delivery [84]. PEI is composed of many positively charged
amino groups, allowing for complexation with anionic RNA molecules and shielding from
degradation, as well as enabling the proton sponge effect, which promotes escape from
endosomes after endocytosis [85]. Indeed, PEI has been shown to be an effective delivery
vector of miRNA for treatment of various cancers, including miR-33a and miR-145 for
the treatment of colon cancer [86] and miR-708-5p mimics for the treatment of metastatic
non-small cell lung cancer [87]. Although successful, PEI alone is not as desirable as
other delivery vectors, due to the excess positive charge and low degradability due to the
binding of serum proteins [57]. As such, PEI in combination/conjugation with other lipids
and polymers has been investigated to mitigate these undesirable effects and has found
some success. For example, PEI-polyethylene glycol (PEG)-mediated delivery of miR-34a
and miR-150 has been shown to be effective for treatment of HCC [88] and to effectively
reduce the cell viability of chronic myeloid leukemia cells [89], respectively. Additionally,
PEI-hyaluronic acid (HA)-PEG-mediated delivery of a plasmid encoding miR-125b has
been demonstrated to inhibit tumor growth and induce apoptosis in a murine lung cancer
model [90]. Likewise, polyurethane-PEI-mediated delivery of a plasmid encoding miR-
145 has shown success for the treatment of glioblastoma [91], and PEI-antagomiR-126
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complexes, loaded into liposomes, have been demonstrated to effectively target leukemic
stem cells in vivo for the treatment of acute myeloid leukemia [92].

Polyamidoamine

Polyamidoamine (PAMAM) is a hyperbranched synthetic polymer that is positively
charged and biodegradable. While the overall positive charge of the polymer allows
for complexation with nucleic acids, it promotes hepatic accumulation and toxicity [93].
Consequently, PAMAM is frequently found in combination/conjugation with other lipids
and polymers. For instance, PAMAM-PEG-mediated delivery of a miR-34a-expressing
plasmid has been shown to have anti-tumor effects in non-small cell lung cancer [94], and
nanographene oxide (NGO)-PEG-PAMAM-mediated delivery of anti-miR-21 has proven
effective in reducing migration and invasion of non-small-cell lung cancer A549 cells,
in vitro [95].

Chitosan

Chitosan is a biocompatible, natural polysaccharide. It is a deacetylated derivative
of chitin, which is found in the exoskeleton of insects, crustaceans, and fungi, making it
the second most abundant natural polymer [96]. Chitosan consists of repeating units of
β-1,4 linked N-acetyl-D-glucosamine and D-glucosamine [97], and has been described as
having a profound binding affinity for miRNAs [10]. Chitosan has been shown to be an
effective delivery vector in the treatment of breast cancer, through the complexation of miR-
200c [98,99], and in the treatment of prostate bone metastasis, through the complexation of
miR-34a mimics [100].

Poly Lactic-Co-Gycolic Acid

As previously mentioned, poly lactic-co-gycolic acid (PLGA) is an FDA-approved
polymeric delivery vector. These polymers are polyesters and are negatively charged,
biodegradable, and biocompatible. PLGA is also hydrophobic, which is thought to impair
its miRNA delivery efficacy [101]. As a result, PLGA in combination/conjugation with
various lipids and polymers, both synthetic and natural, have been investigated, with some
combinations proving effective in mediating miRNA delivery for the treatment of various
cancers. In particular, PLGA-chitosan complexes containing miR-34a mimics have been
shown to inhibit tumor growth of multiple myeloma xenografts and resulted in the greater
survival of treated NOD-SCID tumor-bearing mice [102]. Additionally, PLGA-HA-PEI in
complex with a miR-145-encoding plasmid was shown to reduce tumor growth in a murine
xenograft model of colon cancer [58], and PLGA-PEG-anti-miR-21, PLGA-PEG-anti-miR-
10b/21, and PLGA-PEG-miR-122 complexes were demonstrated to be effective in treating
HCC [103], breast cancer [104,105], and colon cancer [106], respectively.

4.2.2. Lipid-Based Nanoparticles

The ease of use and versatility of lipid-based nanoparticles in the form of liposomes
have made them the most widely used nanoparticle for the delivery of nucleic acid-based
therapies, which includes miRNAs. Liposomes are spherical structures with a hydrophilic
core that is separated from the external environment by a phospholipid bilayer. Lipo-
somes can accommodate hydrophobic molecules within the bilayer, hydrophilic molecules
within the liposome core, and amphiphilic molecules at the interphase between the bilayer
and core [107]. Due to their phospholipid composition, liposomes can interact with cell
membranes, which leads to efficient delivery of cargo.

Cationic Liposomes

The first generation of liposomes were cationic in nature, which allowed for electro-
static interactions with nucleic acid-based cargos, as well as with the negatively charged
surfaces of cells [108,109]. While advantageous for drug loading and delivery, this positive-
charge property, however, was found to limit the cell specificity of cationic liposomes,
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allowed interactions with serum proteins, and increased the susceptibility of uptake by
RES [110,111]. Despite these challenges within the circulatory system, a significant tumor
reduction in a xenograft tumor mouse model of colorectal cancer was still observed through
cationic liposome-based nanoparticles loaded with miR-139-5p mimics, albeit with the
liposomes also possessing other functionalized moieties [112]. Decreased levels of miR-143
and miR-145, which are associated with colorectal carcinoma, and the delivery of miR-143
and miR-145 mimics using cationic liposomes to restore their levels have also been shown
to reduce cell proliferation in a number of colorectal cancer cell lines [113]. In addition to
colorectal cancer, cationic liposome-mediated delivery of a miR-7-encoding plasmid and
miR-29 mimics have been demonstrated to significantly reduce tumor sizes in xenograft
tumor mouse models of lung cancer [114,115].

Neutral Liposomes

To reduce the charge-associated shortcomings of cationic liposomes, neutral lipo-
somes were developed by the inclusion of helper lipids, such as 1,2-dioleoyl-sn-glycero-
3-phosphoethanolamine (DOPE) [116], PEG [117], phosphatidylcholines (PCs) [118], and
cholesterol [119]. These modifications have led to reduced RES uptake, which allows
for increased half-life of the neutral liposomes within the bloodstream [110,111]. Taking
advantage of the helper lipid phosphocholine, an intermediate of PC, Trang and colleagues
found that neutral liposome-mediated delivery of miR-34a and let-7b mimics resulted
in the significant reduction in tumor burden in a K-Ras-activated autochthonous mouse
model of non-small cell lung cancer (NSCLC) [120].

Ionizable Liposomes

Further optimization of lipid-based nanoparticles has resulted in the generation of
ionizable liposomes, which are cationic at low pH and neutral/anionic at neutral or higher
pH levels. The ability to change charge states with respect to extracellular pH gives
ionizable liposomes enhanced cell selectively characteristics that makes them more clinically
translatable. In fact, an ionizable liposome-miRNA complex (comprising miR-34 mimics;
MRX34) made it as far as phase I clinical trials for treatment of liver cancer and metastasis
(NCT01829971; Table 1) [121,122]. However, this trial was stopped due to severe immune-
related adverse events, which resulted in the death of four patients [122]. Despite this
unfortunate setback, another group has shown that ionizable liposomes could still hold
promise as delivery vehicles for miRNA therapeutics, as they have found, at least at the
preclinical level, that ionizable liposome-mediated delivery of miR-200c mimics could result
in enhanced radiosensitivity in a xenograft mouse model of lung cancer [123]. Additionally,
another study found that delivery of a miR-199b-5p mimic using an ionizable cationic
liposome [15] could significantly impair Hes-1 (a downstream effector of the canonical
Notch and noncanonical SHH pathways) and cancer stem cell markers in a number of
different tumorigenic cell lines, including colon (HT-29, CaCo-2, and SW480), breast (MDA-
MB231T and MCF-7), prostate (PC-3), glioblastoma (U-87), and medulloblastoma (Daoy,
ONS-76, and UW-228) cancer cell lines [124].

4.2.3. Inorganic Nanoparticles

Inorganic nanoparticles are desirable as delivery vectors because they can be designed
to be biocompatible, nonimmunogenic, and nontoxic, and the size, shape, and porosity of
particles can be controlled [10,125]. Nevertheless, the use of inorganic materials for delivery
of miRNAs still faces challenges, such as protection from degradation in vivo, as well as
endosomal escape [13]. The following section describes examples of common inorganic
vectors utilized for delivery of miRNAs, however, the examples discussed herein are not a
complete representation of all developed technologies.
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Calcium Phosphate

Calcium phosphate (CaP) nanoparticles, composed of hydroxyapatite [Ca5(PO4)3OH],
the inorganic component of bone and teeth, are described as being the most successful inor-
ganic vectors for miRNA therapeutics [10], particularly for the treatment of colon/colorectal
cancers. CaP owes this success to its unique in vivo characteristics, including its biocompat-
ibility and biodegradability properties. Moreover, CaP’s susceptibility to acidic conditions
allows for endocytic escape, where once these CaP nanoparticles are endocytosed, the
acidic environment of the endosome dissolves them, resulting in subsequent increases
in ionic strength that lead to osmotic swelling and the release of cargo [126]. As previ-
ously mentioned, CaP nanoparticle-mediated delivery of miRNAs has been particularly
successful in the treatment of colon/colorectal cancers, as delivery of miR-4711-5p [127],
miR-4689 [128], and miR-29b [129] mimics were found to effectively inhibit tumor growth
in xenograft colon/colorectal cancer mouse models.

Silica

Silica-based nanoparticle technologies are desirable due to their biocompatibility,
large surface area, well-defined chemical properties, and ability to control characteristics,
such as pore structure [130]. One type of silica-based nanoparticle that has found success
with miRNA delivery is the mesoporous silica nanoparticle (MSNP). MSNPs have a/an:
(i) tunable particle size, which is important for endocytosis; (ii) stable and rigid framework,
making them more resistant to heat, pH, mechanical stress, and hydrolysis-mediated degra-
dation; (iii) uniform and tunable pore size, allowing for controlled drug loading; (iv) high
surface area (>900 m2/g) and large pore volume (>0.9 cm3/g), which allows for increased
drug loading; (v) interior and exterior surface, permitting selective functionalization of
either surface; (vi) unique “honeycomb-like” porous structure, which aids in decreased
premature drug release or leaking [131]. Taking advantage of these MSNP properties,
Bertucci and colleagues successfully induced apoptosis in temozolomide (TMZ)-resistant
T98G glioblastoma cells, in vitro, by loading the MSNPs with the anti-cancer drug TMZ and
decorating them on the surface with a polyarginine-peptide nucleic acid (R8-PNA) antimiR
conjugate designed to target miR-221, a miRNA, whose downregulation was previously
reported to sensitize glioma cells to TMZ [132,133].

Gold

Gold (Au)-based nanoparticles (AuNPs) are well suited for delivery of nucleic acids,
particularly after the addition of various functional groups. AuNPs have multifunctional
monolayers, allowing for the addition of multiple functional moieties, which can control
cytotoxicity, biodistribution, and excretion [134–139]. AuNPs can also be easily scaled
with low size dispersity [140]. Due to these characteristics, AuNPs have found success in
delivery of miRNAs for the treatment of various cancers. In particular, miR-375 mimic-
coated AuNPs were observed to reduce tumor volume in primary and xenograft tumor
mouse models of HCC [141]. Additionally, AuNPs formulated with PEG were found to
mediate the highly efficient cell uptake of miRNAs and could decrease cell proliferation
upon delivery of a miR-31 mimic into neuroblastoma (NGP and SH-SY5Y) and ovarian
(OVCAR8 and HEYA8) cancer cell lines [142]. Moreover, Gilam and colleagues showed that
in combination with the chemotherapy drug, cisplatin, AuNPs functionalized with PEG
and a tumor-homing peptide, embedded within a hydrogel, could mediate the efficient
local, selective, and sustained release of co-complexed miR-96 or miR-182 mimics, leading
to the reduction in primary tumor size and metastasis in a breast cancer mouse model [143].

4.2.4. Extracellular Vesicles

Extracellular vesicles (EVs) are cell-derived nanovesicles that transport DNA, RNA,
proteins, and lipids for cellular communication and activation of signaling pathways [144].
While EVs transport mRNA and other RNA species, such as lncRNAs and circular RNAs,
miRNAs are perhaps the most abundant cargo molecule in EVs, particularly in exo-
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somes [145]. In fact, these exosome-associated miRNAs have significant roles in the
post-transcriptional regulation of gene expression and participate in the mediation of
inflammatory reactions, cell migration, proliferation, apoptosis, autophagy, and epithelial-
mesenchymal transition [145]. It, therefore, stands to reason that exploiting EVs for ther-
apeutic miRNA delivery has its advantages over other delivery vectors. As a natural
biomolecular carrier possessing specific ligands, EVs can be selectively delivered to cell
types bearing specific surface receptors [146]. Additionally, EV ligands, such as CD47, can
aid in their protection from phagocytes [147]. Moreover, lipid bilayer-encapsulated miRNA
cargo is protected from RNase-mediated degradation, as well as from other circulatory
system obstacles. This lipid bilayer also allows for direct fusion of the EV with the target
cell membrane, with the subsequent release of cargo directly into the cytoplasm of the
target cell, thus evading potential endosomal entrapment of the cargo; however, it should
be noted that EVs can also undergo receptor-mediated endocytosis [148–150]. Though a
relatively new delivery platform for therapeutic nucleic acid-based drugs, EV-mediated
delivery of miRNAs has already shown promising therapeutic responses in various cancers.
For example, EV-mediated delivery of a chemically modified miR-143 mimic, a plasmid
expressing miR-146b, and a miR-145 mimic has each been observed to have therapeutic
effects in colon cancer [151], glioma [152], and lung cancer [153], respectively. Other thera-
peutic uses of EVs have also been reported in the delivery of a plasmid expressing miR-122
in HCC [154] and a chemically synthesized miR-199a-3p mimic in ovarian cancer [155].
Similar to nonviral vectors discussed thus far, exosomes also have the advantage of being
modified to contain different functional surface moieties. One interesting example of this
type of modification was reported by Ohno and colleagues, where they engineered exo-
somes to express an epidermal growth factor receptor (EGFR)-specific targeting peptide,
GE11, on their surfaces, which were then subsequently used to target a TS miRNA to
EGFR-expressing breast cancer cells [156]. In particular, when GE11-positive exosomes
containing the TS miRNA, let-7a, were administered to EGFR-expressing breast cancer
xenograft tumor-bearing mice, these GE11-positive let-7a-loaded exosomes were observed
to not only target the tumors, but also impair their development [156].

4.2.5. Peptides

The use of peptides as a delivery vector of nucleic acid-based therapeutics was initially
described over two decades ago [157–159], but has only recently begun to gain popularity.
Peptides are favorable delivery vectors because of the diversity of their physiochemical
properties and functions [160]. The controlled ability to modify their amino acid sequences
and ease of synthesis allows for the production of peptides that can overcome many of
the systemic circulation-associated barriers faced by nucleic acid-based therapies. As such,
many different classes of peptide carriers exist, one of which, the cell-penetrating peptides
(CPPs), are proving to be highly efficacious and clinically translatable for the treatment of
various cancers, as suggested by their presence in phase I and II clinical trials [161–165],
as either a therapeutic agent alone or as a delivery agent for macromolecular therapeu-
tics [166]. CPPs are typically 4–40 amino acid residues in length [167], can penetrate the
plasma membrane of a cell and facilitate the delivery of different cargos [168], and are
considered by some to be the most promising nonviral delivery platform for improvement
of intracellular trafficking of nucleic acid-based cargos [169], which have included DNA,
RNA, siRNA [170], and more recently, even those associated with miRNA-based thera-
peutics. For instance, one particular peptide carrier, named FA-R9-FPcas3, comprising a
folate receptor-targeting ligand, folic acid (FA), a nona-arginine CPP (R9), and a Caspase-
3-sensitive imaging probe (FPcas3), was used to form a multi-functional peptide-miRNA
nanocomplex consisting of the miR-34a mimic that was capable of suppressing tumor
growth upon tail vein injection into living mice bearing subcutaneous HeLa tumors [171].
Moreover, because molecular imaging is such a powerful tool for visualization and quantifi-
cation of pathological processes, such as cancer, Yang and colleagues recently demonstrated
that a CPP, PepFect6, could also be used in complex with a radioactively-labeled AMO
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designed to target the oncomiR, miR-21, to successfully image miR-21 expression in A549
lung adenocarcinoma xenografts, thus demonstrating a promising method for the non-
invasive imaging of miRNA expression levels in vivo [172]. Additionally, although not
examples of cancer-related applications, peptides such as LMWP and PepFect6 have also
been shown to successfully deliver miRNA mimics, including miR-29b, to stem cells to pro-
mote osteoblastic differentiation [173] and miR-146a (a known anti-inflammatory miRNA)
to inhibit inflammatory responses in a murine model of irritant contact dermatitis [174],
respectively. Lastly, regarding our own studies, we have also reported that CPPs can be
effective carriers of therapeutic small ncRNAs, particularly siRNAs, which are similar to
miRNAs in function in that they both can induce post-transcriptional gene silencing, but
differ in that siRNAs typically inhibit the expression of a single mRNA target, whereas
miRNAs normally regulate the expression of multiple mRNA targets [43]. More specifically,
we have demonstrated that a CPP, named 599, could enhance the intracellular delivery and
bioavailability of siRNAs in oral cancer cells in vitro, as well as induce oncogene silencing
upon intratumoral administration, resulting in significant inhibition of tumor growth in an
orthotopic oral cancer mouse model [54,175]. In subsequent work, we also demonstrated
that co-complexation of 599 with a cancer cell-targeting peptide could synergistically me-
diate the effective targeting/delivery of siRNAs to xenograft oral cancer tumors upon
systemic administration and significantly enhance silencing of the targeted oncogene [176].
More recently, in an effort to improve upon the efficacy of siRNA uptake and gene silencing
mediated by 599, we found that a 599 peptide variant, RD3AD, which exhibited enhanced
siRNA uptake and gene silencing in comparison to 599, also directed siRNAs to specific
cell-surface protrusions, identified as filopodia [177]. Intriguingly, filopodia are highly
dynamic, elongated, and thin cellular processes that have been reported to facilitate the
highly efficient cell entry of viruses, bacteria, activated receptors, lipo/polyplexes, and
exosomes by mediating their retrograde transport and/or “surfing” along the structures
toward the cell body [178–182], where, at the filopodial base, endocytic hotspots potentially
allow for easier cell entry [179]. Of particular relevance regarding exosomes, which are
known transporters of miRNAs [183], is that they can utilize filopodia to “surf” toward en-
docytic hotspots at the filopodial base, internalize, and then traffic within endosomes to the
ER [178], which coincidentally is the central nucleation site of siRNA and miRNA-mediated
RNA silencing [184,185]. Hence, one can envision how the targeting of filopodia and the
subsequent directed transport of RD3AD-siRNA/miRNA complexes from the filopodia
to the ER would potentially allow for a very efficient trafficking route of exogenous siR-
NAs/miRNAs into the cellular RNA silencing machinery. In fact, recent preliminary data
from our lab have found that complexation of RD3AD with a synthetic fluorescently-labeled
let-7b miRNA duplex could similarly localize the miRNA mimic to filopodia and direct its
entry into cancer cells (Figure 3). The significance is that one can, thus, potentially exploit
filopodia-directed cell-entry machineries and subcellular-trafficking routes via CPPs for the
development of more effective miRNA therapeutics.
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Figure 3. RD3AD peptide-mediated localization of complexed let-7b miRNAs to filopodia and
delivery into cancer cells. Confocal fluorescence microscopy analysis of CAL 27 oral cancer cells 2 h
post-treatment with a synthetic Cy3-labeled let-7b miRNA duplex (Cy3-let-7b; red) in complex with
the RD3AD peptide. Filopodia (green) were stained with the F-actin label Alex Fluor 488 phalloidin,
and nuclei (blue) were counterstained with DAPI. The merged images are also presented. Scale bar:
15 µm. For details on materials and methods used, please see Supplementary Materials.

5. Conclusions

Despite the pre-clinical promises of miRNA-based cancer therapeutics, the clinical
advances of this form of therapy for human cancer intervention have been unfortunately
very limited. Of the varied nonviral delivery platforms discussed earlier, only the lipid-
based miRNA delivery system, MRX34, had reached Phase I clinical trials (NCT01829971;
Table 1) [121,122], but had to be prematurely terminated, as a result of it inducing severe
immune-related adverse events that led to a number of patient deaths [122]. Even uncon-
ventional miRNA delivery technologies, such as the bacterially-derived nanocell-delivery
system (i.e., the EnGeneIC Delivery Vehicle) that was adapted to deliver miR-16 mimics
for the treatment of mesothelioma and non-small cell lung cancer and had shown promise
after the completion of a Phase I clinical trial (NCT02369198; Table 1) [186–188], has had no
new updates regarding its progression to Phase II clinical trials since 2017. Nevertheless,
although challenges persist in the development of effective delivery vehicles for miRNA-
based cancer therapies, the hope remains that with the advances being made in delivery
platforms for miRNA therapeutics in conferring stability to the miRNA-associated drug
candidate, enhancing cancer cell-specific targeting, and promoting more efficient intracellu-
lar delivery of the therapeutic cargo, while limiting potential toxicities and adverse immune
responses, it is feasible that this form of cancer therapy will become a clinical reality in the
near future. With the advent of nonviral delivery technologies, such as peptide carriers,
particularly CPPs, which can be tailored to target specific cancer cells and designed to
enhance the cell entry of their associated drug cargo, for example, through the potential
exploitation of filopodia-directed cell-entry machineries for improved drug efficacy, it is
not unreasonable to assume that through further studies focused on the mechanisms of cell
entry of the varied drug delivery systems and subcellular trafficking fates of the delivered
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nucleic acid-based cargos, that miRNA-based cancer therapeutics will soon have “big”
clinical impacts.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cells11152332/s1, Materials and Methods.
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