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Abstract

This study is to assess the influences of climate, socio-economic determinants, and spatial

distance on the confirmed cases and deaths in the raise phase of COVID-19 in China. The

positive confirmed cases and deaths of COVID-19 over the population size of 100,000 over

every 5 consecutive days (the CCOPSPTT and DOPSPTT for short, respectively) covered

from 25th January to 29th February, 2020 in five city types (i.e., small-, medium-, large-,

very large- and super large-sized cities), along with the data of climate, socio-economic

determinants, spatial distance of the target city to Wuhan city (DW, for short), and spatial

distance between the target city and their local province capital city (DLPC, for short) were

collected from the official websites of China. Then the above-mentioned influencing factors

on CCOPSPTT and DOPSPTT were analyzed separately in Hubei and other provinces.

The results showed that CCOPSPTT and DOPSPTT were significantly different among five

city types outside Hubei province (p < 0.05), but not obviously different in Hubei province (p

> 0.05). The CCOPSPTT had significant correlation with socio-economic determinants

(GDP and population), DW, climate and time after the outbreak of COVID-19 outside Hubei

province (p < 0.05), while was only significantly related with GDP in Hubei province (p <
0.05). The DOPSPTT showed significant correlation with socio-economic determinants,

DW, time and CCOPSPTT outside Hubei province (p < 0.05), while was significantly corre-

lated with GDP and CCOPSPTT in Hubei province (p < 0.05). Compared with other factors,

socio-economic determinants have the largest relative contribution to variance of

CCOPSPTT in all studied cities (> 78%). The difference of DOPSPTT among cities was

mainly affected by CCOPSPTT. Our results showed that influences of city types on the con-

firmed cases and death differed between Hubei and other provinces. Socio-economic
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determinants, especially GDP, have higher impact on the change of COVID-19 transmission

compared with other factors.

Introduction

The coronavirus disease 2019 (COVID-19) was first reported in Wuhan, the capital city of

Hubei province, China in late December 2019 [1, 2]. COVID-19 is ascribed to the severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus [3]. Due to high con-

tagiousness, COVID-19 quickly spread around the world [4, 5], the world health organization

(WHO) has announced COVID-19 as a global public health emergency. Till 2th September,

2020, a total of 258,117,1 90 confirmed cases and 856, 555 deaths had been reported around

the world [6, 7].

The confirmed cases and deaths of COVID-19 may vary between city types (i.e., small-,

medium-, large-, very large- and super large-sized cities) [8–12]. Some studies on droplet-

mediated viral diseases like influenza showed that the proportion of pathogenic virus and the

overall number of microorganisms in the air in large cities are significantly higher than that in

small cities [13, 14]. The reason may be that higher population density and higher amount of

interactions with other people in larger cities are conducive to the spread of virus [15, 16].

Affected by “Urban Turbidity Island Effect”, higher concentration of air contaminant is also

conducive to virus transmission in larger cities [17, 18]. Because of big population base, the

per capita medical and health resources in larger cities may be lower than that in small cities,

leading to the increase of mortality [19]. As a result, large cities may have higher confirmed

cases and deaths of COVID-19. On the contrary, some scholars have reported that better medi-

cal conditions and higher education level which are usually features of larger cities can reduce

the transmission of droplet-mediated viral diseases [13, 15, 16, 20], while peoples in poorer

and less educated smaller cities are more vulnerable to novel coronavirus [13, 21]. This indi-

cates higher confirmed cases and deaths may be observed in smaller cities. Thus, whether the

spread of COVID-19 is higher in larger cities or smaller cities, is still an issue under debate.

Confirmed cases and deaths of COVID-19 among different cities may be affected by socio-

economic determinants [13, 22]. Virus infection is usually presented at a higher risk in large

cities, because of enhanced virus spread caused by larger people mobility [12, 23]. Economi-

cally underdeveloped cities could invest little in prevention to the spread of virus, thus increas-

ing the number of virus-infected people [13, 22, 24]. Additionally, climatic factors have also

been confirmed to have an obvious impact on the change of the confirmed cases and deaths of

COVID-19 [3, 25, 26]. For example, coronavirus is discovered to survive longer, and is more

likely to spread in cooler cities [3, 27]. Influences of temperature, relative humidity, and pre-

cipitation on COVID-19 transmission all differ between coastal cities and inland cities [28,

29]. Spatial distance to the outbreak area of the virus also affects variations on the confirmed

cases and deaths of COVID-19 among cities [30, 31]. Cities closer to the epicenter of the epi-

demic are usually at higher risk and their growth rate for virus infection and transmission are

higher than that of peripheral cities [32, 33].

At present, however, most studies on the impacts of socio-economic determinants, climate

factors and spatial distance on the confirmed cases and deaths of COVID-19 only investigated

a single type of factors [15, 16, 19, 22, 29]. For example, Luo et al. reported that weather was

related to the spread of COVID-19 in China [34]. Liu et al. studied the impact of meteorologi-

cal factors on COVID-19 transmission in China [3]. Auler et al. and Prata et al. found that
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high temperature and intermediate relative humidity might favor the spread of COVID-19 in

tropical region [25, 26]. Qiu et al. found that population posed a higher risk to virus transmis-

sion than other economic conditions [24]. Gross et al. reported that propagation of COVID-

19 from Hubei to other provinces in China has an obvious relation with spatial distance in

early time of the epidemic [35]. Hence, among these existing studies, influences of these above

potential factors on COVID-19 transmission were not comprehensively analyzed. The relative

importance of these contributors to the changes of the confirmed cases and deaths of COVID-

19 remain unclear.

After large-scale outbreak of COVID-19 in Wuhan (the capital of Hubei province with 11

million residents), China’s government implemented many control measures in order to mini-

mize the infection of virus to local residents [5, 36]. More specifically, a series of strict control

measures, such as traffic control, home quarantine and medical aid from around the country,

were carried out in Hubei province (especially the shut-down Wuhan) [36, 37]. But outside

Hubei province, different control measures were taken, which mainly included: (1) shelter-in-

place and quarantine for all confirmed cases and control traffic system to Hubei province on a

national scale; (2) quarantining people from Wuhan or contacted to Wuhan people in the last

one month and screening them by medical examination (e.g. CT Scan-Chest); and (3) limiting

population migration nationwide [3]. These different control measures in Hubei and other

provinces might have caused different relative contributions of socio-economic determinants,

climate factors and spatial distance to the confirmed cases and deaths of COVID-19. However,

limited studies have reported such difference at present [27].

In this study, in order to explore the relationship between COVID-19 transmission and city

sizes, socio-economic determinants, climate factors as well as spatial distance, the confirmed

cases and deaths of COVID-19 from 25th January to 29th February 2020, the data for above-

mentioned four factors in all China’s cities were collected. Then relationships among them

were analyzed using generalized linear mixed models (GLMMs) and hierarchical partitioning

analysis (HPA). The aims of this study are to answer the following three questions: (1) Are

there any differences in the confirmed cases and deaths of COVID-19 among different city

types? (2) Are there any differences in relative contribution of city sizes, socio-economic deter-

minants, climate and spatial distance to variability of the confirmed cases and deaths of

COVID-19? and (3) Are these relative contributions different between Hubei province and

other regions? Our results will provide a useful insight in explaining the variability of COVID-

19 transmission (confirmed cases and deaths), the relevant influencing factors as well as the

relative contribution of different factors. These results will give a practical guidance for draw-

ing up the prevention and control measures of COVID-19 at present and in the future.

Methods

Ethics statement

No specific permissions were required for the described studies, because we did not carry out

any experiments. All data used in this study are issued by China’s National Health Commis-

sion, China Meteorological Administration, Global Climate Dataset and Local City Weather

Bureaus (see Table 1). All data is public and free to use.

Data collection

In this study, we chose 29th January to 29th February 2020 as our studied period because China

National Health Commission (NHC) began to collect and release epidemic data across the

whole country after 25th January [38]. It was also because that the period prior to March, 2020

is considered as the rise phase of COVID-19 epidemic in China [4, 5]. Chinese government’s
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control measures were most strictly enforced during this period. The daily officially reported

positively confirmed case and deaths of COVID-19 were obtained from the official website of

China’s National Health Commission, and the provincial health commission (including

municipalities, and special administrative regions) (Table 1). In the meantime, climatic factors

of all China’s cities were recorded from China Meteorological Administration and Global Cli-

mate Dataset (Table 1). In this study, we selected the relative air humidity, temperature and

solar radiation intensity as representing climate factors. This is because these parameters has

been reported as the most influencing meteorological factors on COVID-19 transmission in

previous studies [3, 24, 26, 29].

Socio-economic determinants including GDP and population, for which the data at the end

of 2018 were collected from the China’s National Statistical Yearbook because data for year

2019 and 2020 have not been released. GDP and population were chosen because they have

decisive effects on factors that directly affected transmission and prevention of COVID-19,

such as population mobility, education level and medical conditions [2, 13, 39]. Assuming that

GDP and population would not change dramatically between two consecutive years, the

impact of using the 2018 Statistical Yearbook data on our analysis would be negligible. Spatial

distance included the distance of the target city to Wuhan city (DW for short), and distance

between the target city and their local provincial capital city (DLPC, for short). DW and DLPC

were calculated through Baidu maps, referring to the shortest traffic distances between cities

(Table 1).

Data analysis

The number of cities selected in this study is 334, which is far less than the total number of cit-

ies in China (approximately 661 in 2020). This is because the cities selected in this study are all

cities where the conformed case of COVID-19 was reported from NHC, while the cities with-

out the conformed case were not selected. All cities (324) were categorized into five types:

small-, medium-, large-, very large- and super large-sized cities, as suggested from land trans-

action website of China (Table 1). The cities were mainly classified according to their resident

population, GDP, cultural radiation area and urban built-up area (especially emphasizing on

population). The Chinese State Council stated in 2014 that, cities with a population of more

than 10 million, 5~10 million, 1~5 million, 0.5~1 million, and less than 0.5 million were

defined as super large-sized, very large-, large-, medium- and small-sized cities, respectively.

Table 1. A summary of data resource.

Data type Data sources Website

The positive confirmed cases and deaths of COVID-19 China’s National Health

Commission

http://www.nhc.gov.cn/xcs/yqtb/list_gzbd_3.shtml

Provincial Health Commission of

China

Web link can be found in China’s National Health

Commission

Climatic factors (relative air humidity, average temperature and solar

radiation intensity)

China Meteorological

Administration

http://www.cma.gov.cn/

Global Climate Dataset http://www.worldclim.org/

Socio-economic determinants (GDP and population) China’s National Statistical

Yearbook

http://www.stats.gov.cn/tjsj/ndsj/

Spatial distance (DW and DLPC) Baidu Map https://map.baidu.com/@13531775.58,3466675.

15,12z

City types Soil Transaction Website of China https://www.tuliu.com/read-81029.html

DW and DLPC are spatial distance of the target city to Wuhan city, and spatial distance between the target city and their local province capital city, respectively.

https://doi.org/10.1371/journal.pone.0255229.t001
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Previous studies have indicated that the epidemic intensity had trivial dependencies on popu-

lation scale [2, 23]. In order to reduce this effect, the daily confirmed cases and deaths in popu-

lation size of 100,000 were set as the initial data for data processing. Therefore, we used the

positive confirmed cases and deaths over the population size of 100,000 at every 5 consecutive

days (the CCOPSPTT and the DOPSPTT for short, respectively) as for the statistical analysis,

with totally 8 time periods. In each time period, climatic factors are represented by their aver-

age of 5 consecutive days. Then, one-way ANOVA was used to compare the differences of

CCOPSPTT and DOPSPTT among five city types at eight periods. Here we use eight periods

to reduce the number of repetitive samples. Time was included as one analysis factor to investi-

gate whether CCOPSPTT and DOPSPTT in different types of cities change with time. In one-

way ANOVA, if the variance of the above indicators was homogeneous, the Tukey HSD was

used to test the differences of CCOPSPTT and DOPSPTT among different cities as impacted

by above mentioned influencing factors. Alternatively, if the variance was heterogeneous,

Kruskal-Wallis test was used. The use and explanation of one-way ANOVA see Wilcox [40].

Based on the investigative data of 324 cities, GLMMs were used to test the multiple-influ-

ences of city sizes, socio-economic determinants, climate factors, spatial distance and time on

CCOPSPTT and DOPSPTT of COVID-19. In GLMMs, city sizes were set as a random variable

in order to reduce the dependencies of epidemic intensity on population scale. In addition,

previous studies have suggested that variances of CCOPSPTT and DOPSPTT can be affected

by time [1, 14]. After the outbreak of COVID-19, the spread of this virus from the outbreak

area to other cities and the increase in infected persons within a city accumulated and shifted

over time. Thus, in the course of data analysis, time was included. We set the starting day of

data collection (25th January, 2019) as 0, and values of time were calculated as the interval of

the other dates to this day. Hence, times of the eight studied periods were set as 0, 5, 10, 15, 20,

25, 30 and 35, respectively. Though the date of first officially confirmed case (29th January

2020) in Wuhan should be set to 0, our times were safe to use as they are mathematically logi-

cally equal with initially times of the first confirmed case. The only difference between the two

referential times is a constant, which did not affect the statistical results. Moreover, impact of

the confirmed cases on deaths cannot be ignored, because it is the most important direct factor

causing death. Thus, we also set CCOPSPTT as an independent variable of DOPSPTT in

GLMMs. The econometric models of CCOPSPTT and DOPSPTT are shown in (1)-(2).

CCOPSPTTct ¼ a0 þ a1Cct þ a2SDct þ a3SEDct þ a4t þ ε ð1Þ

DOPSPTTct ¼ a0 þ a1CCOPSPTTct þ a2Cct þ a3SDct þ a4SEDct þ a5t þ ε ð2Þ

In the models, C, SD and SED represent climate factors, spatial distance and socio-eco-

nomic determinants, respectively. Their sets are respectively expressed in Formula 3–5. c and t
represent city size and time respectively. SRI, AT and RAH are solar radiation intensity, aver-

age temperature and relative air humidity, respectively. ε is the random error; which is formed

by the random action of many factors in the process of measurement and statistics. If the sig-

nificance of regression coefficients, such as α and β, is less than 0.05, suggesting that they have

the significantly impacts on CCOPSPTT or DOPSPTT.

Cct ¼ b1SRIct þ b2ATct þ b3RAHct ð3Þ

SDct ¼ g1DLPCct þ g2DWct ð4Þ

SEDct ¼ y1GDPct þ y2Populationct ð5Þ
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Finally, we used HPA to compare the relative contributions of these factors on CCOPSPTT

and DOPSPTT. Here, the relative contribution was the proportion of each independent vari-

able from the goodness-of-fit measures across all variable combinations in a hierarchy, which

indicated weight of one variable versus other independent variables that obviously contributed

to COVID-19 transmission. When performing GLMMs and HPA, all data were standardized

by logarithmic transformation in order to avoid the trivial influence of the non-normal data

on statistical results (e.g., much data of CCOPSPTT and DOPSPTT in different city types did

not conformed to the normal distribution, see Tables 2 and 3; SD> Mean indicates non-nor-

mal distribution). As COVID-19 control conditions were much more complicated in Hubei

compared with other provinces, like lockdown and mass screening, data analysis of Hubei and

other province were performed separately. The use and explanation of GLMMs and HPA see

Dichmont [41], Lai and Peres-neto [42]. In the data analysis processes of GLMMs and HPA,

socio-economic determinants, climate factors, spatial distance and time were independent var-

iables, while CCOPSPTT and DOPSPTT were dependent variables. Remarkably, we had not

defined one or several specific variables as control variables, and then used the econometric

model to analyze relationships of explanatory variables with CCOPSPTT and DOPSPTT.

Instead, we defined all independent variables as explanatory variables. In this case, seven inde-

pendent variables, including solar radiation intensity, average temperature, relative air humid-

ity, time, GDP, population, DW and DLDP, have the an equivalent logical impacts on

CCOPSPTT and DOPSPTT. They were all explanatory variables, not control variables.

The creditability of GLMMs and HPA results was determined by determinate coefficient (R2)

and p-values. High R2 and p-values<0.05 indicated that statistical results were credible. Besides,

we also tested the robustness of the model to ensure the credibility of the research results. In this

study, since independent variables, especially climate factors, are highly correlated between

Table 2. Differences in the confirmed cases over population size per 100000 at every 5 consecutive days (CCOPSPTT) among five types of cities outside and within

Hubei province from 25th January to 29th February, 2020.

Types Date City types Statistical result

SL VL L M S chi-squared df p-values

Hubei province 25th Jan 6×E-3 / (3±2)×E-4a (5±4)×E-4a (1±2)×E-4a 3.66 2 0.16

30th Jan 0.02 / (3±1)×E-3a (2±1)×E-3a (10±8)×E-4a 3.67 2 0.16

4th Feb 0.06 / (5±2)×E-3a (4±4)×E-3a (2±1)×E-3 5.94 2 0.10

9th Feb 0.09 / (5±3)×E-3a (2±2)×E-3a (2±1)×E-3a 2.62 2 0.27

14th Feb 0.21 / (3±2)×E-3a (2±2)×E-3a (2±1)×E-3a 1.02 2 0.60

19th Feb 0.07 / (3±4)×E-3a (4±4)×E-3a (2±3)×E-3a 0.13 2 0.94

24th Feb 0.02 / (7±5)×E-4a (4±2)×E-4a (3±4)×E-4a 1.50 2 0.47

29th Feb 0.02 / (1±1)×E-4a (2±2)×E-5a (2±2)×E-5a 0.99 2 0.61

Other provinces 25th Jan (2±2)×E-4a (4±4)×E-5b (2±3)×E-5c (2±3)×E-5c (0.6±1)×E-5d 105.38 4 <0.001

30th Jan (5±4)×E-4a (2±3)×E-4a (8±8)×E-5b (7±7)×E-5b (3±4)×E-5c 123.61 4 <0.001

4th Feb (7±5)×E-4a (3±3)×E-4a (1±1)×E-4b (1±1)×E-4b (4±6)×E-5c 111.96 4 <0.001

9th Feb (4±3)×E-4a (2±2)×E-4a (0.9±1)×E-4b (0.7±1)×E-4b (3±6)×E-5c 99.29 4 <0.001

14th Feb (2±2)×E-4a (1±1)×E-4a (6±7)×E-5b (4±6)×E-5b (2±4)×E-5c 82.88 4 <0.001

19th Feb (7±6)×E-5a (4±5)×E-5a (1±2)×E-5bc (1±2)×E-5b (0.8±2)×E-5c 57.18 4 <0.001

24th Feb (3±4)×E-5a (0.6±2)×E-5b (0.4±3)×E-4b (2±7)×E-6bc (2±7)×E-6c 50.88 4 <0.001

29th Feb (0.9±3)×E-5a (1±6)×E-5ab (0.9±3)×E-6ab (0.8±8)×E-6b (0.5±2)×E-5ab 11.88 4 <0.05

Different lowercase letters indicate the significant differences in the confirmed cases among the different cites, whereas the same uppercase letters show the non-

significant differences. SL, VL, L, M and S refers to super large-, very large-, large-, medium- and small-sized cities, respectively. “/” indicates no data in VL because

there is no very large-sized city in Hubei province.

https://doi.org/10.1371/journal.pone.0255229.t002
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adjacent time observation points, their values at time t not only have an impact on CCOPSPTT

and DOPSPTT, but also have a significant impact at time t+1. Therefore, our model is time-

delayed. According to the results of Jiang et al [43], Xun and Halbert [44], the robustness of the

time-delay model can be tested with the data of one lag period. More specifically, the dependent

variables can be estimated by the independent variables with a lag of one period (i.e., lag regres-

sion or time-delay model). When the regression parameters, like p-value, R2 and estimate coeffi-

cients, of time-delay and baseline (original) models are close to each other, it indicates that our

model has high robustness. All data processing was conducted in R. 3.4.3 software.

Results

Differences in the CCOPSPTT and DOPSPTT of COVID-19 among five

city types

Outside Hubei province, there was a significant difference on CCOPSPTT among the five city

types from 25th January to 29th February, 2020 (p< 0.05) (Table 2). In most cases, CCOPSPTT

decreased in the order of super large-� very large- > large-�medium- > small-sized cities

(Table 2). Within Hubei province, CCOPSPTT in the only super large-sized city (Wuhan)

were obviously higher than other cities. Additionally, the gap of CCOPSPTT between Wuhan

and other cities in Hubei province continuously increased with time (Table 2). For example,

on 25th January, 2020, CCOPSPTT in Wuhan was 6×E-3, which was significantly higher than

that of large-sized cities (3×E-4), medium-sized cities (5×E-4) and small-sized cities (1×E-4).

Wuhan was more than 12 times higher than other cities on CCOPSPTT (Table 2). On 29th

February, 2020, the CCOPSPTT in Wuhan, large-, medium- and small-sized cities of Hubei

province were 0.02, 1×E-4 (average), 2×E-5 (average) and 2×E-5 (average), respectively. There

was over 200 times higher CCOPSPTT in Wuhan and in other cities (Table 2). In all sampling

Table 3. Differences in deaths over population size per 100000 at every 5 consecutive days (DOPSPTT) among five types of cities outside and in Hubei province

from 25th January to 29th February, 2020.

Types Date City types Statistical result

SL VL L M S chi-squared df p-values

Hubei province 25th Jan 5×E-4 / (8±8)×E-6a (6±8)×E-6a (1±3)×E-6a 1.95 2 0.38

30th Jan 1×E-3 / (3±4)×E-5a (2±4)×E-5a (3±2)×E-5a 1.26 2 0.53

4th Feb 2×E-3 / (5±3)×E-5a (3±5)×E-5a (5±5)×E-5a 1.78 2 0.41

9th Feb 3×E-3 / (8±4)×E-5a (5±8)×E-5a (2±2)×E-5a 4.64 2 0.10

14th Feb 4×E-3 / (20±9)×E-5a (9±8)×E-5a (6±4)×E-5a 2.81 2 0.25

19th Feb 5×E-3 / (10±8)×E-5a (8±7)×E-5a (4±3)×E-5a 3.88 2 0.14

24th Feb 5×E-3 / (8±8)×E-5a (5±7)×E-5a (2±3)×E-5a 2.51 2 0.29

29th Feb 2×E-3 / (5±2)×E-5a (3±3)×E-5a (2±2)×E-5a 3.36 2 0.19

Other provinces 25th Jan (0.6±2)×E-6a 0.00±0.00a (0.2±1)×E-6a 0.00±0.00a 0.00±0.00a 9.28 4 0.05

30th Jan (2±4)×E-6a 0.00±0.00b (0.6±4)×E-6b 0.00±0.00b 0.00±0.00b 44.56 4 <0.001

4th Feb (1±5)×E-6a 0.00±0.00b (0.3±2)×E-6b (0.6±3)×E-6b 0.00±0.00b 5.74 4 <0.05

9th Feb (2±4)×E-6a (1±5)×E-6ab (1±4)×E-6b (0.5±2)×E-6b (0.3±2)×E-6b 9.78 4 <0.05

14th Feb (0.6±1)×E-5a (0.7±2)×E-6b (0.8±4)×E-6b (1±8)×E-6b (0.3±2)×E-6b 21.85 4 <0.001

19th Feb (4±8)×E-6a (0.7±2)×E-6ab (0.5±2)×E-6b (0.9±7)×E-6b (0.2±1)×E-6b 16.42 4 <0.01

24th Feb (2±5)×E-6a (0.3±2)×E-6ab (0.6±2)×E-6ab (0.1±1)×E-6b (0.8±9)×E-7b 16.02 4 <0.01

29th Feb (2±9)×E-6a (0.3±2)×E-6a (0.2±1)×E-6a 0.00±0.00a (0.2±2)×E-6a 5.01 4 0.29

Different lowercase letters indicate the significant differences in deaths among the different cites, whereas the same uppercase letters show the non-significant

differences. The introduction of SL, VL, L, M, S and “/” see Table 2.

https://doi.org/10.1371/journal.pone.0255229.t003
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dates, difference of CCOPSPTT among large-, medium- and small-sized types of cities in

Hubei was not significant (p> 0.05) (Table 2).

DOPSPTT showed no significant difference among five city types outside Hubei province

on 25th January and 29th February, 2020 (p> 0.05) (Table 3). But during the six sampling peri-

ods in between these two dates outside Hubei province, DOPSPTT in super large-sized cities

were significantly higher than that in other cities (p< 0.05). DOPSPTT showed no significant

difference among other four (very large-, large-, medium- and small-sized cities) types of cities

outside Hubei province (p> 0.05) (Table 3). In Hubei province, DOPSPTT of the only super

large-sized city (Wuhan) were obviously higher than that of other cities at all sampling dates.

The gap of DOPSPTT between Wuhan and other Hubei cities also continuously increased

with time. The DOPSPTT also showed no significant difference among large-, medium- and

small-sized cities (p> 0.05) (Table 3).

Multiple relationships of socio-economic determinants, climate, spatial

distance and time to the CCOPSPTT and DOPSPTT of COVID-19

The GLMMs results showed high R2 values (> 0.10) and significant p-values (< 0.001) in all

analysis (Tables 4 and 5). Our results also showed that the time-delay and the baseline models

Table 4. Results of GLMs in relationship of the confirmed cases over population size per 100000 at every 5 consecutive days (CCOPSPTT) with socio-economic

determinants (GDP and population), spatial distance (DW and DLPC), climate factors (relative air humidity, solar radiation intensity and average temperature)

and time in cities outside and within Hubei province.

Types Regression parameters Baseline model Time-delay model

Coefficients Coefficients

Estimate SE p-value Estimate SE p-value
Hubei province Intercept -0.02 0.01 0.28 -0.02 0.01 0.31

Population (Ten thousand) -1×E-5 9×E-6 0.20 -1×E-5 9×E-6 0.23

GDP (Hundreds of millions RMB) 5×E-6 6×E-7 <0.001��� 4×E-6 5×E-7 <0.001���

DW (km) -1×E-5 1×E-5 0.25 -1×E-5 1×E-5 0.23

Relative air humidity (%) 2×E-4 2×E-4 0.11 1×E-4 2×E-4 0.12

Solar radiation intensity (h) 5×E-4 4×E-4 0.27 4×E-4 4×E-4 0.26

Average temperature (˚C) -1×E-3 6×E-4 0.06 -1×E-3 6×E-4 0.07

Time (d) 4×E-4 3×E-4 0.11 3×E-4 3×E-4 0.12

AIC -635.68 -643.23

Marginal R2 0.52 0.51

Conditional R2 0.52 0.51

Other provinces Intercept 5×E-5 9×E-6 <0.001��� 4×E-5 9×E-6 <0.001���

Population (Ten thousand) 9×E-8 1×E-8 <0.001��� 8×E-8 1×E-8 <0.001���

GDP (Hundreds of millions RMB) 1×E-8 9×E-10 <0.001��� 1×E-8 1×E-9 <0.001���

DW (km) -2×E-8 6×E-9 <0.01�� -2×E-8 6×E-9 <0.01��

DLPC (km) -6×E-9 2×E-8 0.75 -5×E-9 2×E-8 0.75

Relative air humidity (%) -4×E-8 3×E-8 <0.05� -4×E-8 3×E-8 <0.05�

Solar radiation intensity (h) 3×E-6 8×E-7 <0.001��� 4×E-6 7×E-7 <0.001���

Average temperature (˚C) 4×E-7 3×E-7 <0.05� 3×E-7 3×E-7 <0.05�

Time (d) -4×E-6 3×E-7 <0.001��� -5×E-6 4×E-7 <0.001���

AIC -32617.20 -32634.55

Marginal R2 0.33 0.32

Conditional R2 0.33 0.32

The introduction of DW and DLPC see Table 1. The robustness of the model was tested by the similarity of regression coefficients between the baseline and time-delay

models. If the regression coefficients are close to each other between the two models, indicating that our model has high robustness.

https://doi.org/10.1371/journal.pone.0255229.t004
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have similar regression parameters. For example, in the GLMMs of COPSPTT, the p-values of

population, GDP, DW, relative air humidity, solar radiation intensity, average temperature

and time of the two models, were all less than 0.05 outside Hubei provinces. The positive or

negative forms of regression coefficients of all independent variables in the two models were

consistent (Table 4). R2 difference ranged from 0.01 to 0.04, and there was no obviously

between the two models. These suggested that our model has high robustness (Tables 4 and 5).

The variability of CCOPSPTT and DOPSPTT among five city types could be affected by socio-

economic determinants, climate, spatial distance and time.

Outside Hubei province, GDP (positive), population (positive), DW (negative), relative air

humidity (negative), solar radiation intensity (positive), average temperature (positive) and

time (positive) had a significant regression relationship with CCOPSPTT (p< 0.05). In con-

trast, DLPC had no significant correlation (p> 0.05) with CCOPSPTT (Table 4). In Hubei

province, only GDP (positive) had a significant regression relationship with CCOPSPTT

(p< 0.05), whereas other factors did not (p> 0.05) (Table 4).

Regarding DOPSPTT, GDP, population, DW, time and CCOPSPTT showed the significant

positive influences on it outside Hubei province (p< 0.01) (Table 5). However, in Hubei

Table 5. Results of GLMs in relationship of deaths over population size per 100000 at every 5 consecutive days (DOPSPTT) with the CCOPSPTT, socio-economic

determinants, spatial distance, climate factors and time in cities outside and within Hubei province.

Types Regression parameters Baseline model Time-delay model

Coefficients Coefficients

Estimate SE p-value Estimate SE p-value
Hubei province Intercept -3×E-4 3×E-4 0.43 -4×E-4 3×E-4 0.41

Population (Ten thousand) -1×E-7 2×E-7 0.67 -2×E-7 2×E-7 0.62

GDP (Hundreds of millions RMB) 1×E-7 2×E-8 <0.001��� 1×E-7 2×E-8 <0.001���

DW (km) -4×E-7 2×E-7 0.24 -3×E-7 2×E-7 0.29

Relative air humidity (%) 2×E-6 3×E-6 0.63 1×E-6 3×E-6 0.57

Solar radiation intensity (h) -2×E-6 9×E-6 0.85 -2×E-6 9×E-6 0.82

Average temperature (˚C) -1×E-5 1×E-5 0.41 -1×E-5 1×E-5 0.36

Time (d) 9×E-6 6×E-6 0.09 1×E-7 6×E-6 0.06

The CCOPSPTT 0.01 2×E-3 <0.001��� 0.01 2×E-3 <0.001���

AIC -1553.32 -1569.39

Marginal R2 0.82 0.79

Conditional R2 0.84 0.80

Other provinces Intercept -9×E-7 3×E-7 <0.001��� -9×E-7 3×E-7 <0.001���

Population (Ten thousand) 1×E-9 3×E-10 <0.001��� 9×E-8 3×E-10 <0.001���

GDP (Hundreds of millions RMB) 6×E-11 2×E-11 <0.05� 5×E-11 2×E-11 <0.05�

DW (km) 3×E-10 2×E-10 <0.05� 3×E-10 2×E-10 <0.05�

DLPC (km) 5×E-11 5×E-10 0.92 6×E-11 6×E-10 0.92

Relative air humidity (%) 1×E-9 9×E-10 0.22 1×E-9 1×E-11 0.21

Solar radiation intensity (h) -1×E-8 2×E-8 0.63 -1×E-8 2×E-8 0.64

Average temperature (˚C) -9×E-9 9×E-9 0.31 -9×E-9 9×E-9 0.34

Time (d) 2×E-8 8×E-9 <0.05� 1×E-8 8×E-9 <0.05�

The CCOPSPTT 4×E-3 6×E-4 <0.001��� 3×E-3 6×E-4 <0.001���

AIC -48088.99 -48101.99

Marginal R2 0.14 0.11

Conditional R2 0.14 0.10

Instruction of the CCOPSPTT, social economy, climate factors, DW, DLPC and the robustness test as suggested in Tables 1 and 4.

https://doi.org/10.1371/journal.pone.0255229.t005
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province, the variability of DOPSPTT was significantly affected (positive) by CCOPSPTT and

GDP (p< 0.05), but not related to other factors (p> 0.05) (Table 5).

The HPA results showed high R2 values (R2 of CCOPSPTT and DOPSPTT in Hubei and

other provinces were 0.45, 0.30, 0.82 and 0.49, respectively) and significant p-values (< 0.001)

in all analysis, indicating that HPA can be good used to decompose the relative contribution of

each influencing factor to CCOPSPTT and DOPSPTT. This also suggested our results have

high credibility (Fig 1). Among cities outside Hubei province, the results of HPA showed that

the relative contributions of socio-economic determinants, climate, spatial distance and time

to the change of CCOPSPTT were 78.90%, 3.20%, 6.40% and 11.50%, respectively. Specifically,

the relative contribution of GDP (45.72%) was obviously higher than that of population

(33.23%). DW (4.09%) contributed significantly higher than DLPC (2.30%) on CCOPSPTT

(Fig 1A). All climatic factors had relatively lower relative contributions to CCOPSPTT (relative

air humidity 1.45%; average temperature 0.90%; and solar radiation intensity 0.84%) (Fig 1A).

In Hubei province, the relative contributions of different factors to variability of CCOPSPTT

among cities were ordered as socio-economic determinants (91.31%)> spatial distance

(6.52%) > climate (1.95%) > time (0.22%) (Fig 1B). The relative contribution of GDP

(73.28%) was significantly higher than that of population (18.03%), while average temperature

(1.06%) contributed slightly higher to that of relative air humidity (0.56%) and solar radiation

intensity (0.33%) (Fig 1B). The relative contributions of GDP, spatial distance and average

Fig 1. The relative contributions of different factors to the confirmed cases (a and b) and deaths (c and d) over population

size per 100000 at every 5 consecutive days (CCOPSPTT and DOPSPTT). Instruction of DW and DLPC as suggested in Table 3.

SED is socio-economic determinants. SRI, AT and PAH is solar radiation intensity, average temperature and relative air humidity,

respectively.

https://doi.org/10.1371/journal.pone.0255229.g001
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temperature to CCOPSPTT were obviously higher in Hubei province than those of other prov-

inces (Fig 1A and 1C).

The relative contributions to DOPSPTT were higher from CCOPSPTT (44.06%) and socio-

economic determinants (44.06%) than from spatial distance (2.10%), climate (1.83%) and time

(2.84%) in cities outside Hubei province (Fig 1C). Particularly, the contribution of GDP

(26.85%) was higher than that of population (22.32%). Contribution of DW (1.55%) was more

than that of DLPC (0.55%), while the relative contributions of all climate factors were less than

0.76% (Fig 1C). In Hubei province, the relative contributions of CCOPSPTT, socio-economic

determinants, climate, DW and time to DOPSPTT were 40.61%, 52.80%, 2.06%, 4.03% and

0.50%, respectively (Fig 1D). Among the sub-factors, the relative contribution from GDP

(41.73%) was obviously higher than that of population (11.03%), and the relative contributions

of all climatic factors were less than 1.20%. Meanwhile, GDP, spatial distance and average tem-

perature showed higher contributions to DOPSPTT in Hubei than that in other provinces,

while CCOPSPTT exhibited the opposite trend (Fig 1B and 1D).

Discussion

Relationship between city types and the confirmed cases and deaths of

COVID-19

The difference of CCOPSPTT among five city types outside Hubei province (Table 2) sug-

gested that city size and developmental level linked with the infection and transmission of

COVID-19. The population and economic activities of super large- and very large-sized cities

are significantly higher than those of other types of cities [9, 40]. In addition, due to the devel-

oped traffic system, population mobility in super large- and very large-sized cities are higher

than those in large-, medium- and small-sized cities [32, 41]. These make population density

and the amount of interactions with other people in super large- and very large-sized cities are

higher than those of other cities [45]. According to the theory of infectious disease, the

increases of population density and the amount of interactions with other people will improve

the transmission risk of the epidemic [2, 23, 39, 46]. As a result, novel coronavirus would

spread faster in super large- and very large-sized cities, resulting in the large number of

CCOPSPTT. In addition, as suggested from Zhu et al. [17], Wu et al. [18] and Heibati et al.

[28], urban climate factors and pollution status also affected the spread of novel coronavirus.

The increases of contaminant concentration and air humidity in cold season both are benefi-

cial to the spread of novel coronavirus [29]. Under the same geographical conditions, such as

the location from the ocean and altitude, the pollutant concentration and air humidity in

larger-sized cities are significantly higher than those in small- and medium-sized cities due to

the influences of urban “Heat Island Effect” and “Turbidity Island Effect” [17, 18, 47]. There-

fore, differences in climate factors and pollution status can also cause differences in the spread

of novel coronavirus among cities with different sizes.

Among five city types, CCOPSPTT showed no significant difference between super large-

and very large-sized cities, as well as between large- and medium -sized cities (Table 2). This

may be determined by the complex relationships among population, population mobility, and

the degree of the implementation of control measures [15, 16, 24]. For example, although

super large-sized cities have larger population and higher population mobility, where the

implementation of epidemic control measures would be more difficult compared with very

large-sized cities. Beside, at present, people’s cognition on the role of income (GDP or GDPP)

on COVID-19 transmission would be controversial because at an aggregate level higher

degrees of economic development (i.e., a higher GDP) might promote higher population

mobility, e.g., potentially favoring the spread of epidemics. But at the same time, a richer
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region should have larger amount of resources to put into place more effective control inter-

ventions. On the other hand, during a sudden and rapid period of COVID-19 outbreak, a

larger GDP implying a potentially more educated population; which might allow the adoption

of individual protective measures at a higher rate. This suggests that the potential role of GDP

on COVID-19 can be complicated between different city types. This would also explain the

insignificant difference of CCOPSPTT between super large- and very large-sized cities, as well

as between large- and medium-sized cities.

Except for Wuhan, CCOPSPTT among large-, medium- and small-sized cities in Hubei

province was not significantly different (Table 2). This indicated the change of confirmed

cases from large- to small-sized cities was affected little by the city size and development level;

which showed the opposite trend with cities outside Hubei province that significantly differed

(Table 2). The difference in change of CCOPSPTT between Hubei and other province with

city sizes may be related to China’s extreme control measures, such as strict traffic control and

home quarantine [33, 36]. Wuhan was shut down on 23th January, while traffic controls in

other cities of Hubei province started after 28th January, 2020. Home quarantine and traffic

control could block the transmission of coronavirus [36]. Thus, change in the confirmed cases

would be the effects of population mobility before the closure of Wuhan. As Wuhan is the cap-

ital city serving as the economic and cultural center, many virus carriers would have moved

from Wuhan to smaller cities surrounded before the traffic control started. Within Hubei

province, there might be no significant difference in the number of population mobility from

Wuhan to surrounding small cities due to the developed transportation and the large popula-

tion base. After traffic control and home quarantine, the increase in confirmed cases might be

due to intra-family infection [37, 48]. Therefore, similar population mobility and similar extent

of intra-family infection caused an identical CCOPSPTT value between large-, medium- and

small-sized cities in Hubei province (Table 2). However, outside Hubei province, the number

of people from Hubei province was higher in larger cities than that in small and medium-sized

cities, because the former have closer contact with Hubei province’s cities, especially Wuhan,

in terms of personnel flow and business exchanges [5, 32]. Such difference made CCOPSPTT

of larger cities higher than that of small and medium-sized cities.

The DOPSPTT in super large-sized cities were higher than that in other cities, whereas

there was no significant difference between very large-, large-, medium- and small-sized cities

both in Hubei and other provinces (Table 3). This may be explained by the complicated influ-

ence from many factors, such as the confirmed cases, medical conditions, Intensive care unit

(ICU) per capita and China’s control measures [5, 33, 36]. Although super large-sized cities

have better medical conditions, but a higher confirmed cases and lower ICU per capita may

lead to higher rate of deaths than that of other small cities. China’s strong control measures,

such as traffic control, home quarantine, free medical treatment, testing and isolation of

asymptomatic cases, has made the vast majority of COVID-19 patients and carriers treated

and controlled [33, 37]. Thus, DOPSPTT had not differed between cities with different sizes.

In Hubei province, in addition to the above several control measures, a large number of doc-

tors and medical supplies were provided to these cities, and a large number of mobile cabin

hospital were constructed [19, 32, 49]. Local hospitals have sufficient medical resources and

equipment to treat patients. Therefore, DOPSPTT were not significantly different between

very large-, large-, medium- and small-sized cities (Table 3). As an exception, CCOPSPTT and

DOPSPTT of COVID-19 in Wuhan were obviously higher than in other cities of Hubei prov-

ince (Tables 2 and 3). This is because Wuhan was the only large-scale epidemic area in China

within our data survey period (from 25th January to 29th February). Government disease con-

trols and the spread patterns of COVID-19 were different between Wuhan and other cities [4,

20]. Specific explanations can be summarized in the following aspects: (1) the difference
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between the proportion of the elderly with novel coronavirus in the total population in Wuhan

and other cities. The population with high susceptibility and mortality of novel coronavirus

was mainly elderly people [4, 19]. Wuhan was the first city to report COVID-19. The virus has

spread widely in Wuhan as local authorities try to contain all aspects of the epidemic, leading

to a higher proportion of the elderly infected with the virus. But outside Wuhan, the early

detection and isolation of the virus effectively controlled the spread of the epidemic among the

elderly; (2) the influences of timely medical treatment and epidemic prevention on the spread

of novel coronavirus [19, 49]. Shutdown of Wuhan helped other cities to win a valuable time

for epidemic prevention and control, thereby reducing the number of infections and deaths.

At the same time, the implementation of effective measures avoided a run on medical

resources, leading to a relatively low fatality rate [5, 36, 37]. However, in the early stage of the

outbreak of the epidemic in Wuhan, many patients may not receive timely treatment due to a

sharp increase in the number of infected person and the shortage of medical resources, leading

to a high mortality rate [19]; (3) the impact of the improvement of control measure, diagnosis

and treatment techniques on preventing the spread of novel coronavirus. Since the COVID-19

first large-scale outbreak in Wuhan, scientists and medical staff had little knowledge about this

newly emerging disease, and there were no effective diagnosis, treatment and control schemes,

resulting in high CCOPSPTT and DOPSPTT in Wuhan. However, as the anti-epidemic work

have developed, other cities have continuously improved control measures, diagnostic and

treatment techniques, to ensure that patients and carriers have been diagnosed and treated

timely, thus prevented effectively the spread of the epidemic [32, 33, 37]. As a result, these cit-

ies have fewer deaths and confirmed cases of COVID-19 than Wuhan.

It is the most noteworthy that we studied the rise period of COVID-19 when China imple-

menting the strictest control. The impact of city types on confirmed cases and deaths through

GDP, population and spatial distance may be the extension of their original impact before the

implementation of government’s control measures. More specifically, nearly 5 million people

left Wuhan for other cities before its shutdown [12]. After these people arrived at new cities,

differences in GDP, population and other aspects among these cities would have led to the var-

iance of virus transmission before the implementation of Chinese government’s epidemic con-

trol in a national scale [1]. In addition, there is an incubation period of COVID-19 and some

infected persons are asymptomatic. Hence, carriers of the novel coronavirus continued to

spread it during the period of government epidemic control. Thus, influence of city types on

CCOPSPTT and DOPSPTT via GDP, population and spatial distance would not be fully elimi-

nated by the implementation of control measures. In this case, city sizes had a significant posi-

tive correlation with CCOPSPTT and DOPSPTT in our studied periods.

Influences of socio-economic determinants, climate, spatial distance and

time on the confirmed cases and deaths of COVID-19

Our results showed that socio-economic determinants have the positive and greatest contribu-

tion to variability of CCOPSPTT among cities outside Hubei province (Fig 1, Table 4). The

higher contribution to CCOPSPTT from than that from population (Fig 1) may be due to that

GDP reflects people’s income and consumption ability, better affecting population mobility

and activity which was more closely related to the spread of the virus [46, 50]. Time and DW

were found the second and third contributing factors affecting CCOPSPTT (Fig 1). This was

consistent with the basic theory of epidemiology that the confirmed cases would increase con-

tinually over time [5, 51] and with the finding that regions closer to the outbreak of COVID-

19 are more easily infected [33, 48]. GLMMs results also proved that DW has the negative rela-

tionship with the CCOPSPTT (Table 4). Wuhan was the outbreak source of COVID-19 and
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the economic and cultural center of central China. During the Chinese Spring Festival, a

greater number of people working, studying, visiting and traveling in Wuhan would return to

their hometown. According to the theories of economic geography, the gather of the sur-

rounding residents to the economic and cultural centers to would decrease with the increase of

spatial distance [32, 50]. In other words, the number of people who left Wuhan to other sur-

rounding cities would decrease with spatial distance [30]. This may have explained the signifi-

cant negative correlation between DW and CCOPSPTT (Table 2). The weak correlation

between DLPC and the confirmed cases indicated that there was not a second city showed a

large-scale COVID-19 outbreak in China from January to February. These could be due to

China’s strong control. After January 24, all coronavirus patients and carriers either from

Wuhan and Hubei province or contacted with people from this region were quarantined at

home, potentially having prevented epidemics from a second outbreak [32, 36, 37]. In addi-

tion, our results showed that relative air humidity had the negative influence on CCOPSPTT,

while average temperature and solar radiation intensity displayed positive influences (Table 4).

This echoed the findings reported by a few previous studies [8, 10, 27]. Dalziel et al. [50] and

Liu et al. [1] proved that slightly higher temperature and solar radiation intensity and lower

relative air humidity in low temperature environment were conducive to the survival and

transmission of virus. Qing et al. [8] analyzed the data of infectious diseases in the Ming and

Qing dynasties (AD 1368–1901) across several hundred years, and concluded that the viral

transmission and deaths were related to climate. However, in this study, we used the positive

confirmed cases and deaths of COVID-19 in five consecutive days and the average of climate

factors in analyzing their relationship. Compared with the data of daily-variety (or daily analy-

sis unit), our treatment reduced the number of duplicate samples, but the use of average of cli-

matic factors may ignore the effect of abrupt changes of climate factors on viral transmission

in the short term (5 days); which may have slightly affected the accuracy of our research.

There was a subtle difference in the contributions of socio-economic determinants, spatial

distance, climate and time to CCOPSPTT between cities in Hubei and other provinces (Fig 1

and Table 3). This might be determined by the scale effect. As previous studies suggested, cli-

mate changed little in a small region, but population mobility and frequent interpersonal com-

munication caused by population and spatial distance would change more so that could affect

viral transmission more [10, 51]. Thus, the contributions of socio-economic determinants and

DW to CCOPSPTT in Hubei province were higher than that of other provinces (Fig 1). In

comparison, all climate factors showed no significant correlation with CCOPSPTT in Hubei

province, while an opposite trend was observed in other provinces (Fig 1 and Table 4).

The confirmed cases was the main contributor to the deaths, which accounted 40.61% and

44.06% for the variance of DOPSPTT in Hubei and other provinces, respectively (Fig 1,

Table 4). This is consistent with people’s common agreement that the higher the number of

confirmed cases, the higher the number of deaths when an epidemic goes on under the

absence of an effective vaccine. Conversely, impacts of GDP, population and spatial distance

on DOPSPTT varied between Hubei and other provinces (Fig 1, Table 5). This difference may

be caused by China’s strong control [36, 37]. According to the epidemic model without gov-

ernment’s control, the death toll would significantly correlated with the confirmed cases, spa-

tial distance, population mobility and time [33, 48]. After government’s control, the impact of

these factors on deaths would be reduced. However, the extent of reduced impact of these fac-

tors on death varied with different control measures. For example, CCOPSPTT and GDP that

were strongly associated with death (accounted for the largest variance of DOPSPTT among

different cities), still affected deaths after implementing control measures (Fig 1). Conversely,

the effect of other factors that low associated with deaths may have not been changed by the

control measures [32, 37]. In the cities of Hubei province, due to the implementation of many
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strong control measures, DOPSPTT in Hubei province only showed association with

CCOPSPTT and GDP.

Outside Hubei province, population, DW and time have significant correlation with

DOPSPTT (Table 5). This may be because of the not as strict control measures in these places

as that in Hubei province. Although China imposed nationwide limitation on population

mobility at the end of January, the extent to which such controls limited the spread of the virus

depended on many factors. For example, (i) the level of the local epidemics when control inter-

ventions (e.g., social distancing, lockdown, etc) were implemented; (ii) the promptness (e.g.,

whether the lockdown implementation was abrupt or slowly started) and intensity of such

interventions measures; and (iii) the extent of further measures such as testing and isolation of

asymptomatic cases [14, 22, 31]. On the national scale, these control measures might be differ-

ent between provinces. The influence of the control measures on the reduced impact of our

studied influencing factors on deaths was not as significant as that in Hubei province. In this

case, population, DW and time had significant correlation with the deaths (Table 5). In terms

of climate-related factors, due to their loose correlation with deaths, government’s control

measures may have prevented them from having a significant impact on DOPSPTT in both

Hubei and other provinces.

Conclusions

Our results found that city sizes had a significant impact on the confirmed cases and deaths of

COVID-19 over the population size of 100,000 (COPSPTT and DOPSPTT, respectively), but

this effect differed between Hubei and other provinces. The results of GLMMs and HPA

showed that the confirmed cases and deaths among different city types were affected by socio-

economic determinants, climate and spatial distance and time. Socio-economic determinants

were the dominating factor affecting COPSPTT among different cities, while the deaths were

mainly determined by the confirmed cases and GDP. Socio-economic determinants and time

had positive effect on while spatial distance negative correlated to the confirmed cases and

death among different cities. In addition, our results showed that relative air humidity had

negative influence on CCOPSPTT while average temperature and solar radiation intensity dis-

played positive influences. The different influences of socio-economic determinants, climate

factors and spatial distance on the confirmed cases and deaths between Hubei and other prov-

inces may be due to China’s strong control measures (more strict in Wuhan and Hubei prov-

ince) that reduced the spread of novel coronavirus. In conclusion, our study indicated that

large cities have a higher risk of COVID-19 infection than small cities. Home quarantine and

restriction of population mobility are effective ways to control virus transmission. Therefore,

minimization of the population mobility can effectively protect people from COVID-19 infec-

tion during its rise phase.
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