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Abstract

Kristjansson (2015) suggests that standard research methods in the study of visual search should

be ‘‘reconsidered.’’ He reiterates a useful warning against treating reaction time x set size functions

as simple metrics that can be used to label search tasks as ‘‘serial’’ or ‘‘parallel.’’ However, I argue

that he goes too far with a broad attack on the use of slopes in the study of visual search. Used

wisely, slopes do provide us with insight into the mechanisms of visual search.
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Standard visual experiments ask observers to detect the presence or absence of a target item
among some number of distractors. The total number of items in a display is the ‘‘set size.’’
Reaction times (RTs) and accuracy are measured and the slope of the RT� set size function
is taken to give important insights into the nature of the underlying search. Arni Kristjansson
(2015), in his piece, ‘‘Reconsidering Visual Search,’’ makes an important point about such
experiments that apparently cannot be made too often. It is a mistake to take a measure of
the slope of that RT� set size function and to declare, based on some criterion value of ms/
item, that the underlying search is preattentive or parallel or attentive or serial. When I
looked over a large body of work from my lab almost 20 years ago, I reported that search
slope values form a continuum with no meaningful break between ‘‘parallel’’ and ‘‘serial’’
tasks (Wolfe, 1998). I argued for a theory-neutral description of slopes as indicating that
searches were more or less ‘‘efficient.’’ Still, the notion of two stages—preattentive followed
by attentive—lives on; along with the notion that some searches are done by the preattentive
stage alone and others by the attentive stage. The origins of the idea arise with Neisser (1967)
and become important as part of a theory of search with Treisman and Gelade’s (1980)
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‘‘Feature Integration Theory.’’ It is sometimes held to imply that some pieces of brain
anatomy are ‘‘preattentive’’ and others ‘‘attentive.’’ This is oversimplified. The field moved
on years ago (for an updated look at Feature Integration Theory, see Treisman, 1998) but
Kristjansson is quite right that this early, two-stage idea remains enshrined in textbooks and
cited in work in neighboring fields.

Unfortunately, while it is worth reminding the field that there has been progress since
1980, Kristjansson (2015) wants to throw out a whole set of scientifically useful ‘‘babies’’ with
this outdated, two-stage ‘‘bathwater.’’ The purpose of my short piece is to argue that the
basic visual search paradigm continues to be useful and that RT� set size functions continue
to be interpretable.

Preattentive Processing Is Real

The idea of an autonomous ‘‘preattentive’’ piece of the visual system may be dangerous and
wrong, but preattentive processing is a meaningful part of any theory of visual attention. If
we assume that there is such a thing as visual selective attention, that means that some region
or object is the current object of attention and that other regions and objects are not. When a
new scene is presented to an observer, some regions and objects will not yet have been
selected and, thus, will not have been subject to the effects of visual selective attention. If
those objects are being processed at all—which, of course, they are—that processing is,
tautologically, ‘‘preattentive.’’ If something is seen in regions that have not yet been
attended—and, of course, something is seen there, then we can talk about ‘‘preattentive
vision.’’ The nature of that preattentive processing and the contents of preattentive visual
representations are open for investigation (Wolfe & Bennett, 1997) as is the relationship of
preattentive to ‘‘postattentive’’ vision (Wolfe, Klempen, & Dahlen, 2000). However, if
attention exists, the existence of the preattentive is not really open to question. It is
possible that ‘‘preattentive’’ could be relabeled ‘‘weakly attended’’ on the assumption that
some low level attention is always spread across the visual field, but that is a largely semantic
distinction. If there is selective visual attention, then there are stimuli that have not yet been
selected.

‘‘Preattentive’’ is not a categorical label for a piece of the visual system. Neisser had a
preattentive box in his original diagram but it is a mistake to think of that box as a dedicated
preattentive piece of brain. If an item has not yet been attended, its representation is
preattentive. Activity in, for example, V1—primary visual cortex—may be associated with
that preattentive representation. However, a moment later, that item may be attended.
Reentrant or feedback signals will modify the activity in V1 and the same piece of cortex
will now be contributing to the attentive representation of the same item.

RT�Set Size Functions Are Interpretable and Useful

Kristjansson’s (2015) main argument is that the slopes of RT� set size functions are
ambiguous and that the RT methods pioneered by Donders (1868, 1969), Sternberg
(1966), and Posner (1978) are not actually useful in the study of search. While there are
complications and subtleties in the analysis of RT data in search, the basic logic of the
analysis of RT� set size functions, like the basic logic of the idea of preattentive vision,
seems quite solid. This can be illustrated with a toy example, shown in Figure 1.

In Figure 1(a), the task is to determine if one of these words names the capital of a
country. You will find ‘‘Berlin’’ but, unless you got lucky, you will have had to read other
words, one after the other, in series before getting to the target. If we did the task repeatedly,
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you would read, on average, half the words before stumbling on the target. If we varied the
number of words in the display, we would vary the number of words you would need to read
and, accordingly, the time required to find the target would grow linearly with set size, as
cartooned in Figure 1(c). This would produce some slope of K ms/item. Now, suppose we
reversed the order of the letters as in Figure 1(b). The task is the same and you can still find
the capital, but you will need to spend markedly longer with each item. If each item takes
longer, the result will be a steeper RT� set size slope (Slope>K, 1(d)). If you had been
informed that the target word, if present, was written in black and not red (outline) letters,
you still would have needed to search, but you would not have bothered to read red, outline
words. Since only half the items are black, you would have read half as many words on
average and, as shown by Egeth, Virzi, and Garbart (1984), the slope would be decreased by a
factor of 2 (Slope¼ 0.5K, 1(e)). This is the basic idea of feature guidance and the heart of the
Guided Search model (Wolfe, 1994, 2007; Wolfe, Cave, & Franzel, 1989). If only one item
was black on each trial, the slope would be zero because attention would go to the target
word (when present) first time, every time. This very shallow slope would not indicate that
word processing had become ‘‘parallel.’’ It would simply indicate perfect ‘‘guidance.’’ Slopes
are an index of the amount of guidance and of the rate of processing of selected items (the
two components can usually be teased apart with the right control experiments).

If the task was to determine if the target city lays to the east or west of Zurich, Switzerland,
that would take longer. However, the added cost would not be imposed on each selected item,
only on the target, once found. The result would be an intercept change (Slope¼K, 1(f)).
Changes to the nonsearch portion of a task will typically produce intercept changes.

This is a toy example and I have not collected real data. However, I would be happy to
wager that the results will come out as advertised here if anyone cares to try the experiment.
In this example, RT� Set Size functions really are interpretable. The slopes do not define a
task as ‘‘serial’’ or ‘‘parallel’’ but they do carry meaning.

Figure 1. A simple search task: Find the name of a capital city. Letter order is reversed in 1(b). (c) to (f)

cartoon results of manipulations of the basic experiment (see text).
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But There Are Complications and Limitations

Of course, if life were this simple, there would be no controversy, but, as Kristjansson’s
(2015) piece makes clear, there is controversy. The example in Figure 1 is made more
straightforward by the choice of a task that virtually must have a serial component at its
core. In this case, each word probably needs to be fixated before it is read, enforcing seriality.
With tasks that do not require eye movements, models, like Guided Search, that propose
covert, serial deployments of attention can be countered by models that propose parallel
processing of all items (Palmer, 1995, see also Vincent, 2015). Standard RT� set size data will
not distinguish these models (Townsend, 1990; Townsend &Wenger, 2004). Nevertheless, the
empirical patterns from Figure 1 will remain intact. If you make processing of each item
harder, slope increases. If you mark half the items as irrelevant with a salient feature, slope
will be cut in half. In fact, search is neither ‘‘serial’’ nor ‘‘parallel.’’ Search RTs probably arise
from a hybrid of serial and parallel processes (Wolfe, 2003). It is probably better to use
RT� set size functions to ask ‘‘why is this search more (or less) efficient than that one?’’ and
not to attempt to categorize a specific search as ‘‘serial’’ or ‘‘parallel.’’

The empirical heart of the Kristjansson (2015) article lies in the differences he finds
between results for the same search task produced by two different methods; a presence or
absence version and a go or no-go version. Although interesting, the complications
introduced here are not very troublesome to the RT� set size methodology. The go or no-
go RTs are consistently faster. Different methods will often produce differences in mean RTs.
For example, if Os need to fixate on a target to indicate that they have found it, they will
typically have shorter RTs than if they need to move a mouse to the target. Negative slopes,
of the sort seen in some of Kristjansson’s conditions, were a bit of a puzzle when first
reported (Bravo & Nakayama, 1992) but these are typically understood as bottom-up
salience effects. Negative slopes typically show up in ‘‘pop-out’’ searches (e.g., when the
target is a salient color singleton). As the set size goes up, the density of stimuli goes up.
As a result, on average, the target (e.g., a red item) will be surrounded more closely by
dramatically different distractors (e.g., blue items). The local salience is defined by the
relationship of an item to its neighbors, so a red item in a dense blue array is more salient
than that item in a sparser display. If we assume that RT is a function of salience, RT will go
down as set size and density increase (Santhi & Reeves, 2004; see Schoonveld, Shimozaki, &
Eckstein, 2007, for an ideal observer account).

The features of the data in the Kristjansson paper that are potentially the most challenging
are the changes in slope that occur when the only change is in the response made by the
observer. For instance, in the Easy Conjunction condition, Kristjansson’s target-
present slopes are near zero for the present or absent task while they are negative for the
go or no-go task. Here, it is important to look at the error rates. The absolute error rates
are not as important as the slope of the error rate� set size functions. Note that, for the two
conjunction tasks, the go or no-go task produces a more positive error slope than the present
or absent task. Higher errors tend to be associated with lower mean RTs on the correct
trials (a classic speed-accuracy tradeoff). If the slope of the error function is positive, you
get more depression of the RTs at the larger set sizes. This produces a shallower (or
potentially negative) RT� set size slope. This is the pattern seen in the data in the
Kristjansson (2015) paper. Such results require thought and competent researchers might
differ about interpretation. However, while there is no reason to doubt the validity of the
Kristjansson data, those data do not require wholesale abandonment of the RT� set size
functions.
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In Sum . . .

Kristjansson performs a service when he warns against treating RT� set size functions as
simple metrics that can be used to assign search tasks to the overly simple categories of
‘‘serial’’ and ‘‘parallel.’’ He goes too far with a sweeping attack on the utility of slopes in
search tasks. With a bit of caution and a suitable set of experiments, slopes do provide us
with insight about the mechanisms of visual search.
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