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Abstract

It is difficult to predict how antibodies will behave when mixed together, even after each has

been independently characterized. Here, we present a statistical mechanical model for the

activity of antibody mixtures that accounts for whether pairs of antibodies bind to distinct or

overlapping epitopes. This model requires measuring n individual antibodies and their
nðn� 1Þ

2

pairwise interactions to predict the 2n potential combinations. We apply this model to epider-

mal growth factor receptor (EGFR) antibodies and find that the activity of antibody mixtures

can be predicted without positing synergy at the molecular level. In addition, we demon-

strate how the model can be used in reverse, where straightforward experiments measuring

the activity of antibody mixtures can be used to infer the molecular interactions between

antibodies. Lastly, we generalize this model to analyze engineered multidomain antibodies,

where components of different antibodies are tethered together to form novel amalgams,

and characterize how well it predicts recently designed influenza antibodies.

Author summary

With the rise of new antibody combinations in therapeutic regimens, it is important to

understand how antibodies work together as well as individually. Here, we investigate the

specific case of monoclonal antibodies targeting a cancer-causing receptor or the influenza

virus and develop a statistical mechanical framework that predicts the effectiveness of a mix-

ture of antibodies. The power of this model lies in its ability to make a large number of pre-

dictions based on a limited amount of data. For example, once 10 antibodies have been

individually characterized and their epitopes have been mapped, our model can predict how

any of the 210 = 1024 combinations will behave. This predictive power can aid therapeutic

efforts by assessing which combinations of antibodies will elicit the most effective response.

Introduction

Antibodies can bind with strong affinity and exquisite specificity to a multitude of antigens.

Due to their clinical and commercial success, antibodies are one of the largest and fastest
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growing classes of therapeutic drugs [1]. While most therapies currently use monoclonal anti-

bodies (mAbs), mounting evidence suggests that mixtures of antibodies can lead to better con-

trol through improved breadth, potency, and effector functions [2]. There is ample precedent

for the idea that combinations of therapeutics can be extremely powerful—for instance, during

the past 50 years the monumental triumphs of combination anti-retroviral therapy and che-

motherapy cocktails have provided unprecedented control over HIV and multiple types of

cancer [3, 4], and in many cases no single drug has emerged with comparable effects. However,

it is difficult to predict how antibody mixtures will behave relative to their constitutive parts.

Often, the vast number of potential combinations is prohibitively large to systematically test,

since both the composition of the mixture and the relative concentration of each component

can influence its efficacy [5].

Here, we develop a statistical mechanical model that bridges the gap between how an anti-

body operates on its own and how it behaves in concert. Specifically, each antibody is charac-

terized by its binding affinity and potency, while its interaction with other antibodies is

described by whether its epitope is distinct from or overlaps with theirs. This information

enables us to translate the molecular details of how each antibody acts individually into the

macroscopic readout of a system’s activity in the presence of an arbitrary mixture.

To test the predictive power of our framework, we apply it to a beautiful recent case study

of inhibitory antibodies against the epidermal growth factor receptor (EGFR), where 10 anti-

bodies were individually characterized for their ability to inhibit receptor activity and then all

possible 2-Ab and 3-Ab mixtures were similarly tested [6]. We demonstrate that our frame-

work can accurately predict the activity of these mixtures based solely on the behaviors of the

ten monoclonal antibody as well as their epitope mappings.

Lastly, we generalize our model to predict the potency of engineered multidomain antibod-

ies from their individual components. Specifically, we consider the recent work by Laursen

et al. where four single-domain antibodies were assayed for their ability to neutralize a panel of

influenza strains, and then the potency of constructs comprising 2-4 of these single-domain

antibodies were measured [7]. Our generalized model can once again predict the efficacy of

the multidomain constructs based upon their constitutive components, once a single fit

parameter is inferred to quantify the effects of the linker joining the single-domain antibodies.

This enables us to quantitatively ascertain how tethering antibodies enhances the two key fea-

tures of potency and breadth that are instrumental for designing novel anti-viral therapeutics.

Notably, while we discuss how synergistic interactions could be introduced to increase the

model’s accuracy at the cost of additional complexity and fit parameters, the success of our

simple models suggest that many antibody mixtures function without synergy, and hence that

their effects can be computationally predicted to expedite future experiments.

Results

Modeling the mechanisms of action for antibody mixtures

Consider a monoclonal antibody that binds to a receptor and inhibits its activity. Two parame-

ters characterize this inhibition: (1) the dissociation constant KD quantifies an antibody’s bind-

ing affinity (with a smaller value indicating tighter binding) and (2) the potency α relates the

activity when an antibody is bound to the activity in the absence of antibody. A value of α = 1

represents an impotent antibody that does not affect activity while α = 0 implies that an anti-

body fully inhibits activity upon binding. Antibodies with an intermediate value (0< α< 1)

will partially inhibit receptor activity upon binding [8], whereas antibodies with potency

greater than one (α> 1) will increase activity upon binding [5]. As derived in S1 Text Section

A.1, for an antibody that binds to a single site on a receptor, the activity at a concentration c of
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antibody is given by

Fractional Activity ¼
1þ a c

KD

1þ c
KD

: ð1Þ

To characterize a mixture of two antibodies, we not only need their individual dissociation

constants and potencies but also require a model for how these antibodies interact. When two

antibodies bind to distinct epitopes, the simplest scenario is that their ability to bind and

inhibit activity is independent of the presence of the other antibody, and hence that their com-

bined potency when simultaneously bound equals the product of their individual potencies

(Fig 1A) [9, 10]. Alternatively, if the two antibodies compete for the same epitope, they cannot

both be simultaneously bound (Fig 1B) [11].

We also define the general case of a synergistic interaction where the binding of the first

antibody alters the binding or potency of the second antibody (Fig 1C, purple text). This defi-

nition encompasses cases where the second antibody binds more tightly (Kð2ÞD;eff < Kð2ÞD ) or

more weakly (Kð2ÞD;eff > Kð2ÞD ) in the presence of the first antibody, as well as when the potency of

the second antibody may increase (α2,eff > α2) or decrease (α2,eff < α2). This also includes cases

where two epitopes slightly overlap and partially inhibit one another’s binding, and the com-

petitive binding model can be viewed as the extreme limit Kð2ÞD;eff !1 where one antibody infi-

nitely penalizes the binding of the other.

While the synergistic model in Fig 1C has the merit of being highly general, an important

feature of the independent and competitive models (Fig 1A and 1B) is that they predict all anti-

body combinations with few parameters. In both of these latter models, once the KðjÞD and αj of

10 antibodies are known (which requires 2 � 10 experiments) and their epitopes are mapped by

pairwise interactions (10�9

2
additional experiments), the potency of all 210 = 1024 possible mix-

tures of these antibodies can be predicted without recourse to fitting. In contrast, because the

synergistic model allows arbitrary interactions between each combination of antibodies, the

behavior of a mixture exhibiting synergy cannot be predicted without actually making a mea-

surement on that combination to quantify the synergy.

For these reasons, in this work we focus on the two cases of independent or competitive

binding and show how we can combine both models to transform our molecular understand-

ing of each monoclonal antibody’s action into a prediction of the efficacy of an antibody mix-

ture. Deviations from our predictions provide a rigorous way to measure antibody synergy by

computing
Kð2ÞD;eff

Kð2ÞD
and

a2;eff
a2

.

To mathematize the independent and competitive binding models, we enumerate the possi-

ble binding states and compute their relative Boltzmann weights. The fractional activity of

each state equals the product of its relative probability and relative activity divided by the sum

of all relative probabilities for normalization (see S1 Text Section A.1). When two antibodies

bind independently as in Fig 1A, this factors into the form

Fractional Activity
ðdistinct epitopesÞ ¼

1þ a1

c1
Kð1ÞD

1þ
c1
Kð1ÞD

0

@

1

A
1þ a2

c2
Kð2ÞD

1þ
c2
Kð2ÞD

0

@

1

A: ð2Þ
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If these two antibodies compete for the same epitope as in Fig 1B, the activity becomes

Fractional Activity
ðoverlapping epitopesÞ ¼

1þ a1

c1
Kð1ÞD
þ a2

c2
Kð2ÞD

1þ
c1
Kð1ÞD
þ

c2
Kð2ÞD

: ð3Þ

These equations are readily extended to mixtures with three or more antibodies (see S1

Text Section A.2).

Fig 1. Binding modes for a 2-Ab mixture. Two antibodies with concentrations c1 and c2 can bind (A) independently to different

epitopes or (B) competitively to the same epitope. (C) Antibodies bind synergistically if either the product of binding affinities (KðjÞD )

or potencies (αj) are altered when both antibodies bind.

https://doi.org/10.1371/journal.pcbi.1007830.g001
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Antibody mixtures against EGFR are well characterized using independent

and competitive binding models

To test the predictive power of the independent and competitive binding models, we applied

them to published experiments on the epidermal growth factor receptor (EGFR) where ten

monoclonal antibodies were individually characterized and then the activity of all 165 possible

2-Ab and 3-Ab mixtures was measured [6]. We first use each monoclonal antibody’s response

to infer its dissociation constant KD and potency α. We then utilize surface plasmon resonance

(SPR) measurements to determine which pairs of antibodies bind independently and which

compete for the same epitope. These data enable us to use the above framework and predict

EGFR activity in the presence of any mixture.

EGFR is a transmembrane protein that activates in the presence of epidermal growth fac-

tors. Upon ligand binding, the receptor’s intracellular tyrosine kinase domain autophosphory-

lates which leads to downstream signaling cascades central to cell migration and proliferation.

Overexpression of EGFR has been linked to a number of cancers, and decreasing EGFR activ-

ity in such tumors by sterically occluding ligand binding has reduced the rate of cancer prolif-

eration [6].

Koefoed et al. investigated how a panel of ten monoclonal antibodies inhibit EGFR activity

in the human cell line A431NS [6]. They then measured how 1:1 mixtures of two antibodies or

1:1:1 mixtures of three antibodies affect EGFR activity. All measurement were carried out at a

total concentration of 2
mg
mL, implying that each antibody was half as dilute in the 2-Ab mixtures

and one-third as dilute in the 3-Ab mixtures relative to the monoclonal antibody

measurement.

The 45 possible 2-Ab mixtures (35 binding to distinct epitopes; 10 binding to overlapping

epitopes) and the 120 possible 3-Ab mixtures (50 binding to distinct epitopes; 70 binding to

overlapping epitopes) were assayed for their ability to inhibit EGFR activity. Fig 2A shows the

experimental measurements for mixtures of two antibodies, with the monoclonal antibody

measurements shown on the diagonal, the measured activity of 2-Ab mixtures shown on the

bottom-left, and the predicted activity on the top-right. The labels on the diagonal entries

denote each antibody’s binding epitopes inferred through SPR [6], so that antibodies binding

to overlapping epitopes are predicted using Eq (3) (pairs within the dashed gray boxes) while

mixtures binding to distinct epitopes use Eq (2).

For example, antibodies #1 and #4 bind to distinct epitopes (III/C and III/B, respectively).

Hence, the predicted activity of their mixture (0.50) very nearly equals the product of their

individual activity (0.65 × 0.75 = 0.49), with the slight deviation arising because each antibody

concentration was halved in the mixture (c1 ¼ c2 ¼ 1
mg
mL for the 2-Ab mixture characterized by

Eq (2), whereas the individual mAbs were measured at c ¼ 2
mg
mL using Eq (1)). This predicted

activity roughly approximates the measured value 0.43 of the mixture.

On the other hand, antibodies #1 and #2 bind to the same epitope (III/C), and hence their

predicted combined activity (0.67) lies between their individual activities (0.65 and 0.69) since

both antibodies compete for the same site. The measured activity of the mixture (0.65) closely

matches the prediction of the overlapping epitope model, but is very different than the predic-

tion of 0.45 made by the distinct-binding model.

Fig 2B shows the measured EGFR activity in the presence of all 2-Ab and 3-Ab mixtures is

highly correlated with the predicted activity (R2 = 0.90) Notably, the predictions are made

solely from the monoclonal antibody data and epitope measurements, and do not involve any

fitting of the 2-Ab or 3-Ab measurements. The strong correlation between the predicted and

measured activities suggests that EGFR antibody mixtures can be characterized with minimal

synergistic effects in either their binding or effector functions. If we did not have the epitope
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mapping through SPR and assumed that all antibodies bound to distinct epitopes (Fig 2C, R2 =

0.85) or competed for the same epitope (Fig 2D, R2 = 0.86), the resulting predictions are

slightly more scattered from the diagonal, demonstrating that properly acknowledging which

pairs of antibodies vie for the same epitope boosts the predictive power of the model.

That said, the predictions incorporating the SPR mapping display a consistent bias towards

having a slightly lower measured than predicted activity (Fig E in S1 Text), suggesting that sev-

eral pairs of antibodies enhance one another’s binding affinity or potency. To quantify this

effect, we recharacterized the activity from the 2-Ab mixtures using a synergistic model where

each α2,eff is fit to exactly match the data. We find an average value of
a2;eff
a2
¼ 0:9, showing that

when pairs of antibodies are simultaneously bound they typically boost their collective inhibi-

tory activity by *10%. This increase in the potency of antibody mixtures could arise from

Fig 2. Predicting how antibody mixtures affect the epidermal growth factor receptor (EGFR). (A) The fractional activity of

EGFR in the presence of monoclonal antibodies (diagonal) together with the measured (bottom-left) and predicted (top-right)

activity of all 2-Ab combinations. The dashed gray boxes enclose antibody pairs that compete for the same epitope while all other

pairs bind independently. (B) The predicted versus measured fractional activity for all 2-Ab (circles) and 3-Ab mixtures (triangles)

using the same epitope mapping as in Panel A inferred by SPR. Without the epitope map, the activity of the mixtures could

alternately be predicted by assuming that all antibodies either (C) bind independently or (D) compete for the same epitope; in either

case, the resulting predictions fall further from the diagonal line, indicating poorer predictive power. Data was digitized from Table.1

and Fig S1 of Ref. [6].

https://doi.org/10.1371/journal.pcbi.1007830.g002
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allosteric interactions where the binding of one antibody stabilizes a binding-favorable confor-

mation for another antibody [12–14].

Differentiating distinct versus overlapping epitopes using antibody

mixtures

In the previous section, we used SPR measurements to quantify which antibodies compete for

overlapping epitopes, thereby permitting us to translate the molecular knowledge of antibody

interactions into a macroscopic quantity of interest, namely, the activity of EGFR. In this sec-

tion, we do the reverse and utilize activity measurements to categorize which subsets of anti-

bodies bind to overlapping epitopes. This method can be applied to model antibody mixtures

in other biological systems where SPR measurements are not readily available.

For the remainder of this section, we ignore the known epitope mappings discerned by

Koefoed et al. and consider what mapping best characterizes the data. For example, given the

individual activities of antibody #1 (0.65) and #2 (0.69), the predicted activity of their combi-

nation (at the concentration of 1
mg
mL for each antibody dictated by the experiments) would be

0.45 if they bind to distinct epitopes and 0.67 if they bind to overlapping epitopes. Since the

measured activity of this mixture was 0.65, it suggests the latter option. We note that such anal-

ysis will work best for potent antibodies (whose individual activity is far from 1), since only in

this regime will the predictions of the distinct versus overlapping models be significantly dif-

ferent. Therefore, the activity measurements of each individual antibody would optimally be

carried out at saturating concentrations (where Eq (1) is as far from 1 as possible).

Proceeding to the other antibodies, we characterize each pair according to whichever

model prediction lies closer to the experimental measurement. To account for experimental

error, we left an antibody pair uncategorized if the two model predictions were too close to

one another (within 4σ = 0.16 where σ is the SEM of the measurements) or if the experimental

measurement was close (within 1σ) to the average of the two model predictions (see S1 Text

Section B).

Fig 3A shows how this analysis compares to the experimental measurement inferred by

SPR. While the model predictions are much sparser (with the majority of antibody pairs unca-

tegorized because the two model predictions were too close to one another), the classifications

are nevertheless sufficient to group these antibodies by their epitopes. Antibodies #1-3 all over-

lap with one another (and do not explicitly overlap with any other antibodies) and hence are

assumed to bind one epitope. Antibodies #4 and #5 overlap with each other and form a second

epitope group. Antibody #6 did not explicitly overlap with any other antibody and forms a

third epitope group. Lastly, Antibodies #7-9 all overlapped with #10, and hence these four anti-

bodies bind to a fourth epitope. These four groups are shown by the dashed squares in Fig 3A,

which only disagrees with the epitopes inferred by SPR (shown by the labels on the diagonal

and determined using reference antibodies with known specificities) by claiming that Anti-

bodies #4-5 (rather than #5-6) bind to an overlapping epitope.

These four epitope groups enable us to predict the activity of the 2-Ab and 3-Ab mixtures.

Note that it is not the pairwise classification between two antibodies that determines whether

we apply the distinct or competitive models, but rather the four groupings of antibody epi-

topes. For example, although antibodies #7 and #8 are uncategorized through their 2-Ab mix-

ture, they fall within a single epitope group and hence are considered to bind competitively.

Similarly, antibody #1 and #4 are modeled as binding independently because they belong to

two distinct epitope groups.

Surprisingly, the results shown in Fig 3B have a coefficient of determination R2 = 0.90 that

is on par with the results obtained using the SPR measurements (Fig 2B). Since the inferred
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epitope map relied on the 2-Ab activity data, we compared the predicted activity of the 3-Ab

mixtures using the epitopes inferred through SPR with those inferred through the activity data

and showed that they are nearly identical (R2 = 0.997, see S1 Text Section A.6). This suggests

that there is no loss in the predictive power of the model when an epitope mapping is inferred

through activity measurements.

In summary, whether antibodies bind independently or competitively can be determined

either: (1) directly through pairwise competition experiments or (2) by analyzing the activity

of their 2-Ab mixtures in light of our two models. When this information is combined with

the potency and dissociation constant of each antibody, the activity of an arbitrary mixture

can be predicted. The Supplementary Information contains programs in both Mathematica

and Python that can analyze either form of the pairwise interactions to determine the epi-

tope grouping. If the characteristics of the individual antibodies are also provided, the

program can predict the activity of any antibody mixtures at any specified ratio of the

constituents.

Generalizing to models between purely competitive and purely

independent binding

Thus far, our model has treated each antibody pair as either binding independently (where the

binding of a first antibody has no effect on the second) or binding competitively (where the

two antibodies cannot be simultaneously bound). However, SPR experiments measuring the

percent decrease of antibody binding in the presence of another blocking antibody can range

between or beyond 0% and 100% (Fig 4A). We investigated whether incorporating this more

nuanced level of interaction could further refine our characterization of these antibody

mixtures.

Fig 3. Classifying antibody epitopes as overlapping or distinct. (A) Comparing the experimentally measured activity to the

overlapping or distinct epitope models enables us to characterize each antibody pair (provided the two models predict sufficiently

different activities). The dashed squares represent the minimal epitope groupings inferred from this method. (B) The resulting

predictions for the 2-Ab and 3-Ab mixtures have the same predictive power (R2 = 0.90) as a model that relies on epitope groupings

given by SPR measurements (Fig 2B).

https://doi.org/10.1371/journal.pcbi.1007830.g003
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To incorporate partial blocking between antibodies, we generalized the fractional activity of

a 2-Ab mixture to

Fractional Activity ¼
1þ a1

c1
Kð1ÞD
þ a2

c2
Kð2ÞD
þ a1a2f12

c1
Kð1ÞD

c2
Kð2ÞD

1þ
c1
Kð1ÞD
þ

c2
Kð2ÞD
þ f12

c1
Kð1ÞD

c2
Kð2ÞD

; ð4Þ

where f12 represents the fraction of simultaneous binding for both antibodies (for the n = 10

antibodies, these
nðn� 1Þ

2
parameters are set by 1 �

% in Fig 4A
100

clipped to lie between 0 and 1). In

this way, the two antibodies can individually bind to EGFR as dictated by their individual

dose-response curves, but the Boltzmann weight of their combined binding is decreased by

their partial competition (Kð2ÞD;eff ¼
Kð2ÞD
f12

in Fig 1C). As expected, Eq (4) reduces to independent

binding when two antibodies do not inhibit one another’s binding (f12 = 1) and to competitive

binding when one antibody prevents the binding of another (f12 = 0). For reference, the values

on the diagonal represent an antibody competing with itself, and deviations from 100% are

likely attributed to noise (e.g. some of the blocking antibody falling off before the test antibody

is introduced).

Surprisingly, we found that this continuum model predicted the fractional activity of the

2-Ab and 3-Ab mixtures more poorly (R2 = 0.87; see S1 Text Section A.7) than the original

model characterizing every antibody pair as either purely independent or competitive (R2 =

0.90; Fig 2B). More precisely, mixtures containing only Abs #1-7 matched the model predic-

tions far better than mixtures containing Abs #8, #9, or #10 (Fig G in S1 Text). Notably, Abs

#8-10 were the only antibodies that individually increased activity (α> 1 in the A431NS cell

line; Fig B Panel B in S1 Text), yet when mixed with other antibodies they appeared to decrease

EGFR activity. For example, while Abs #8 and #10 individually increase activity by 1.14 and

1.35, respectively, their mixture decreases activity to 0.65. This suggested that when Abs #8-10

are simultaneously bound with another antibody, the mechanism of action by which they

Fig 4. A continuum model for antibody mixtures. (A) SPR blocking data from Koefoed et al. showing the percentage by which the

presence of one antibody inhibits the binding of a second antibody [6]. (B) Characterizing the 2-Ab and 3-Ab mixtures using the

continuous binding model Eq (4) that incorporates the continuum of antibody blocking behavior. When antibodies #8-10 are

simultaneously bound, their potencies take on the modified values α8,eff = 0.60, α9,eff = 1.03, and α10,eff = 0.97 (see S1 Text Section

A.7).

https://doi.org/10.1371/journal.pcbi.1007830.g004
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increase activity may be disrupted. This idea is corroborated by the observation that antibody

mixtures containing Abs #8-10 were systematically higher than the measured activity (Fig G

Panel C in S1 Text).

To account for this behavior, we modified the continuum model so that when antibodies

#8-10 were simultaneously bound with another antibody, their potency was modified to αj,eff

(in the most general form this adds one parameter for each of the n = 10 antibodies; however,

we fixed αj,eff = αj for antibodies 1� j� 7 whose potency is less than one). These parameter

values were inferred from the antibody mixture data to be α8,eff = 0.60, α9,eff = 1.03, and

α10,eff = 0.97, and the resulting model predictions are substantially improved (R2 = 0.95; Fig

4B). Hence, although these antibodies increase activity when individually bound to EGFR,

when another antibody is simultaneously bound to the receptor they either decrease activity

(Ab #8) or keep it essentially constant (Abs #9-10). If Abs #1-7 with individual potency less

than 1 are also given αj,eff values when simultaneously bound with another antibody, only 2/7

acquire an αj,eff value that substantially differs from their individual potency parameter (see S1

Text Section A.7). This suggests that the mechanism of action for antibodies decreasing EGFR

activity is often maintained even when they are simultaneously bound with other antibodies.

In summary, antibodies that individually enhance EGFR activity appear to behave differ-

ently (either decreasing activity or leaving it unchanged) when simultaneously bound with

another antibody. In contrast, antibodies that individually decrease EGFR activity—likely by

blocking ligand binding—will usually act exactly the same when simultaneously bound with

another antibody.

Multidomain antibodies boost breadth and potency via avidity

While the previous sections analyzed combinations of whole, unmodified antibodies, we now

extend our framework to connect with the rising tide of engineering efforts that genetically

fuse different antibody components to construct multi-domain antibodies [15]. Specifically,

we focus our attention on recent work by Laursen et al. who isolated single-domain antibodies

from llamas immunized with H2 or H7 influenza hemagglutinin (HA) [7]. The four single-

domain antibodies isolated in this manner included one antibody that preferentially binds

influenza A group 1 strains (AbA1), another that binds influenza A group 2 strains (AbA2), and

two antibodies that bind to influenza B strains (Abð1ÞB and Abð2ÞB ). Fig 5A and 5B shows data

from a representative influenza A group 1 strain (blue dot, only bound by the blue AbA1),

influenza A group 2 strain (green dot, only bound by the green AbA2), and influenza B strain

(gold dot, bound by both of the yellow Abð1ÞB and Abð2ÞB antibodies).

In the contexts of rapidly evolving pathogens such as influenza, two important characteris-

tics of antibodies are their potency and breadth. Potency is measured by the inhibitory concen-

tration IC50 at which 50% of a virus is neutralized, where a smaller IC50 represents a better

antibody. Breadth is a measure of how many strains are susceptible to an antibody.

In an effort to improve the potency and breadth of their antibodies, Laursen et al. tethered

together different domains using a flexible amino acid linker (right-most columns of Fig 5A

and 5B) and tested them against a panel of influenza strains. To make contact with these multi-

domain constructs, consider a concentration c of the tethered antibody AbA1–AbA2. As derived

in S1 Text Section C.1, the AbA1 or AbA2 portions of the antibody will neutralize the virus with

relative probability c
IC50;A1

or c
IC50;A2

, respectively, relative to the unbound HA state. Although neu-

tralization is mediated by antibody binding, the two quantities may or may not be proportional

[16–18], and hence the IC50s in the denominators need not equal the antibody dissociation

constants.
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Laursen et al. determined that their tethered constructs cannot intra-spike crosslink two

binding sites on a single HA trimer, but they can inter-spike crosslink adjacent HA [7]. The

linker connecting the two antibody domains facilitates such crosslinking, since when one

domain is bound the other domain is confined to a smaller volume around its potential bind-

ing sites. This effect can be quantified by stating that the second domain has an effective con-

centration ceff (Fig 5C, purple), making the relative probability of the doubly bound state
c

IC50;A1

ceff
IC50;A2

(see S1 Text Section C.1). Therefore, the fraction of virus neutralized by two tethered

antibody domains is given by

Fraction Neutralized ¼
c

IC50;A1
þ c

IC50;A2
þ c

IC50;A1

ceff
IC50;A2

1þ c
IC50;A1

þ c
IC50;A2

þ c
IC50;A1

ceff
IC50;A2

: ð5Þ

Fig 5. Tethering influenza antibodies increases breadth and potency. (A) The influenza A antibodies AbA1 and AbA2 were tethered

together to form AbA1–AbA2 while (B) two influenza B antibodies formed Abð1ÞB ‐Ab
ð2Þ

B . Representative data shown for an influenza A

group 1 (blue), influenza A group 2 (green), and influenza B (gold) strains. Strong potency is marked by a small IC50 while large breadth

implies that multiple strains are controlled by an antibody. (C) Representative states of HA and their corresponding Boltzmann weights

for multidomain antibodies, where crosslinking between adjacent spikes boosts neutralization via avidity (ceff = 1400 nM in Eq (6)). (D)

Theoretical predictions of the potency of all multidomain antibodies versus their measured values. The red points denote two outlier

influenza strains discussed in the text that are not neutralized by AbA1 or AbA2 individually but are highly neutralized by their

combination.

https://doi.org/10.1371/journal.pcbi.1007830.g005

PLOS COMPUTATIONAL BIOLOGY Modeling the mechanisms of antibody mixtures

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007830 May 4, 2020 11 / 17

https://doi.org/10.1371/journal.pcbi.1007830.g005
https://doi.org/10.1371/journal.pcbi.1007830


Note that this equation assumes that influenza virus is fully neutralized at saturating con-

centrations of antibody (α = 0 in Eq (1), with Fraction Neutralized analogous to 1 − Fractional

Activity).

The IC50 of the tethered construct is defined as the concentration c at which half of the

virus is neutralized, which can be solved to yield

IC50;A1� A2 ¼
IC50;A1 IC50;A2

ceff þ IC50;A1 þ IC50;A2
; ð6Þ

with an analogous expression holding for the Abð1ÞB ‐Ab
ð2Þ

B construct. Using the measured IC50s

of AbA1-AbA2 and Abð1ÞB ‐Ab
ð2Þ

B against the various influenza strains, we can infer the value of

the single parameter ceff = 1400 nM. This result is both physically meaningful and biologically

actionable, as it enables us to predict the IC50 of the tethered multidomain antibodies against

the entire panel of influenza strains. Fig 6A and 6B compares the resulting predictions to the

experimental measurements, where plot markers linked by horizontal line segments indicate a

close match between the predicted and measured values.

The two tethered antibodies display unique trends that arise from their compositions. Since

the two domains in AbA1–AbA2 bind nearly complementary strains, the tethered construct will

increase breadth (since this multidomain antibodies can now bind to both group 1 and group

2 strains) but will only marginally improve potency. Mathematically, if AbA1 binds tightly to

an influenza A group 1 strain while AbA2 binds weakly to this same strain (IC50,A2!1), their

tethered construct has an IC50,A1-A2� IC50,A1. Said another way, AbA1–AbA2 should be

approximately as potent as a mixture of the individual untethered antibodies AbA1 and AbA2.

Note that since the experiments could not accurately measure weak binding (>1000 nM), the

predicted IC50s for the multidomain antibodies represent a lower bound.

On the other hand, tethering the two influenza B antibodies yields a marked improve-

ment in potency over either individual antibody, since both domains can bind to any influ-

enza B strain and boost neutralization via avidity. The process of engineering a multivalent

interaction is reminiscent of engineered bispecific IgG [15], and adding additional domains

could yield further enhancement in potency, provided that all domains can simultaneously

bind.

While the model is able to characterize the majority of tethered antibodies, it also highlights

some of the outliers in the data. For example, the H3N2 strains A/Panama/2007/99 and A/

Wisconsin/67/05 were poorly neutralized by either AbA1 or AbA2 (IC50� 1000 nM), but the

tethered construct exhibited an IC50 = 14 nM and IC50 = 17 nM, respectively, far more potent

than the 300 nM lower limit predicted for both viruses (red circles in Fig 5D and red lines in

Fig 6A). Interestingly, Laursen et al. found that mixing the individual, untethered antibodies

AbA1 and AbA2 also resulted in shockingly poor neutralization (IC50� 1000 nM), suggesting

that the tether is responsible for the increase in potency [7]. From the vantage of our quantita-

tive model, this outlier cries out for further investigation.

To further boost neutralization, Laursen et al. created two additional constructs that com-

bined all four antibody domains, the first being the linear chain (AbA1‐AbA2‐Ab
ð1Þ

B ‐Ab
ð2Þ

B ). Since

the influenza A antibodies do not bind the influenza B strains (and vise versa), this construct

should have the same IC50 as AbA1–AbA2 for the influenza A strains and as Abð1ÞB ‐Ab
ð2Þ

B for the

influenza B strains, as was found experimentally (compare the Predicted columns in Fig 6A–

6C). For example, the two H3N2 strains (A/Panama/2007/99 and A/Wisconsin/67/05) were

again found to have measured IC50s (15 nM and 23 nM) far smaller than their predicted lower

bound of 300 nM (red squares in Fig 5D, red lines in Fig 6C).
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A second construct containing all four antibody domains attached two copies of

AbA1‐AbA2‐Ab
ð1Þ

B ‐Ab
ð2Þ

B through an IgG backbone (Fig 6D). Since the identical domains in both

arms of this construct should be able to simultaneously bind, the new antibody should

markedly boost potency through avidity. Surprisingly, the neutralization of this final construct

was well characterized as half the IC50 of an individual AbA1‐AbA2‐Ab
ð1Þ

B ‐Ab
ð2Þ

B , suggesting

that there was no noticeable avidity and that the increase in neutralization only arose from

having twice as many antibody domains. As above, this intriguing result presents an

Fig 6. Neutralization of multidomain antibodies. (A,B) The potency of the 2-Ab constructs and their constitutive antibodies against a

panel of influenza strains. AbA1 primarily binds influenza A group 1 (blue), AbA2 to influenza A group 2 (green), and the two AbB

antibodies to influenza B strains (gold). (C) All four antibodies were tethered to form the linear chain AbA1‐AbA2‐Ab
ð1Þ

B ‐Ab
ð2Þ

B and (D)

two copies of this chain were placed on an IgG backbone. The model suggests that the two arms of the IgG are not capable of

simultaneously binding a virion. Red lines indicate two outlier influenza strains discussed in the text that are not neutralized by AbA1 or

AbA2 individually but are highly neutralized by their combination. Data was digitized from Figs 1 and 3 of Ref [7].

https://doi.org/10.1371/journal.pcbi.1007830.g006
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opportunity to both quantitatively check experimental results and to advocate for future stud-

ies. In this particular instance, it suggests that the IgG backbone used was not able to simulta-

neously bind with both arms. If a different multivalent scaffold (perhaps with greater flexibility

or with longer linkers) enabled bivalent binding of both linear antibody chains, it could poten-

tially increase the neutralization of this construct by 100-fold as seen in the influenza B

constructs.

Discussion

In this work, we developed a statistical mechanical model that predicts the collective efficacy of

an antibody mixture whose constituents are assumed to bind to a single site on a receptor.

Each antibody is first individually characterized by its ability to bind the receptor (through its

dissociation constant KD) and inhibit activity (via its potency α) as per Eq (1). Importantly,

this implies that the activity of each monoclonal antibody must be measured at a minimum of

two concentrations in order to infer both parameters, and additional measurements would

further refine these parameter values and the corresponding model predictions.

After each antibody is individually characterized, the activity of a combination of antibodies

will depend upon whether they bind independently to distinct epitopes or compete for over-

lapping epitopes. Theoretical models often assume for simplicity that all antibodies bind inde-

pendently, and in the contexts where this constraint can be experimentally imposed such

models can accurately predict the effectiveness of antibody mixtures [9]. Yet when the anti-

body epitopes are unknown or when a large number of antibodies are combined, it is likely

that some subset of antibodies will compete with each other while others will bind indepen-

dently, which will give rise to a markedly different response. Our model generalized these pre-

vious results to account for antibody mixtures where arbitrary subsets can bind independently

or competitively (Eqs (2) and (3), S1 Text Section A.2).

We showed that in the context of the EGFR receptor, where every pairwise interaction was

measured using surface plasmon resonance, our model is better able to predict the efficacy of

all 2-Ab and 3-Ab mixtures than a model that assumes all antibodies bind independently or

competitively (Fig 2). This suggest that mixtures of antibodies do not exhibit large synergistic

effects. More generally, similar models in the contexts of anti-cancer drug cocktails and anti-

HIV antibody mixtures also found that the majority of cases that were described as synergistic

could instead be characterized by an independent binding model [9, 10]. This raises the possi-

bility that synergy is more the exception then the norm, and hence that simple models can

computationally explore the full design space of antibody combinations.

While it is often straightforward to measure the efficacy of n individual antibodies, it is

more challenging to quantify all
nðnþ1Þ

2
pairwise interactions and determine which antibodies

bind independently and which compete for an overlapping epitope. We demonstrated that

after each antibody is individually characterized, our model can be applied in reverse by using

the activity of 2-Ab mixtures to classify whether antibodies compete or bind independently

(Fig 3). Surprisingly, while the resulting categorizations were much sparser than the direct SPR

measurements, the classifications produced by this method predicted the efficacy of antibody

combinations with an R2 = 0.90, comparable to the predictions made using the complete SPR

results (Fig 2B). This suggests that key features of how antibodies interact on a molecular level

can be indirectly inferred from simple activity measurements of antibody combinations.

Although these models classified antibody epitopes as either distinct or overlapping, SPR

measurements indicate that there is a continuum of possible interactions. Surprisingly, when

we generalized our binding model to explore this broader class of behaviors, we found that it

resulted in poorer model predictions (S1 Text Section A.7). More specifically, the three
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antibodies (#8-10) that individually increased EGFR activity seemed to decrease activity when

simultaneously bound with another antibody, representing an important form of synergy that

was neglected in the previous simpler models. To account for this behavior, we introduced

n = 10 effective potency parameters αj,eff (one per antibody) to quantify the potency of each

antibody when simultaneously bound with another antibody. Rather than fitting each of these

parameters to the data, we found that fixing αj,eff = αj for antibodies satisfying 1� j� 7

(whose individual potency was less than one) and only fitting αj,eff for the three antibodies that

individually increased fractional activity led to a substantial improvement in the model (Fig 4).

The effective potency of all three antibodies was reduced by at least 15%, corroborating the

notion that when simultaneously bound with another antibody, their effect on EGFR activity

may differ from when these antibodies are individually bound (S1 Text Section A.7).

Modern bioengineering has opened up a new avenue of mixing antibodies by genetically

fusing different components to construct multi-domain antibodies [15]. Such antibodies can

harness multivalent interactions to greatly increase binding avidity by over 100-fold (as seen

by the IC50s of the A/Wisconsin/67/05 and B/Harbin/7/94 strains in Fig 6). For such con-

structs, the composition of the linker can heavily influence the ability to multivalently bind

and neutralize a virus [18, 19], although Laursen et al. surprisingly found little variation when

they modified the length of their amino acid linker (see Table S11 in Ref [7]). Another curious

feature of their system was that placing their linear 4-domain antibody (Fig 6C) on an IgG

backbone (Fig 6D) only resulted in a 2-fold decrease in IC50, suggesting that the two “arms” of

the IgG could not simultaneously bind. We would expect that a different backbone that allows

both arms to simultaneously bind would markedly increase the neutralization potency of this

construct. In this way, quantitatively modeling these multidomain antibodies can guide experi-

mental efforts to design more potent constructs.

Methods

Models of EGFR antibody binding

Antibody mixtures from Ref. [6] were first characterized using a binding model (Eqs (2) and

(3) for 2-Ab mixtures; Eqs (S6)-(S8) for 3-Ab mixtures) where every antibody pair either binds

independently or dependently. Model parameters are given in Fig B Panel B of S1 Text.

Antibody epitopes were determined using SPR blocking data (Fig 3A, bottom-left), with

two antibodies categorized as overlapping if the average of the two antibody measurements

(with preincubation by either antibody) were> 50% and as distinct if the average was < 50%

(exact values given in Fig 4A). The reverse process using the antibody mixture data to deter-

mine whether antibodies have distinct or overlapping epitopes is described in S1 Text Section

B.

A continuum model that incorporates partial competition between each pair of antibodies

(Eq (S9) for 2-Ab mixtures; Eq (S10) for 3-Ab mixtures) is described in S1 Text Section A.7. In

this model, antibodies are allowed to partially compete for the same epitope (Fig 1C) with the

amount of competition dictated by SPR blocking data (Fig 4A).

Models for influenza multidomain antibodies

Influenza multidomain antibodies from Ref. [7] were characterized using a neutralization

model derived in S1 Text Section C.1, Eq (S17). Combining a binding model that accounts for

the avidity of the multiple domains together with a sigmoidal relationship between binding

and neutralization [17], we derive an expression for the neutralization of these multidomain

antibodies. Assuming a Hill coefficient of 1 between binding and neutralization, this model is
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identical to the distinct binding model used for EGFR antibodies (1 − Fractional Activity in

Eq (2)) with potency αj = 0 for each antibody domain, KD! IC50, and c2! ceff.

Goodness of fit

The coefficient of determination used to quantify how well the theoretical predictions matched

the experimental measurements (relative to the dashed line y = x in Figs 2B–2D, 3B, 4B and

5D) was calculated using

R2 ¼ 1 �

Pn
j¼1
ðyðjÞmeasured � yðjÞpredictedÞ

2

Pn
j¼1
ðyðjÞdataÞ

2
ð7Þ

where ymeasured and ypredicted represent a vector of the measured and predicted activities for the

n mixtures analyzed. In Fig 5D, we computed the R2 of log10(activity) to prevent the largest

activities from dominating the result (since the IC50 values span multiple decades).

Experimental data

All data are available in the Supporting Information S1 File. Data from the EGFR antibody

mixtures was obtained by digitizing Ref [6] Fig S1 using WebPlotDigitizer [20]. Data for the

influenza multidomain antibodies was obtained from the authors of Ref [7]. The original

nomenclature for the antibodies used in Koefoed et al. and Laursen et al. are given in Table A

in S1 Text.

Supporting information

S1 Text. Aforementioned derivations and discussions.

(PDF)

S1 File. Contains all of the data analyzed in this work.
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S2 File. A supplementary Mathematica notebook contains the data analyzed in this work,
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antibodies and their pairwise interactions and predicts the activity of all mixtures.

(ZIP)

S3 File. A supplementary Python notebook analogous to S2 File.
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