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For people living with an ostomy, development of peristomal skin complications (PSCs)

is the most common post-operative challenge. A visual sign of PSCs is discoloration

(redness) of the peristomal skin often resulting from leakage of ostomy output under the

baseplate. If left unattended, a mild skin condition may progress into a severe disorder;

consequently, it is important to monitor discoloration and leakage patterns closely. The

Ostomy Skin Tool is current state-of-the-art for evaluation of peristomal skin, but it relies

on patients visiting their healthcare professional regularly. To enable close monitoring of

peristomal skin over time, an automated strategy not relying on scheduled consultations

is required. Several medical fields have implemented automated image analysis based

on artificial intelligence, and these deep learning algorithms have become increasingly

recognized as a valuable tool in healthcare. Therefore, the main objective of this study

was to develop deep learning algorithmswhich could provide automated, consistent, and

objective assessments of changes in peristomal skin discoloration and leakage patterns.

A total of 614 peristomal skin images were used for development of the discoloration

model, which predicted the area of the discolored peristomal skin with an accuracy

of 95% alongside precision and recall scores of 79.6 and 75.0%, respectively. The

algorithm predicting leakage patterns was developed based on 954 product images,

and leakage area was determined with 98.8% accuracy, 75.0% precision, and 71.5%

recall. Combined, these data for the first time demonstrate implementation of artificial

intelligence for automated assessment of changes in peristomal skin discoloration and

leakage patterns.

Keywords: artificial intelligence, peristomal skin complications, leakage, discoloration, ostomy, convolutional

neural networks

INTRODUCTION

Development of peristomal skin complications (PSCs) is the most common post-operative
complication following creation of an ostomy (Meisner et al., 2012). PSCs are a constant challenge
for a great majority of people living with an ostomy and various studies have reported that they
affect 18–80% of the ostomy population (Burch, 2011; Fellows et al., 2017). The wide variation in
incidence reporting of these complications may be due to the less systematic assessment of the
peristomal skin together with the lack of availability to follow progression over time and between
visits at the health care professionals. Hence, one of the challenges is to define the exact prevalence
of PSCs and the underlying cause of the complication.
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After the ostomy surgery, many people will experience
changes in their peristomal area, and the height as well as the
diameter of the ostomy may also change. This may require
adjustment to their ostomy appliance to minimize the risk of
having the peristomal skin exposed to output from the ostomy.
Irritant contact dermatitis (ICD) is one of the main causes of
PSCs (Herlufsen et al., 2006) and is induced by fecal output
underneath the adhesive baseplate of the ostomy appliance also
referred to as leakage. A visual clinical sign of ICD is redness
of the peristomal skin. Suffering from leakage underneath the
ostomy baseplate adds to the probability of the ICD diagnosis.
A mild peristomal skin complication may progress into a more
severe disorder if left unattended, and for this reason it can be
beneficial to monitor the peristomal skin condition closely.

The Ostomy Skin Tool is current state-of-the art for
assessing peristomal skin conditions. This tool allows nurses
to have a standardized approach with a common language
for making uniform evaluations of peristomal skin conditions
at consultations (Martins et al., 2010). Despite the definite
usefulness of the Ostomy Skin Tool, closely monitoring
progression of PSCs is quite cumbersome as it requires regular
dialogues and/or face to face meetings between the patient and
their healthcare professional, which is not always an option.
Hence, a more automated strategy not relying on scheduled
visits would be beneficial and necessary to allow a more
systematic monitoring.

In general, the technological development continuously
provides new and smarter solutions to solve a given task. In
recent years, artificial intelligence (AI) has emerged in the
medical field due to a desire for increased efficiency in clinical
care (Hosny et al., 2018). AI refers to the ability of machines
to demonstrate cognitive behavior otherwise associated with
humans e.g., solving a given problem (Hessler and Baringhaus,
2018). Different types of AI algorithms exist amongst others deep
learning, but they all can find hidden information within a big
pool of data. Consequently, these techniques have great potential
for assisting healthcare professionals in making evidence-based
clinical decisions (Jiang et al., 2017). Moreover, AI algorithms
have the potential for determining clinical patterns without
involvement of available human expertise and resources.

Medical images are often of complex nature encompassing
a lot of information, which can be difficult to extract.
Convolutional neural networks (CNNs), which is a subtype
of deep learning, have shown great promise for analysis of
medical images (Esteva et al., 2017; Anwar et al., 2018; Brinker
et al., 2019; Maloca et al., 2019). For this reason, it was
speculated whether a CNN-based evaluation of peristomal skin
images could provide an alternative approach for objectively
monitoring even small changes in progression of PSCs over
time. Therefore, the overall aim was to develop a CNN-based
algorithm for assessment of peristomal skin images without
involvement of human expertise. It was speculated that such
AI-based approach would be more objective and consistent in
determining the discoloration area compared to current state-of-
the-art assessment methods. Secondly, the aim was to develop a
similar CNN-based model, which could detect leakage area from
images of used ostomy appliances.

In this study, the developed AI models successfully
determined the area of peristomal skin discoloration and leakage
based on images from peristomal skin and ostomy appliances,
respectively. Hence, this is the first time to demonstrate the
application of deep learning techniques for evaluation of
peristomal skin conditions and leakage patterns and thereby
underline the potential for AI algorithms within the ostomy
care field.

METHOD

Initially, all images were gross sorted on a patient level, and
images for each patient were subsequently selected over an evenly
distributed timeline. Two models were trained: one based on
peristomal skin images (discoloration model) and one based on
product images (leakage model). Images were then manually
segmented into four distinct classes. For the Discoloration
model, the four classes included: Discoloration, Peristomal area,
Ostomy, and Background. For the leakage model, the four
classes included: Leakage, Ostomy product, Center hole, and
Background. A CNNwas trained to classify each pixel into one of
the four classes. Themodels were implemented in Python version
3.6.8, Keras version 2.2.4, and Tensorflow version 1.13.1.

Data
All images were obtained from a specially designed Clinical
Trial app on a Nokia Lumia 1520 Windows phone used in two
clinical investigations, CP259 (Clinical Trial ID: NCT02517541)
and CP300 (Clinical Trial ID: NCT03770078).

For the Discoloration model, 614 peristomal skin images
distributed on 56 patients were selected. The images were selected
for each patient; thereby, covering the entire time span of the
clinical investigation. Each selected image was then manually
segmented into four distinct classes: Discoloration, Peristomal
area, Ostomy, and Background. The initial segmentation was
performed by non-medical personnel after training by medical
professionals. Each image segmentation was reviewed by a
medical professional and corrected, if needed. The original
peristomal skin images had dimensions of 1,280× 720× 3 pixels
and were scaled to a size of 256 × 256 × 3 pixels to minimize
memory load during model training. Images with and without
discoloration were used for analysis.

For the Leakage model, 954 product images were selected, and
each image had an image segmentation performed by a third-
party software system namely JLI Vision Leakage Analyzer1 The
original product images had dimensions of 2,592 × 1,456 × 3
pixels, which were scaled to a size of 256 × 256 × 3 pixels to
minimize memory load during model training. Images with and
without leakage were used for analysis.

Model
Semantic segmentation is a well-known task within deep learning
and a multitude of different network architectures have been
used to perform this task (Garcia-Garcia et al., 2018). Initially,
an empirical network architecture test was performed where

1Available online at: https://jlivision.com/
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multiple architectures were tested. The network with the most
promising results was chosen for subsequent use, which turned
out to be a U-NET architecture (Ronneberger et al., 2015;
Iglovikov and Shvets, 2018).

As the dataset was relatively small and since the task of
manual segmenting images are a costly procedure, the concept of
transfer learning was applied. This procedure is commonly used
in deep learning and weights from a pre-trained network are used
for initialization rather than using randomly initiated weights.
Commonly, networks trained on the ImageNet (Russakovsky
et al., 2014) dataset are used for the initialization. In this way, the
learning procedure can be performed on the entire network or it
can be chosen to only update the weights on the non-pretrained
layers of the network.

The transfer learning was applied to the encoding layers
using pre-trained weights from the VGG16 network (Simonyan
and Zisserman, 2014) trained on the ImageNet dataset. The
weights were imported from the Keras functional API2, and the
network was trained for 200 epochs with a batch size of 16. The
Adam optimizer3 was used with a learning rate of 10−5, and
a categorical cross entropy loss function4 was used. The final
layer in themodel contained a softmax activation function, which
outputs a probability for each pixel belonging to a specific class.
The sum of probability for a given pixel will always summate to
1. The model architecture and training setting were used for both
Discoloration and the Leakage model.

Validation
The models were evaluated using Precision, Recall, and Accuracy
metrics. A Precision Recall Receiver Operating Characteristic
curve were obtained by thresholding the classifier output at
different values and compute the precision and recall (data not
shown). The results were also manually validated by healthcare
professionals as a part of the model validation process. In details,
the images were screened before and after training by two clinical
experts including one nurse. Random samplings of the model
predictions were checked by three clinical experts and a panel of
skin experts encompassing two dermatologists and three highly
experienced stoma care nurses.

A True Positive was defined as a pixel of a class classified
as that class (e.g., an Ostomy pixel classified as an Ostomy
pixel). A True Negative was defined as a pixel of one of the
three other classes not being classified as that specific class
(e.g., a Background-, Peristomal area-, or Discoloration pixel not
classified as an Ostomy pixel).

The accuracy was calculated by flattening all images into an
array of size, where N was the number images predicted and W
was the width of images in pixels, H was the height of images in
pixels, and C was the total number of classes:

[(Nimage ∗Wpixels ∗ HPixels), C]

2Available online at: https://keras.io/applications/#vgg16
3Available online at: https://keras.io/optimizers/#adam
4Available online at: https://keras.io/backend/#categorical_crossentropy

An index was created using the numpy argmax5 function in
python. The index of 0 corresponded to the first class, the
index of 1 corresponded to the second class etc. From this, an
accuracy was calculated for each class using the sklearn.metrics
accuracy_score6 function.

Discoloration Intensity
The discoloration intensity was calculated as a post-processing
step. Specifically, the discoloration intensities were calculated
using all three color channels in an RGB color space using
the formula:

DiscolorationIntensity = abs(R− (
G+ B

2
))

Here, R corresponded to the Red channel of the RBG image, G
corresponded to the Green channel of the RGB image, and B
corresponded to the blue channel of the RGB image.

Ethical Statement
Images used for development of the deep learning algorithms
were derived from clinical investigations performed in
accordance with the Declaration of Helsinki of 1964. Images
were obtained from two clinical investigations, which were
approved by the local ethics committee. Specifically, the
clinical investigations were approved by “The Danish National
Committee on Health Research Ethics” in Denmark, “The
Regional Committees for Medicinal and Health Research
Ethics” in Norway, “The Independent Ethics Committee of the
Foundation of Evaluation of Ethics in Biomedical Research”
in The Netherlands, “The Health Research Authority” in the
United Kingdom, and “Salus IRB” in the United States. Written
informed consent was obtained for all participating subjects.

RESULTS

Discoloration Model
The discoloration model performed image segmentation;
subsequently, resulting in each image being divided into four
different classes. These classes included the peristomal area,
the ostomy itself, the discolored skin, and background. In the
model output, the highest probability for a given pixel results
in the pixel belonging to that class. A binary mask can then
be generated for the class by choosing pixels with highest
probability. A yellow marking of a pixel in the binary mask is a
1, meaning the pixel belongs to that class. A purple marking of a
pixel in the binary mask is a 0, meaning the pixel does not belong
to that class.

A representative example of a peristomal skin image with
varying degree of discolored peristomal skin is depicted in
Figure 1A. Manual segmentation of the image into the four
different classes is shown in Figure 1B, while Figure 1C depicts
how the discoloration model divided the image into the
peristomal area, ostomy itself, discolored skin, and background.

5Available online at: https://numpy.org/doc/stable/reference/generated/numpy.

argmax.html
6Available online at: https://github.com/scikit-learn/scikit-learn/blob/fd237278e/

sklearn/metrics/_classification.py#L125
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FIGURE 1 | Examples of discoloration model predictions. (A) A representative peristomal skin image with varying degree of discolored skin. (B) Manual segmentation

of the peristomal skin image into four different area classes including the peristomal area, ostomy itself, discoloration area, and background. Yellow marking indicated

that the pixel belonged to the given class, while purple indicated that the pixel did not belong to the class. (C) Automated segmentation of the peristomal skin image

into the same four classes performed by the discoloration model.

Across the four classes, the areas predicted by the model
(Figure 1C) visually appeared like the areas manually marked
(Figure 1B); thus, indicating that the model performed well
(Figures 1B,C).

Performance of the Discoloration Model
The performance of the discoloration model was evaluated on
three different parameters namely accuracy, precision, and recall

(sensitivity) by comparing manually marked and predicted areas.

Each of these parameters was calculated for all four classes as

depicted inTable 1. The discoloration class alone showed a 95.0%

accuracy, and despite being the lowest scoring class, prediction
of discoloration area still demonstrated a precision and recall
score of 79.6 and 75.0%, respectively (Table 1). Detection of the
peristomal area showed an accuracy score of 93.3%with precision
and recall scores of 80.2 and 81.1%, respectively. In general, the

Frontiers in Artificial Intelligence | www.frontiersin.org 4 September 2020 | Volume 3 | Article 72

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Andersen et al. Objective Assessment of Peristomal Skin

TABLE 1 | Summarized performance of the discoloration model.

Class Accuracy (%) Precision (%) Recall (%)

Discoloration 95.0 79.6 75.0

Peristomal area 93.3 80.2 81.1

Ostomy 99.7 95.8 96.3

Background 97.1 97.6 98.2

The model performance was evaluated for each of the four classes: the discoloration area,

the peristomal area, the ostomy itself, and the background. Accuracy, precision, and recall

scores were calculated for all four classes.

ostomy itself and the background were the two highest scoring
classes across all parameters.

Leakage Model
While the discoloration model predicted discoloration on
peristomal skin images, the leakage model predicted leakage
patterns based on ostomy product images. For the leakage model,
each image was divided into four classes including the area
of the ostomy product, the center hole, the leakage area, and
the background. Again, a yellow color in the visualizations was
indicative of the pixel belonging to the specific class, while a
purple color indicated that the pixel did not belong to the class
in question.

A representative product image was used as an
example to demonstrate the outcome of the leakage model
(Supplementary Figure 1A). The product image was manually
marked, and Supplementary Figure 1B depicts the four classes
corresponding to the manual assessment. Next, the leakage
model predicted the same four classes with the outcome shown
in Supplementary Figure 1C. For all four classes, there was
an agreement between the manual annotation and model
predictions (Supplementary Figures 1B,C).

Performance of the Leakage Model
The performance of the leakage model was evaluated by
comparing the manually marked and predicted classes. For
each of the classes, three different performance parameters were
calculated including accuracy, precision, and recall as depicted
in Table 2. Prediction of leakage area demonstrated the second
highest accuracy score among the four classes (98.8%) alongside
the lowest recall and precision scores; 71.5% for both parameters
(Table 2). Predictions of the ostomy product area showed an
accuracy of 96.1% with precision and recall scores of 89.3 and
91.7%, respectively (Table 2). Overall, predictions of the center
hole and the background showed the highest scores across all
performance parameters.

Discoloration Intensity
The discoloration intensity was calculated as an overlay to the
discoloration model, where 100% intensity of discoloration was
defined as the average redness value of the ostomy itself. This
resulted in an output image divided into segments of 10% redness
intensity ranging from low (green) to high (red). Figure 2 shows

TABLE 2 | Summarized performance of the leakage model.

Class Accuracy (%) Precision (%) Recall (%)

Leakage 98.8 71.5 71.5

Ostomy product 96.1 89.3 91.7

Center hole 99.5 91.5 86.4

Background 96.1 97.2 98.2

The model performance was evaluated for each of the four classes: the leakage area,

the ostomy product, the center hole, and the background. Accuracy, precision, and recall

scores were calculated for all four classes.

three representative peristomal skin images segmented into the
10 different discoloration intensity zones.

In the first example, the discolored skin primarily appeared
close to the edges of the peristomal area and close to the ostomy
itself (Figure 2A). Some intense, yet sporadic, areas of discolored
skin were found close to the ostomy with an intensity score of
81–90%. Despite this, a substantial fraction of the peristomal skin
was not classified by the model as being discolored (Figure 2A).
In the second example, a larger proportion of the peristomal skin
was classified as discolored.While the skin area below the ostomy
only had a low intensity of discoloration (0–20%), a large fraction
above the ostomy displayed more intense discoloration ranging
from 71 to 90% (Figure 2B).

Finally, the last example depicts a peristomal skin image,
where the model annotated most of the peristomal area as
discoloration to various intensity degrees (Figure 2C). Again,
the area above the ostomy appeared to have the most intense
discoloration ranging from 61 to 80%. Although a large
proportion of the peristomal skin area was annotated as
discolored, only a small fraction of the skin reached an intensity
score of 81–90% (Figure 2C).

DISCUSSION

AI in health care is a continuously growing field with several
branches starting to implement deep learning algorithms. Among
other fields, AI has been applied for image analysis in diabetic
retinopathy (Gulshan et al., 2016), stroke and neuroimaging
(Rehme et al., 2015; Kamnitsas et al., 2017), skin cancer (Esteva
et al., 2017), breast cancer (Sun et al., 2017), interstitial lung
disease (Anthimopoulos et al., 2016), Alzheimer’s disease (Oh
et al., 2019), and eye structures (Maloca et al., 2019). In addition,
the number of studies demonstrating a CNN-based approach
for wound image segmentation is gradually increasing (Ohura
et al., 2019), and AI models have gained popularity for long-term
predictions of the wound healing process (Wang et al., 2015; Jung
et al., 2016).

AI algorithms can provide accurate, reproducible, and
objective methods for medical imaging analysis (Liu and
Salinas, 2017; Hosny et al., 2018). In contrast to manual
image segmentation, deep learning algorithms can learn directly
from the data without the need for involvement of human
expertise. Both the discoloration and the leakage algorithms
generated in this study were based on supervised learning; a
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FIGURE 2 | The intensity of peristomal skin discoloration. Three different examples (A–C) of peristomal skin images with the overlaid discoloration intensity scores are

shown. Each discoloration pixel was divided into brackets with respect to the maximum redness value. The maximum redness intensity was defined as the average

redness value of the ostomy itself. The lower redness intensity limit was defined as the minimum value of redness in the discoloration area. The resulting image has

discoloration marked in brackets ranging from 0–10, 11–20, 21–30, 31–40, 41–50, 51–60, 61–70, 71–80, 81–90, 91–100%. The color code progresses from green to

red as the skin discoloration becomes more intense.

branch of machine learning, where functions and relationships
are deducted from labeled training data (Hosny et al., 2018).
Such supervised learning is commonly used in healthcare for
medical imaging analyses, as it provides more clinically relevant
output compared to unsupervised learning (Jiang et al., 2017;
Ohura et al., 2019). Although digital analysis of peristomal skin
images has been attempted (Iizaka et al., 2014), to the best
of our knowledge, no studies has previously demonstrated the
usefulness of applying AI algorithms for evaluation of peristomal
skin conditions and leakage patterns.

Accuracy is a parameter often used for evaluation of model
performance. The two models presented here demonstrated high
accuracy scores across all four classes in the combined range of
93.3–99.7%. A study involving a dataset of pressure ulcer images
demonstrated a CNN-based model with an accuracy of 0.998
for wound segmentation (Ohura et al., 2019), while a review
evaluating the performance of CNN-based methods for medical
image analysis in various clinical settings reported accuracy
scores ranging from 75 to 99.77% (Anwar et al., 2018). Taken
together, the leakage- and discoloration model demonstrated
accuracies within the high end of the acceptable range compared
to what is reported for AI-based algorithms for medical analysis.

Depending on the model, evaluating performance solely
based on accuracy might not be adequate. For the discoloration
model, most pixels in the training images did not belong in the
discoloration class; hence, the algorithm is slightly biased toward
predicting non-discoloration. For this reason, the performance
was also evaluated based on precision and recall in conjunction
with accuracy. Similarly, the leakage model is biased toward
prediction of non-leakage; hence, this model was also evaluated
based on precision and recall alongside the accuracy scores.
Compared to the other classes in the model, detection of the
discoloration area showed lower scores for precision and recall;
79.6 and 75.0%, respectively.

Likewise, prediction of the leakage area showed the lowest
recall and precision among the four classes (71.5% for both
parameters). These slightly lower performance scores therefore
indicated that prediction of discoloration and leakage area
were more difficult to correctly annotate than e.g., the ostomy
or the center hole. Importantly, AI algorithms often require
millions of observations before reaching acceptable performance
scores (Obermeyer and Emanuel, 2016), which is a much

larger dataset than what was available for developing the
algorithms presented here. The precision and recall scores
presented here will inevitable need further improvement before
these algorithms may replace health care staff. For this reason,
inclusion of more peristomal skin- and product images e.g.,
obtained in clinical trials are needed to enable improvement of
the recall and precision scores for the discoloration- and leakage
model, respectively.

The Ostomy Skin Tool is the current state-of-the art for
assessing a patient’s peristomal skin condition. Validation of the
tool was based on 20 nurses’ assessments of 30 different images
of PSCs. When investigating reproducibility and repeatability
of the Ostomy Skin Tool, a high intra-nurse agreement (κ =

0·84) was demonstrated, while the inter-nurse agreement was
only classified as ‘moderate to good’ (κ = 0·54). Specifically,
detection of discoloration showed an inter-nurse agreement of
κ = 0·59 (Jemec et al., 2011). Based on this validation, it was
concluded that the Ostomy Skin Tool was good for monitoring
an individual patient by the same nurse, while the outcome
from different assessors showed more discrepancies and was
therefore considered less reliable (Jemec et al., 2011). In contrast,
the two AI-based models presented here showed relatively high
precision and recall scores; thus, these models have an advanced
level of consistency and reproducibility compared to inter-nurse
assessments and provide another level of objectivity.

Importantly, these AI-based models also allow both the
patients and the nurses to closely monitor even small changes
in PSCs over time; something which would otherwise only
be possible, if the patient visited their healthcare professional
frequently. Such close and systematic monitoring combined with
the models’ high level of objectivity and consistency are over
time likely to give a clearer picture of the actual prevalence of
PSCs. For AI algorithms to achieve more widespread clinical
acceptance, further optimization and awareness are needed
(Liu and Salinas, 2015). Specifically, more clinical evidence
is desirable to fully elucidate the potential and impact of AI
models in various medical fields. For the discoloration and
leakage area assessment algorithms, we are still in the early
phases. Hence, the use of AI in future clinical studies and daily
practices among health care professionals will help to unlock and
evaluate the true potential for these algorithms within the ostomy
care field.

Frontiers in Artificial Intelligence | www.frontiersin.org 6 September 2020 | Volume 3 | Article 72

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Andersen et al. Objective Assessment of Peristomal Skin

In conclusion, this study provided proof-of-concept that it
is possible to utilize AI algorithms for analysis of discoloration
and leakage. The implementation of AI algorithms for medical
image analysis has great potential for future use. Here, AI-
based models showed promising results for objective and
consistent assessment of peristomal skin- and ostomy product
images aimed at detecting discoloration- and leakage area,
respectively. The deep learning techniques presented in this
study allow healthcare professionals to closely monitor even
small changes in discoloration of the peristomal skin and
leakage patterns over time, and these strategies are considered
more consistent and objective than the current state-of-the-
art skin assessment tool. Although the models performed well
on all parameters including accuracy, precision, and recall; AI
algorithms continuously improve their performance as more
input data is provided and various layers added. Obtaining
further data and hands on experience from daily clinical
practice will be important to fully elucidate the potential of a
deep learning-based automated assessments of peristomal skin
discoloration and leakage patterns.
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