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Abstract: Gene dysfunction and immune cell infiltration play an essential role in the pathogenesis of
idiopathic pulmonary arterial hypertension (IPAH). We aimed to investigate the immune landscape
and novel differentially expressed genes (DEGs) of IPAH. In addition, potential druggable molecular
targets for IPAH were also explored. In this study, the GSE117261 dataset was reanalyzed to explore
the immune landscape and hub DEGs of IPAH. Lasso Cox regression analysis and receiver operating
characteristic curve analysis were performed to detect the predictive value of IPAH. Additionally,
the underlying drug targets for IPAH treatment were determined by drug–gene analysis. IPAH was
significantly associated with the transforming growth factor-β (TGF-β) signaling pathway and Wnt
signaling pathway as well as energetic metabolism dysfunction. We identified 31 upregulated and 39
downregulated DEGs in IPAH patients. Six hub genes, namely, SAA1, CCL5, CXCR1, CXCR2, CCR1,
and ADORA3, were related to IPAH pathogenesis regardless of sex differences. Prediction model
analysis showed that the area under the curve values of the hub DEGs except CXCR2 were all above
0.9 for distinguishing IPAH patients. In addition, the relative proportions of 5 subtypes of immune
cells, namely, CD8

+ T cells, CD4
+ memory resting T cells, γ delta T cells, M1 macrophages, and

resting mast cells, were significantly upregulated in the IPAH samples, while 6 subtypes of immune
cells, namely, CD4

+ naive T cells, resting NK cells, monocytes, M0 macrophages, activated mast cells,
and neutrophils, were downregulated. Additionally, a total of 17 intersecting drugs targeting 5 genes,
CCL5, CXCR1, CXCR2, CCR1, and ADORA3, were generated as potential druggable molecular targets
for IPAH. Our study revealed the underlying correlations between genes and immune cells in IPAH
and demonstrated for the first time that SAA1, CCL5, CXCR1, CCR1, and ADORA3 may be novel
genetic targets for IPAH.

Keywords: idiopathic pulmonary arterial hypertension; differentially expressed genes; immune cell
infiltration; drug–gene interaction; bioinformatic

1. Introduction

Pulmonary arterial hypertension (PAH), defined as a mean pulmonary artery pres-
sure ≥ 25 mmHg and pulmonary capillary wedge pressure ≤ 15 mmHg on resting right
heart catheterization, is a progressive disease that may lead to right heart failure and
hemodynamic disorder [1]. Despite the use of targeted drugs in the clinic, PAH remains a
life-limiting disease. High pressure in the pulmonary artery is attributed to vasoconstric-
tion, pulmonary vascular remodeling and vascular inflammation, and current research
focuses on exploring more novel pathogenic mechanisms to reverse PAH; however, this
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research still far from clinical practice [2]. Several genetic targets and immune patterns of
PAH have been revealed [3–5]. The gene spectrum and immune landscape have gained
great attention for their value in reversing PAH.

PAH without a cause or associated condition is called idiopathic PAH (IPAH). Al-
though genetic dysfunction is commonly regarded as the basic pathogenesis of IPAH,
several known targeted genes explain only 15–30% of IPAH cases. Moreover, although
recent studies have demonstrated that both bone morphogenetic protein (BMP) 9 [2] and
prostacyclin synthase [6] genetic variants may also be involved in the pathogenesis of
IPAH, they still fail to fully explain the cause of IPAH in patients, indicating that the genetic
basis of IPAH needs further investigation. In addition, immune and inflammatory cells
play essential roles in the pathology of IPAH [2], and studies of the immune landscape may
be valuable for developing novel approaches to treat IPAH.

Bioinformatic research has been used to investigate the potential pathogenic mecha-
nisms of cardiovascular diseases [7]. In this study, the GSE117261 dataset profiles produced
by Stearman et al. [8] were acquired from the Gene Expression Omnibus (GEO) database (
https://www.ncbi.nlm.nih.gov/geo/). GSE117261 contains gene expression data from the
complete transcriptomics analysis of IPAH and control lung biopsy tissues. To date, few
data-based studies have been performed to analyze the potential genes and immune cell
infiltration of IPAH. We analyzed the transcriptome differences and immune landscape of
IPAH patients as well as potential druggable molecular targets for IPAH treatment, which
may provide novel insights for disease development. Figure 1 shows the flowchart of the
analysis procedure.

Genes 2021, 12, x FOR PEER REVIEW 2 of 17 

 

 

heart catheterization, is a progressive disease that may lead to right heart failure and he-
modynamic disorder [1]. Despite the use of targeted drugs in the clinic, PAH remains a 
life-limiting disease. High pressure in the pulmonary artery is attributed to vasocon-
striction, pulmonary vascular remodeling and vascular inflammation, and current re-
search focuses on exploring more novel pathogenic mechanisms to reverse PAH; how-
ever, this research still far from clinical practice [2]. Several genetic targets and immune 
patterns of PAH have been revealed [3–5]. The gene spectrum and immune landscape 
have gained great attention for their value in reversing PAH. 

PAH without a cause or associated condition is called idiopathic PAH (IPAH). Alt-
hough genetic dysfunction is commonly regarded as the basic pathogenesis of IPAH, sev-
eral known targeted genes explain only 15–30% of IPAH cases. Moreover, although recent 
studies have demonstrated that both bone morphogenetic protein (BMP) 9 [2] and pros-
tacyclin synthase [6] genetic variants may also be involved in the pathogenesis of IPAH, 
they still fail to fully explain the cause of IPAH in patients, indicating that the genetic basis 
of IPAH needs further investigation. In addition, immune and inflammatory cells play 
essential roles in the pathology of IPAH [2], and studies of the immune landscape may be 
valuable for developing novel approaches to treat IPAH. 

Bioinformatic research has been used to investigate the potential pathogenic mecha-
nisms of cardiovascular diseases [7]. In this study, the GSE117261 dataset profiles pro-
duced by Stearman et al. [8] were acquired from the Gene Expression Omnibus (GEO) 
database (https://www.ncbi.nlm.nih.gov/geo/). GSE117261 contains gene expression data 
from the complete transcriptomics analysis of IPAH and control lung biopsy tissues. To 
date, few data-based studies have been performed to analyze the potential genes and im-
mune cell infiltration of IPAH. We analyzed the transcriptome differences and immune 
landscape of IPAH patients as well as potential druggable molecular targets for IPAH 
treatment, which may provide novel insights for disease development. Figure 1 shows the 
flowchart of the analysis procedure. 

 Figure 1. The overview of the analysis procedure. GSE117261 dataset profiles were downloaded from the Gene Expression
Omnibus database, and Gene Set Enrichment Analysis (GSEA) was conducted to investigate the potential biological
pathways using the entire gene set. Thirty-one common upregulated differentially expressed genes (DEGs) and 39 common
downregulated DEGs were identified. The DAVID database, ClueGo and Clupedia were used to perform GO and pathway
enrichment of the DEGs, and STRING was used to construct the PPI network. The hub genes were detected by Cytoscape
software. The immune landscape in the dataset samples was determined by the CIBERSORT algorithm. Lasso Cox
regression analysis and ROC analysis were performed to build the IPAH prediction model. Additionally, drug–gene
analysis was conducted to explore underlying drug targets for IPAH treatment. GSEA: Gene set enrichment analysis; DEGs:
Differentially expressed genes; GO: Gene ontology; PPI: Protein–protein interaction; ROC: Receiver operating characteristic.
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2. Materials and Methods
2.1. Data Resources

We downloaded the normalized gene expression profiles from the GEO database (
https://www.ncbi.nlm.nih.gov/geo/) [9]. The GSE117261 dataset, tested on GPL6224
based on the Affymetrix Human Gene 1.0 ST Array included gene expression data from the
complete transcriptomics analysis of PAH and control lung tissues. The dataset produced
by Stearman et al. [8] contained 58 PAH and 25 control lung tissue samples. After excluding
samples from patients diagnosed with other types of PAH, 32 IPAH samples and 25 normal
control samples from failed donors were finally included in the subsequent analysis. To
start, 33,297 gene probes were matched to the corresponding official gene symbol after the
platform description matrix files were downloaded. After considering multiple probes that
matched to one gene, retaining the probes with the most significant gene expression value
(adjusted p value), and deleting the non-mRNA probes, 23,307 genes were identified. The
following procedures were performed based on the matched matrix file.

2.2. Screening and Identification of Differentially Expressed Genes

We used the limma package to screen for differentially expressed genes (DEGs) between
IPAH patients and healthy controls based on the R platform (R-project.org). The fold change
(FC) value was obtained by calculating the ratio of the expression level of each gene between
IPAH and control samples. Logarithmic operations with 2 as the base number were used to
make easier comparisons. Genes with |log2 FC| ≥ 1 were considered DEGs, and to further
limit the number of DEGs to facilitate the construction of the prediction model, an adjusted
p value < 0.01 was considered the threshold value, corrected by the Benjamini–Hochberg
method. DEGs with log2 FC < 0 were considered downregulated, whereas those with log2
FC > 0 were considered upregulated. The results were further validated by GEO2R, an
online R-based web application supported by the GEO database [10].

2.3. Functional Analysis of the Expression Profiles

Gene Set Enrichment Analysis (GSEA) was performed to investigate the relevant
biological pathways from an overall perspective using the original probe-matched ma-
trix file of IPAH and normal control samples. GSEA software v4.0.3 was downloaded
from the official website of the Broad Institute (http://www.broadinstitute.org/gsea) [11],
and the analysis was conducted using the Molecular Signatures Database (MSigDB) of
KEGG gene sets (c2.cp.kegg.v7.2.symbols). The normalized enrichment scores (NES) and
nominal p values were generated by running GSEA. |NES| ≥ 1 and nominal p value
< 0.05 were considered significant [12]. The GO enrichment analysis of the DEGs was
performed by the ClueGO (version 2.5.7) and CluePedia (version 1.5.7) tool kits, which
can decipher functionally grouped gene ontology (GO) and pathway annotation networks
with a hypergeometric test and analyze functional correlations among pathways via Cy-
toscape software (version 3.7.1) [13–15]. To further validate and investigate the results
of GO analysis, the biological process (BP), cellular component (CC), molecular function
(MF), and KEGG pathway annotations of the hub genes were conducted via DAVID (
http://david.ncifcrf.gov/, version 6.8). In particular, Homo sapiens was selected to limit
the annotation of the species. A p value < 0.05 was considered the threshold value to
explore more comprehensive GO results.

2.4. Protein Interaction and Module Analysis

The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING, http://
string-db.org/, version 11.0) was used to establish the protein–protein interaction (PPI)
network of the DEGs [16]. The STRING database contains multisource information, in-
cluding the integration of text mining in PubMed, experimental/biochemical evidence,
coexpression, and database association to provide functional interactions between proteins.
The DEGs were entered, and Homo sapiens was selected as the organism. To further
narrow the candidate gene field, the highest confidence level of 0.90 was used. Then, the

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://www.broadinstitute.org/gsea
http://david.ncifcrf.gov/
http://david.ncifcrf.gov/
http://string-db.org/
http://string-db.org/
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PPI network was constructed using Cytoscape software. The Molecular Complex Detection
(MCODE, version 1.6.1) plug-in, a well-known automated kit based on topology to identify
densely connected regions as molecular complexes in large PPI networks, was used to
screen the modules of the PPI network. The MCODE parameter criteria were set by default
as follows: Degree cutoff = 2, node score cutoff = 0.2, max depth = 100 and k-score = 2.

2.5. Evaluation of Immune Cell Infiltration

The normalized gene expression data with gene symbols were analyzed to infer the
relative proportions of infiltrating immune cells of the selected samples via the CIBERSORT
algorithm, a computational method for quantifying immune cell fractions from bulk tissue
gene expression profiles based on gene expression reference values from a signature matrix
of 547 genes in 22 types of immune cells. The modified expression file of GSE117261 was
uploaded to the CIBERSORT website (http://cibersort.stanford.edu/), with the algorithm
run by setting the default signature matrix at 1000 permutations. CIBERSORT generates
a p value for the deconvolution for each sample using Monte Carlo sampling, offering a
measure of confidence in the results. Significant alterations in immune cells between IPAH
and control samples were identified according to the threshold of the Wilcoxon test at a
p value < 0.05.

2.6. Prediction Model Analysis

The glmnet package in R software was utilized to calculate and select the linear models
and preserve valuable variables by Lasso Cox regression analysis. According to the binary
output variable in the processed data, we used a binomial distribution variable in the
LASSO classification as well as the 1 standard error of the minimum criteria (the 1-SE
criteria) lambda value in order to build the model with decent performance but the least
number of variables. The expression level of the hub genes and the diagnosis of the 57
samples were obtained from the probe-matched matrix file. The drawing of the receiver
operating characteristic (ROC) curves and the calculation of the area under the curve (AUC)
were conducted by the ROC package in R, and the samples were randomly assigned to
the training or testing cohort in an approximately 2:1 ratio. Thus, we investigated the
feasibility of the hub genes in prediction via the AUC value.

2.7. Drug–Gene Interaction Analysis

The hub genes also served as potential targets in the search for drugs through the
Drug–Gene Interaction database (DGIdb, http://www.dgidb.org/, version 3.0.2—sha1
ec916b2). This web-based database provides relevant drug–gene interaction data and gene
druggability information from multiple sources, including clinical trial databases, web
resources, and scientific papers in NCBI PubMed.

3. Results
3.1. Screening and Identification of Differentially Expressed Genes between IPAH and
Control Samples

The available numerical expression values of 32 IPAH samples and 25 normal control
samples from GSE117261 were used to identify DEGs. As shown in Table 1, compared with
the control samples, there were 31 upregulated and 39 downregulated DEGs in the IPAH
samples (|log2 FC| ≥ 1 and adjusted p value < 0.01) identified from the original transcript
matrix (n = 33,297). The expression data with gene symbols are shown in Supplementary
File 1.

http://cibersort.stanford.edu/
http://www.dgidb.org/
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Table 1. The common differentially expressed genes from GSE117261.

DEGs

Upregulated DEGs
HBB, LTBP1, HBA2, PDE3A, CCL5, BMP6, MFAP4, ABCG2, RGS5, WIF1, SFRP2,

EDN1, ASPN, COL14A1, OGN, DPT, RGS1, CD69, C10orf10, ESM1, GZMK, MXRA5,
AGBL1, ENPP2, POSTN, VCAM1, CPA3, FABP4, IFI44L, ROBO2, THY1

Downregulated DEGs

CSF3R, RNASE2, S100A9, MGAM, AQP9, SULT1B1, CR1, S100A8, NQO1, S100A12,
LILRB3, CXCR1, IL1R2, NPL, PROK2, CXCR2, ADORA3, CD163, SIGLEC10, ANPEP,
HMOX1, CCR1, VNN2, SAA1, LCN2, ELF5, GPR110, SPP1, SLC16A6, BPIFA1, CTSE,

TIMP4, BPIFB1, SLC7A11, PLA2G7, CYP1B1, MT-TW, SERPINA3, SLCO4A1

DEGs were set as adjusted p value < 0.01 and |log2 FC| ≥ 1. DEGs: Differentially expressed genes.

3.2. Functional Annotation and Enrichment of the Expression Profiles

To explore the possible biological mechanisms to uncover the collective behavior of
gene expression in states of IPAH and normal controls, GSEA was utilized to interpret
the genes distributed across the entire network. IPAH was significantly associated with
the transforming growth factor-β (TGF-β) and Wnt signaling pathways (Figure 2A,B,
p value < 0.01) as well as relatively downregulated activities in energetic metabolism,
including the citrate cycle, tricarboxylic acid cycle, glycolysis, gluconeogenesis, and starch
and sucrose metabolism in IPAH samples compared with normal controls (Figure 2C,E,
p value < 0.01). Additionally, we found that IPAH shared a number of KEGG pathways
with cardiomyopathy, viral myocarditis, and melanogenesis, and details are shown in
Figure S1, Figure S2, and Supplementary File 2. GO analysis of the DEGs was conducted
via the ClueGO and CluePedia tool kits in Cytoscape. As shown in Table 2, a total of 149
significant GO terms (p value < 0.01, see Supplementary File 3 for details) were classified
into 11 groups according to Cohen’s kappa score based on the shared genes between the
terms [11]. The ontology relations between different GO terms are shown in Figure 2F.

Table 2. The leading 11 GO terms.

GOID GO Term p Value Percentage of Term

GO:1990266 Neutrophil migration 1.61 × 10−9 52.35%
GO:0030593 Neutrophil chemotaxis 3.91 × 10−10 22.15%
GO:0140353 Lipid export from cell 1.08 × 10−6 10.74%
GO:0010660 Regulation of muscle cell apoptotic process 1.35 × 10−4 4.7%
GO:0046916 Cellular transition metal ion homeostasis 5.74 × 10−6 2.68%
GO:0030199 Collagen fibril organization 4.34 × 10−5 2.01%
GO:0006809 Nitric oxide biosynthetic process 2.29 × 10−4 2.01%
GO:0043117 Positive regulation of vascular permeability 2.93 × 10−5 1.34%
GO:0017001 Antibiotic catabolic process 2.67 × 10−3 0.67%
GO:0008235 Metalloexopeptidase activity 2.18 × 10−3 0.67%
GO:0006953 Acute-phase response 1.74 × 10−3 0.67%

3.3. Evaluation of Immune Cell Infiltration

The CIBERSORT algorithm was used to investigate the infiltration percentages of 22
subpopulations of immune cells in the IPAH and control samples from GSE117261. The
relative percentage of each cell in 32 IPAH and 25 control samples is shown in Figure 3A.
Moreover, as shown in Figure 3B, the relative proportions of 11 subtypes of immune cell
were significantly different and objectively detectable between IPAH and control samples.
CD8

+ T cells (p = 0.037), CD4
+ memory resting T cells (p = 0.046), γ delta T cells (p = 0.002),

M1 macrophages (p = 0.007), and resting mast cells (p = 0.022) were upregulated in IPAH
samples, while CD4

+ naive T cells (p = 0.002), resting NK cells (p = 0.013), monocytes
(p < 0.001), M0 macrophages (p = 0.045), activated mast cells (p = 0.048), and neutrophils
(p < 0.001) were downregulated in IPAH samples. The heatmap of CIBERSORT analysis
and measures of confidence are shown in Supplementary File 4.
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Figure 2. GSEA showed that (A) the Wnt signaling pathway and (B) TGF-β signaling pathway were positively associated
with IPAH, while (C) the citrate cycle, tricarboxylic acid cycle, (D) glycolysis, gluconeogenesis, and (E) starch and sucrose
metabolism were negatively associated with IPAH compared with normal control, all |NES| ≥ 1 and p value < 0.01. (F) The
ontology relations between different GO terms. Different colors were used to distinguish the GO groups, and the bold
font represents the leading group terms. GSEA: Gene set enrichment analysis; TGF–β: Transforming growth factor-β; GO:
Gene ontology.
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3.4. Protein Interaction and Module Analysis

To construct the PPI network of DEGs, the STRING online database and Cytoscape
software were utilized. A total of 70 DEGs were filtered into the PPI network, which
included 29 nodes and 39 edges (Figure 4A). Based on the confidence level of 0.90, 41 genes
were not included in the PPI network. According to the node degree >c5 criterion, the 6 hub
genes were SAA1 (degree = 8), CCL5 (degree = 5), CCR1 (degree = 5), CXCR2 (degree = 5),
CXCR1 (degree = 5), and ADORA3 (degree = 5). The MCODE plug-in was used to analyze
the significant modules, and a module with 6 nodes with 15 edges was selected from the
PPI network (Figure 4B), showing that the results were consistent with the 6 hub genes.
We also conducted the Wilcoxon rank-sum test to investigate the expression values of these
hub genes in different samples based on sex, and as shown in Figure 4C, the expression
of CCL5 (p = 0.077), CCR1 (p = 0.31), CXCR1 (p = 0.76), CXCR2 (p = 0.23), SAA1 (p = 0.19),
and ADORA3 (p = 0.51) was not significantly different between males and females. The
significant functional annotations, including BP, CC, MF, and KEGG pathways, are shown
in Table 3.
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Table 3. Signaling pathway enrichment analysis of the significant functional annotations related to the common differentially
expressed genes.

Category Term Count p-Value Genes

GOTERM_BP_DIRECT GO:0006935: Chemotaxis 3 1.38 × 10−4 CCR1, CXCR1, CXCR2

GOTERM_BP_DIRECT GO:0090026: Positive regulation of monocyte
chemotaxis 2 6.32 × 10−3 CCR1, CCL5

GOTERM_BP_DIRECT GO:0006953: Acute-phase response 1 6.32 × 10−3 SAA1

GOTERM_BP_DIRECT GO:0070098: Chemokine-mediated signaling
pathway 2 1.789 × 10−2 CXCR2, CCL5

GOTERM_BP_DIRECT GO:0060326: Cell chemotaxis 1 1.98 × 10−2 SAA1

GOTERM_BP_DIRECT GO:0034364: High-density lipoprotein particle 1 5.59 × 10−3 SAA1

GOTERM_BP_DIRECT GO:0005615: Extracellular space 2 4.37 × 10−2 SAA1, CCL5

GOTERM_BP_DIRECT GO:0042056: Chemoattractant activity 2 4.65 × 10−5 SAA1, CCL5

GOTERM_BP_DIRECT GO:0016494: C-X-C Chemokine receptor activity 2 3.61 × 10−3 CXCR1, CXCR2

KEGG_PATHWAY cfa04062: Chemokine signaling pathway 4 6.06 × 10−5 CCR1, CXCR1, CXCR2,
CCL5

KEGG_PATHWAY cfa04060: Cytokine–cytokine receptor interaction 4 9.44 × 10−5 CCR1, CXCR1, CXCR2,
CCL5

BP: Biological process.
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3.5. Exploring Candidate Biomarkers by Lasso Regression and Receiver Operating
Characteristic Curves

First, a Lasso regression model for the hub DEGs of IPAH and control samples from
GSE117261 was established to determine an optimum linear combination for predicting
IPAH (Figure 5A,B), with coefficients of −0.5826, 0.5619, −0.4437, −0.1321, and −0.028 for
CXCR1, CCL5, ADORA3, CCR1, and SAA1, respectively. Then, ROC curve analysis of the
Lasso regression model was conducted separately to predict IPAH in the training cohort,
testing cohort, and combination cohort, and the AUC values were all above 0.9, which
suggests that the genes in the model might have outstanding potential to as biomarkers for
distinguishing IPAH patients (Figure 5C).
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3.6. Drug–Gene Interaction Analysis

The drug–gene interaction network of the hub genes was screened via the DGIdb
database (http://www.dgidb.org/), aiming to identify druggable targets. As shown in
Table 4, a total of 17 intersecting drugs targeting 5 genes, CCL5, CXCR1, CXCR2, CCR1, and
ADORA3, were generated as potential druggable molecular targets for IPAH.

Table 4. Potential druggable molecular targets for idiopathic pulmonary arterial hypertension (IPAH).

Gene Drug Interaction Type

CCL5 FLUTICASONE PROPIONATE anti-inflammatory agent
CXCR1 CHEMBL411250 agonist
CXCR1 PROPOFOL agonist
CXCR1 CHOLINE ALFOSCERATE agonist
CXCR2 PROPOFOL agonist
CXCR2 BENZPIPERYLON agonist
CXCR2 CHEMBL411250 agonist
CXCR2 MEPHENTERMINE agonist
CCR1 ENOXAPARIN agonist
CCR1 GLYCERIN agonist
CCR1 GUANIDINO ACETATE agonist
CCR1 GUANINE agonist

ADORA3 IB-MECA agonist
ADORA3 ADENOSINE agonist
ADORA3 CF102 agonist
ADORA3 CHEMBL175543 agonist
ADORA3 CHEMBL472925 agonist

http://www.dgidb.org/
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4. Discussion

IPAH, a rare but life-threatening disease, remains challenging in terms of its diagnosis
and treatment, leading to a 5-year survival rate of approximately 50% [17,18] even with
the administration of targeted drugs. Investigations of effective treatment strategies and
the underlying methods are still needed. Genetic dysfunction is commonly recognized as
the underlying pathogenesis of IPAH, and immune disorders also play an essential role
in disease progression [2]. Recently, the exploration of gene dysfunction and the immune
landscape in IPAH has received unprecedented attention due to their great potential for
reconstructing therapeutic ideas, which may improve the unsatisfactory treatment situation
of IPAH. Stearman et al. [8] conducted the largest PAH lung transcriptome study to date to
provide insights into therapies and generate novel hypotheses for preclinical testing. Their
study included patients diagnosed with group 1 PH, including IPAH, associated PAH,
heritable PAH, and others, for analysis. Here, we specifically focused on the transcriptome
differences and immune landscape between IPAH and control samples.

Our study demonstrated that IPAH was significantly associated with upregulation of
both the TGF-β signaling pathway and Wnt signaling pathway. The TGF-β signaling path-
way, closely related to inflammation, plays a vital role in numerous biological processes
by regulating cell growth, differentiation, apoptosis, and cellular homeostasis, etc., and
dysfunction is associated with the occurrence of cancer, immune disease as well as cardio-
vascular diseases [19,20]. An increasing amount of evidence has demonstrated the essential
role of inflammation in the pathogenesis of IPAH [21,22], and the underlying mechanisms
between the TGF-β signaling pathway and IPAH are currently under heated exploration.
TGF-β/activin/nodal signaling, one of the TGF-β signaling pathways, branches through
Smad2/3. After pSmad2/3 oligomerizes with Smad 4, they translocate into the nucleus to
regulate the transcription of target genes, exerting effects on pulmonary vascular remod-
eling and pulmonary artery smooth muscle cell proliferation. In addition, dysregulated
TGF-β/activin/nodal signaling enables the activation of extracellular-signal-regulated
kinase, nuclear factor-κB and Rho kinase pathways, which may also promote PAH [23].
A clinical study [24] noted that a higher level of TGF-β1 could be identified in patients
with IPAH compared with the control group. The Wnt signaling pathway is of utmost
importance in regulating proliferation and differentiation [25]. Upregulation of the Wnt
signaling pathway is regarded as the pathogenesis of both IPAH and heritable PAH [26].
Meanwhile, Hemnes et al. [27] also determined that higher increased stimulated Wnt sig-
naling pathway activity in IPAH patients than in the control group could be detected after
analyzing human lung fibroblasts. Moreover, dysfunction of energetic metabolism in terms
of downregulation of the tricarboxylic acid cycle in IPAH has also been demonstrated,
which uncovers IPAH as an energy metabolism-related disease.

The immune landscape provides a deeper understanding of the inflammatory compo-
nents in the pathogenesis of IPAH, which helps in the investigation of novel treatments.
Our results showed that CD8

+ T cells, CD4
+ memory resting T cells, γ delta T cells, M1

macrophages, and resting mast cells were upregulated, while CD4
+ naive T cells, rest-

ing NK cells, monocytes, M0 macrophages, activated mast cells, and neutrophils were
downregulated in IPAH samples. It has been reported that varying degrees of perivas-
cular inflammatory infiltrates, such as T- and B-lymphocytes, mast cells, macrophages,
and dendritic cells, occur in PAH patients or animal models [28]. Similar to our findings,
Marsh et al. [22] also showed that CD4

+, CD8
+, and γ delta T-cell subsets were also in-

creased in the lungs of patients with IPAH. CD4
+ and CD8

+ T cells are able to induce
proinflammatory cytokine release, leading to pulmonary artery injury. γ delta T-cells,
serving as a link between innate and adaptive immune responses, help tissue homeostasis
and wound healing by releasing insulin-like growth factor-1, which exerts a proliferative
promotion effect on smooth muscle cells to induce IPAH [9,29]. M1 macrophages, also
called classically activated macrophages, produce proinflammatory cytokines such as IL-1β,
TNF, IL-12, and IL-18 [30], and increased inflammatory markers can exacerbate damage to
pulmonary vessels. The study showed that inflammation and vascular smooth muscle cell
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phenotypic switching induced by activated M1 macrophages are related to the increased
expression of carbonic anhydrase 2. The use of carbonic anhydrase inhibitors exerts an
immunomodulatory effect to treat macrophage-mediated inflammation [31]. Mast cells
are the first immune cells recognized in pulmonary vascular lesions in IPAH patients and
can release cysteinyl leukotriene C4 and endothelin to enhance lung vascular remodeling
and PH pathogenesis [32]. Our results showed that resting mast cells, not activated mast
cells, were increased in IPAH patients. Similarly, Wang et al. [33] revealed that resting mast
cells were increased in idiopathic pulmonary fibrosis, which has been regarded as another
immune disorder disease, and the role of resting mast cells in the pathogenesis of lung
immune diseases such as IPAH may be worthy of exploration. Recently, reductions in NK
cells in both PAH mouse models and PAH patients were identified. The dysfunction of NK
cells has been regarded as an important regulator of angiogenesis and vascular remodeling,
potentially according to the induction of angiogenic factors and chemokines [34,35]. A
clinical study [36] showed that after 1 year of follow-up, PAH patients, including IPAH
patients with deficiencies in NK cells and cytotoxic CD8

+ T cells, were deceased, while
patients with normal lymphocyte profiles were all alive. Decreased NK cells are linked
to a high risk of death, but the underlying mechanisms are still unclear. This suggests
that NK cell depletion may be a consequence of or a predisposing factor for PAH, and the
association between programmed death-1 expression on NK cells and disease progression
needs further investigation [35]. Monocytes induce cytokines to promote inflammation
and remodeling [37,38]. Neutrophils release proteolytic enzymes that modulate the activity
of cytokines and degrade the extracellular matrix, releasing growth factors to promote
vascular remodeling. Moreover, proteolytic enzymes may also alter the inflammatory
environment, enhance leukocyte responses, and exacerbate inflammatory effects [39,40]. It
seems that monocyte and neutrophil infiltration contributes to the pathogenesis of PAH,
while our study revealed relatively lower fractions of these cells in IPAH samples. PAH-
targeted drugs can inhibit inflammatory effects [41,42], and the reduction in inflammatory
cells, including monocytes and neutrophils, may be attributed to the use of PAH drugs in
our samples. Novel insights into the promising correlations and mechanisms are needed.
Research on the immune landscape provides prospective evidence of IPAH pathogenesis,
which can be used to explore more treatment strategies via further investigation.

In our study, a total of 70 DEGs were identified. Similar to Stearman’s study [8], we
found that upregulated genes such as CCL5, VCAM1, and EDN1 and downregulated genes
including CXCR2 were also identified in IPAH. We first demonstrated that the dysregu-
lation of SAA1 (log2 FC = −1.57), CCR1 (log2 FC = −1.04), CXCR1 (log2 FC = −1.24), and
ADORA3 (log2 FC = −1.03) may also play essential roles in the pathogenesis of IPAH. After
reanalyzing the GSE117261 series matrix dataset, 6 hub DEGs of IPAH in terms of SAA1
(degree = 8), CCL5 (degree = 5), CCR1 (degree = 5), CXCR2 (degree = 5), CXCR1 (degree = 5),
and ADORA3 (degree = 5) were identified in our study, and no significance was found in
the comparison of female and male patients, indicating that these hub DEGs were not a
result of sex-associated discrepancies. SAA1, located on the short arm of chromosome 11,
showed the highest degree of connectivity with IPAH. The SAA protein, encoded by SAA1,
is highly induced during the acute-phase response and plays an important role in lipid
metabolism, bacterial clearance, and tumor pathogenesis [43,44]. Recently, the function of
the SAA protein in regulating inflammation has been fully discussed, and studies have
consistently demonstrated that SAA [45,46] induces the expression of proinflammatory
factors. One study suggested recombinant human SAA as an inflammatory cytokine, but it
does not belong to any family of known chemokines and inflammatory cytokines due to
its different structure [47]. In addition, anti-inflammatory factors such as IL-1R antagonist
and IL-10 can also be induced by recombinant human SAA, suggesting that the primary
role of SAA during inflammation may be homeostatic [48–50]. Our study showed that
the downregulation of the SAA1 gene was related to IPAH and hypothesized that the
underlying mechanism may be attributed to the dysfunction of inflammation homeostasis.
However, ongoing and future studies are warranted to explore powerful evidence on the
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association between SAA1 and IPAH. Other potential gene targets of IPAH, including
CCL5, CCR1, CXCR2, CXCR1, and ADORA3, are all associated with inflammatory-immune
regulation. IPAH is a kind of immune-mediated inflammatory disease [28]. Similar to
previous studies, we revealed that the upregulated CCL5 gene was a risk factor for the
pathogenesis of PAH [51–53]. CCL5 is one of the members of the CC-chemokine family,
having a complex impact on immune cells such as monocytes, T lymphocytes, and NK
cells [54]; it is strongly expressed on vascular endothelial cells and exerts vasoconstriction
and remodeling effects on the lung tissue of patients with PAH [52,55]. Interestingly, CCL5
interacts with bone morphogenetic protein receptor type-2 (BMPR2), which is regarded as
an identified IPAH pathogenic gene [56,57]. Nie et al. [58] showed that PAH patients with
decreased BMPR2 expression have higher expression levels of CCL5 in pulmonary artery
endothelial cells. The deletion of CCL5 inhibited pulmonary vascular remodeling in mice by
restoring BMPR2 and activating the phosphorylation of BMP target proteins. In addition,
the reduction in CCL5 improved pulmonary artery endothelial cell survival and suppressed
the proliferation of pulmonary artery smooth muscle cells to reverse IPAH through BMPR2
signal enhancement. The adenosine A3 receptor (A3R) coupled to Gi proteins is encoded
by ADORA3, suggesting that it is a regulator of inflammatory responses [59]. The role
of this receptor in the pathophysiology of inflammation is complex. Putten et al. [60]
pointed out that A3R-mediated signaling induced proinflammatory cytokines, while an-
other study showed the protective effect of preventing excessive immune response and
immune-mediated damage after A3R activation [61]. To date, research on downregulated
ADORA3 and IPAH pathogenesis is insufficient, and the underlying mechanisms still need
to be explored.

More importantly, the ROC curve analysis of the Lasso regression model showed
that the AUC values were all above 0.9, indicating the outstanding potential of the 5 hub
DEGs, namely, CXCR1, CCL5, ADORA3, CCR1, and SAA1, as biomarkers for distinguishing
IPAH patients, which has significant clinical feasibility in auxiliary diagnosis and disease
classification. In Stearman’s study [8], differentially regulated drug targets in PAH, includ-
ing EDN1, EDNRA, PDE5A, GUCY1B1, PTGIR, PTGIS, and CACNA1C, which are related
to the endothelin pathway, phosphodiesterase family, prostanoid pathway proteins, and
voltage-gated calcium channels, were demonstrated. However, in this study, we showed
that CCL5, CXCR1, CXCR2, CCR1, and ADORA3, associated mainly with inflammatory and
immune pathways, were all identified as potential druggable molecular targets for IPAH,
which might also reflect the inflammatory and immune pathogenesis of IPAH. Currently,
IPAH pharmacotherapy, except for classic targeted drugs related to the nitric oxide path-
way, endothelin pathway, and prostacyclin pathway, is still limited. The development of a
treatment strategy relies on full insights into the pathogenesis of IPAH. Here, we highlight
that the dysfunctions of 6 genes with great potential induce IPAH, and investigational
drugs targeting CCL5, CXCR1, CXCR2, CCR1, and ADORA3 may provide a prospective
direction for the treatment of IPAH. Our work is promising with regards to advancements
in treating this devastating condition, which may significantly the prognosis of patients.

However, several limitations remain in our study. First, our results were based on
GSE117261, and other datasets or clinical data are needed for further research. In this study,
all of the samples were collected from Caucasians, which may cause selection bias. Second,
smoking exposure could alter the inflammatory status of the lungs. SAA is also reported
to be an indicator of the inflammatory status of the lung associated with an increased
risk of developing lung cancer in heavy smokers. However, in this dataset, no smoking
or cancer data are provided. Third, biomarkers exploration in our study has not been
verified by external IPAH cohorts and in the future other cohorts are eager to conduct to
test candidate biomarkers mentioned in our study. Also, biological experiments are needed
for further verification.
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5. Conclusions

In conclusion, therapeutic strategies for IPAH are currently limited due to the complex
pathogenesis of IPAH. The dysregulation of genes and immune cell infiltration are regarded
as important mechanisms that promote disease progression. Our study demonstrated
related signaling pathways and the immune landscape of IPAH as well as identified 6
hub genes, which might help to further provide novel insights for candidate biomarker
exploration and treatment development in IPAH.
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