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Abstract
Background and Objectives
Clinical manifestations in STXBP1 developmental and epileptic encephalopathy (DEE) vary in
severity and outcome, and the genotypic spectrum is diverse. We aim to trace the neuro-
developmental trajectories in individuals with STXBP1-DEE and dissect the relationship be-
tween neurodevelopment and epilepsy.

Methods
Retrospective standardized clinical data were collected through international collaboration. A
composite neurodevelopmental score system compared the developmental trajectories in
STXBP1-DEE.

Results
Forty-eight patients with de novo STXBP1 variants and a history of epilepsy were included (age
range at the time of the study: 10 months to 35 years, mean 8.5 years). At the time of inclusion,
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65% of individuals (31/48) had active epilepsy, whereas 35% (17/48) were seizure free, and 76% of those (13/17) achieved
remission within the first year of life. Twenty-two individuals (46%) showed signs of developmental impairment and/or
neurologic abnormalities before epilepsy onset. Age at seizure onset correlated with severity of developmental outcome and the
developmental milestones achieved, with a later seizure onset associated with better developmental outcome. In contrast, age at
seizure remission and epilepsy duration did not affect neurodevelopmental outcomes. Overall, we did not observe a clear
genotype-phenotype correlation, but monozygotic twins with de novo STXBP1 variant showed similar phenotype and parallel
disease course.

Discussion
The disease course in STXBP1-DEE presents with 2 main trajectories, with either early seizure remission or drug-resistant
epilepsy, and a range of neurodevelopmental outcomes from mild to profound intellectual disability. Age at seizure onset is the
only epilepsy-related feature associated with neurodevelopment outcome. These findings can inform future dedicated natural
history studies and trial design.

Disease-causing variants in STXBP1 are among the most
common causes for neurodevelopmental disorders and epi-
lepsy with a frequency of up to 1:26,000.1 STXBP1 is a crucial
presynaptic protein involved in neurotransmitter release2,3 and
the most frequent member of SNARE complex-related genes
involved in neurodevelopmental disorders and epilepsy.4

The association between pathogenic variants in STXBP1 and
Ohtahara syndrome was first reported in 2008.5 Since then,
the clinical features of patients with STXBP1 encephalopathy
have been extensively described, leading to the definition
of STXBP1 developmental and epileptic encephalopathy
(STXBP1-DEE) as a neurodevelopmental disorder charac-
terized by intellectual disability (ID), epilepsy (in 95% of
patients), neurologic impairment, and behavioral abnormali-
ties.6 Nevertheless, seizure history and developmental out-
comes present a considerable degree of variability, with no
prognostic factors identified to date.

Several genetic neurodevelopmental disorders currently rep-
resent prime targets for gene therapy or gene regulation
approaches.7,8 However, given the considerable variability in
STXBP1 phenotypes, the best outcome measure and thera-
peutic window remain unknown.

Defining developmental trajectories and discrete subgroups in
STXBP1-related disorders is a prerequisite for designing more
precise natural history studies. Seizure history is considerably
variable between individuals, developmental outcomes range
in severity, and prominent age-dependent clinical features
have been observed in subgroups of individuals. Accordingly,
the heterogeneity and disease-specific features need to be
considered through a natural history study to identify the
domains and windows for possible therapeutic interventions
and to plan for clinical trials. However, longitudinal data are

limited for STXBP1-related disorders, and there remains a
need for targeted studies aiming to assess the developmental
trajectories and natural history of individuals with STXBP1-
DEE. We investigated 48 individuals with de novo STXBP1
variants to define their clinical features, trace the neuro-
developmental trajectories, and dissect the relationship be-
tween neurodevelopment and epilepsy.

Methods
Standard Protocol Approvals, Registrations,
and Patient Consents
Written informed consent was obtained for genetic analysis
and any clinical and instrumental investigation performed. All
clinical data used in this study were gathered during a routine
diagnostic and clinical activity. Clinical data were provided to
the principal investigator by each referring clinician in a dei-
dentified format in the form of a structured questionnaire.
The study complies with anonymized retrospective studies
regulations and was reviewed by the local Ethics Committee.

Inclusion Criteria and Genetic Analysis
Patients were recruited from those followed up between 2010
and 2020, at 20 neuropediatric clinical centers in 4 different
countries (eTable 1, links.lww.com/NXG/A522). The study
included individuals with de novo STXBP1 variants and a
history of epilepsy, aged >10 months. Molecular testing was
performed in the context of standard diagnostic protocols by
certified Genetic Laboratories using gene panel or whole-
exome sequencing through next-generation sequencing ap-
proaches. Sequencing of parental DNA was performed in all
included cases. Individuals for whom parental DNA se-
quencing was not available were not included in the study.
STXBP1 variants were interpreted according to the American
College of Medical Genetics and Genomics classification.

Glossary
ASM = antiseizure medication; DEE = developmental and epileptic encephalopathy; FCD = focal cortical dysplasia; ID =
intellectual disability.
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Only individuals carrying pathogenic or likely pathogenic
variants were included in the study.9 All identified variants
(missense, stop, indel, frameshift, and splice site) were vali-
dated by Sanger Sequencing and reported according to
the RefSeq transcript NM_003165. Microrearrangements
encompassing the STXBP1 gene were also included.

Collection of Clinical Data and Developmental
Score System Design
The following set of clinical data was required for eligibility:
family history, seizure history (age at onset and seizure freedom,
seizure types, EEG and antiseizure medications at the onset,
follow-up, and last examination), neurologic examination, brain
MRI, neurodevelopmental milestones and outcomes, and be-
havioral features. Epileptic seizures were defined according to
the 2017 International League Against Epilepsy Classification
criteria.10 Patients were identified as seizure free after they
haven’t had seizures for a period 3 times in duration compared
with the longest preintervention interseizure interval.11

Development was assessed through developmental mile-
stones (eye contact, head control, walking, and speech) and
neurologic examination by certified neurologists. Behavioral
abnormalities were evaluated based on the Diagnostic and
Statistical Manual of Mental Disorders, Fifth Edition12 by each

referring clinician. The cognitive outcome was defined by
each treating clinician as mild, moderate, severe, or profound
ID (for individuals >6 years old) or cognitive delay (for in-
dividuals <6 years old), based on age-appropriate metrics;
however, this metric was not included in the developmental
score system.

Based on expert consensus, a composite developmental score
system (referred to as STXBP1_DevScore) was created,
to enable the quantitative comparison of developmental tra-
jectories and outcomes in different individuals using a stan-
dardized framework. The score includes 10 domains
comprising of development course, degree of development
(assessed by developmental milestones), and neurologic and
behavioral features. The score is based on the observed and
reported clinical features and the rates of skills acquisition in
the STXBP1 population. A maximum of 10 points corre-
sponds to typical development, and a minimum of 0 points
corresponds to profound developmental impairment in each
domain (see Table 1 for scoring details). The score was ap-
plied only to individuals of at least 3 years of age at the time of
the study. The relationship between epilepsy course and de-
velopment for each individual was evaluated by assessing the
correlation between the total STXBP1_DevScore and its
subscores with age at seizure onset, epilepsy outcome (seizure

Table 1 STXBP1 Composite Developmental Score (STXBP1_DevScore)

Domains Score Explanation

Development course

Examination at birth 0 - 1 0 = delay/abnormality (for examination at birth and neonatal
period: presence of neurologic abnormalities)
1 = typical development (for examination at birth and neonatal
period: absence of neurologic abnormalities)

Neonatal period 0 - 1

Infancy 0 - 1

After 1 year/early childhood 0 - 1

Developmental milestones at last examination (≥ 3 years old)

Head control 0 - 0.5 - 1 0 = no skill (eye contact: absent)

Eye contact 0 - 0.5 - 1 0.5 = partially acquired (eye contact: intermittent)

Walking 0 - 0.5 - 1 1 = acquired

Speech 0 - 0.5 - 1

Neurologic and behavioral features at last examination

Neurologic examination 0 - 0.5 - 1 0 = abnormal

0.5 = mildly abnormal

1 = unremarkable

Behavior 0 - 1 0 = abnormal

1 = no abnormalities

Total 0 (profound developmental disorder)

↕

10 (typical development)
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free vs active epilepsy), age at seizure freedom (if any), and
epilepsy duration.

Patients whowere not seizure free at the last visit were defined as
having active epilepsy. In this group, epilepsy duration was de-
fined as time from the first seizure to the last examination.
Similarly, to analyze the correlation between STXBP1_DevScore
and age at seizure offset, patients with active epilepsy were in-
cluded, using their age at last examination as age at last seizure.

Statistical Analysis
Statistical analyses were performed with one-way ANOVA or
2-way Student t test, using Prism GraphPad software. Cor-
relation analysis for STXBP1_DevScore was performed using
the R Statistical Package. Statistical significance was reported
with a p value cutoff of 0.05.

Data Availability
Anonymized individual clinical data that are not published
within this article will be made available by request from any
qualified investigator.

Results
We collected data from 48 individuals (18 females, 38%)
with de novo STXBP1 variants and a history of epilepsy
(eTable 2, links.lww.com/NXG/A522), including 12 indi-
viduals previously reported in the literature (see references
6, 13–16). The mean age at inclusion was 8.5 years (range:
10 months–35 years). Three individuals deceased between
age 21 months and 11 years because of intractable seizures
and respiratory complications.

Genotypic and Phenotypic Spectrum
in STXBP1-DEE
Genetic Findings
We identified 38 unique de novo STXBP1 heterozygous variants
(16 missense variants, 41%), with eight novel variants (Figure 1,
in red). The variants were distributed across all the functional
domains of STXBP1 protein, with distinct recurrent variants:
p.Arg406Cys (4 individuals; 8%), p.Arg406His (3 individuals;
6%), del 9q33.3–34.11 (3 individuals; 6%), p.Arg551Cys/His/
Leu (3 individuals; 6%), p.Ile19_Lys20delinsMet (2 individuals;
4%), and c.578+1G>A (2 individuals; 4%).

Epilepsy Phenotypes and Histories
No family history for epilepsy or neurocognitive deficits was
reported in 27 individuals (56%), whereas 6 (13%) reported a
family history of seizures (two in first-degree relatives). The
family history was unknown for the remaining 15 individuals.

All 48 individuals had a history of seizures, with a median
onset of 1 month (range 1 day–6 years) (Table 2). Seizure
types at onset consisted mostly of focal motor seizures (31
individuals; types reported: tonic-clonic, myoclonic, focal to
bilateral tonic-clonic) and spasms (14 individuals). Focal
nonmotor seizures with impaired awareness and atypical ab-
sences were also present at onset in four individuals. Seizures
presentedmostly at daily frequency, withmultiple seizures per
day, and occurred in clusters in 12 individuals (25%). During
the disease course, the patients developed spasms or different
types of focal motor seizures and generalized onset motor
seizures. Status epilepticus was reported in three individuals
(6%), two at seizure onset and 1 after 2 years following onset.

Figure 1 STXBP1 Variants Over Exons and Linear Protein Structure

Novel variants are highlighted in red.
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At the time of the study, 17 individuals (35%) achieved sei-
zure freedom, and antiseizure medications (ASMs) were
discontinued in 11 individuals (23%). Themedian duration of
seizure-freedom was 48 months (range 3 months–11 years).
Most of these individuals became seizure-free within the 1st
year of life (14; 82%). The median epilepsy duration in this
latter group was 6.5 months (range: 0.3–11.7 months). In-
dividuals with later remission had a median duration of 13
years (range: 2–31 years).

Thirty-one individuals (65%) had active epilepsy at inclusion
(median follow-up of 5.4 years, range: 10 months–28 years).
Seizure frequency at last follow-up remained daily in 16 in-
dividuals (33%); however, it decreased to weekly or monthly
in the remainder of the cohort with active epilepsy. Six (13%)
individuals were seizure free for at least 1 year (median 22.5
months, range: 12–60 months) before seizure recurrence.

Antiseizuremedications ranged from1 to 8 different drug trial(s)
per individual. At last follow-up, 22 patients were still on poly-
therapy treatment. Themost usedASMswere phenobarbital (24
individuals, 50%), valproate (20; 42%), vigabatrin (15; 31%),
adrenocorticotropic hormone (ACTH) (13; 27%), pyridoxine
(14; 31%), levetiracetam (15; 31%), benzodiazepines (11; 23%),

topiramate (11; 23%), and carbamazepine (11; 23%). One in-
dividual (patient 8) underwent resective epilepsy surgery with a
dramatic benefit on seizure frequency (further discussed in the
following section).

EEG with burst suppression at seizure onset was reported in
16 individuals (33%) and hypsarrhythmia was reported in 3
(6%). Sixteen individuals had focal or multifocal epileptiform
discharges. Last EEG was abnormal in 33 individuals (ab-
normal background activity, with or without focal or multi-
focal paroxysmal activity), whereas it was reported to be
almost unremarkable in 5 individuals and was not available
in 10.

Neurologic Status and Brain Imaging
We observed a range of common neurologic features in our
cohort of 48 individuals with STXBP1-related disorders and ep-
ilepsy. At last follow-up (mean age 8.5 years), almost half of the
patients (21 individuals, 46%) presented with hypotonia, both
axial or generalized, or associated with distal hypertonia; 11 in-
dividuals (23%) presented with tetraplegia or tetraparesis, both
spastic or flaccid (mean age 8.7 years). Ataxia was reported in 5
individuals. Other neurologic features were observed including
tremors, erratic eye movements, nystagmus, severe dystonia,

Figure 2 Neurodevelopmental Features in Individuals With STXBP1-DEE Stratified per Age Range at Seizure Onset

(A) Cumulative incidence of neurodevelopmental impairment from birth to early childhood in the overall cohort (n = 48) and per age at seizure onset (<1
month n = 23, 1–12months n = 20, >1 year n = 5). *p = 0.033, one-way ANOVA. (B) Developmental milestones achieved at last assessment in n = 36 individuals
with STXBP1-DEE ≥3 years old (median age 8.35 years, range 3–35 years). (C.a) Development before epilepsy based on age range at seizure onset: neurologic
abnormalities before epilepsy onset were evident in 7/23 individuals (30%) with seizure onset <1month; signs of developmental impairment before epilepsy
onset were evident in 12/20 (60%) of patients with seizure onset between 1 and 12 months and in 3/5 (60%) of patients with seizure onset >1 year. (C.b)
Development after epilepsy onset based on age range at seizure onset: only 2/48 individuals (4%) did not present with impaired development after epilepsy
onset at the last examination (at 10 and 13 months).
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dyskinesia, dysarthria, myoclonus, and choreoathetosis. High
pain threshold was reported by caregivers in one patient. Three
individuals (6%) were reported with postnatal microcephaly. In
5 individuals, neurologic examination was unremarkable. Fif-
teen individuals (31%) presented with motor stereotypies, in-
volving mainly the hands, and oral stereotypies and
stereotypies, involving the head. Nine individuals (19%) had
autistic traits, 3 (6%) had hyperactivity, and 2 (4%) presented
with wake bruxism. Oppositional and self-aggressive behaviors
were reported in 2 individuals. In 5 individuals (10%), no be-
havioral concerns were reported. Ten individuals (21%) pre-
sented sleep disturbances. ID of variable degree was observed
in all individuals aged over 6 years (23, 48%): severe in 17
(74%), mild in three (13%) and profound in three (13%).
Among the individuals <6 years old (25; 52%), only two (8%)
showed no signs of cognitive delay, whereas three (12%)
showed mild delay, three (12%) moderate, 17 (68%) severe,
and 1 (4%) profound delay.

Brain MRI was unremarkable in 25 (52%) individuals and
revealed mild cortical atrophy in seven individuals (15%), thin
corpus callosum in seven (15%), and hypo-/delayed myeli-
nation in four (8%) individuals. Additional findings included
focal hyperintensities in temporal subcortical white matter,
reduced volume of cerebellar hemisphere, basal ganglia
hyperintensity, arachnoid cyst, temporal focal cortical dys-
plasia (FCD) IB and mesial temporal sclerosis (FCD IIIA),
and thickening of the fusiform gyrus.

Genotype-Phenotype Correlation
We compared the electroclinical phenotypes of individuals
carrying the same STXBP1 genotype. Four individuals were
found to carry the recurrent variant p.Arg406Cys and three
the variant p.Arg406His. All but one individual with these
variants had severe phenotypes with early-onset seizures. The
only exception was a single individual with childhood-onset
seizures and severe ID. Three individuals were identified with
variants affecting the p.Arg551 hotspot, including p.Arg551-
Cys, p.Arg551His, and p.Arg551Leu. All individuals had in-
fantile seizure onset (range 10–16 months). Two individuals
with p.Ile19_Lys20delinsMet had late seizure onset (11 and
17 months), no seizure remission, and mild to moderate ID;
however, both acquired the ability to walk and had simplified
language. Furthermore, neuroimaging performed during

childhood was abnormal in both individuals, indicating left
temporal pole FCD IB and left mesial temporal sclerosis
(FCD IIIa) in one, and T2-weighted focal hyperintensities in
the subcortical white matter in temporal poles and smaller size
of the left cerebellar hemisphere in the other. The individual
with FCD IIIa underwent a lobectomy of the left temporal
lobe at 3 years of age and had a dramatic reduction of seizure
frequency (from daily seizures to monthly) and improvement
of development; the mTOR pathway genes panel performed
on the resected tissue was negative. Recurrent c.875G>A
(p.Arg292His) was present in two individuals: both had in-
fantile spasms starting in the first month of life, severe de-
velopmental delay, and sleep disturbances.

Finally, we report monozygotic twins with a de novo STXBP1
pathogenic variant c.578+1G>A (splice site variant in exon 8GT
donor site) and parallel phenotypes and disease course. At 19–20
days after birth, both siblings had neonatal focal motor tonic and
myoclonic seizures, with daily frequency, and bilateral tonic-
clonic seizures during follow-up. Both achieved seizure remission
at 3months and remained seizure free until 2.5 and 4 years, when
seizures relapsed. Their examination at birth was unremarkable,
but development did not progress during infancy. At the last
follow-up (4 years of age), both twins had severe developmental
delay: they achieved head control but were nonambulatory and
nonverbal, and eye contact was intermittent. Both also presented
with hypotonia and stereotypies.

Developmental Trajectories
in STXBP1-DEE
In our cohort, 46 individuals (96%)with STXBP1-DEE displayed
a clinically evident developmental impairment by early childhood
(Figure 2A). Twelve individuals (25%) showed an abnormal
examination at birth, with hypotonia or jerky movements, and
feeding difficulties. In individuals ≥3 years old (36, 75%), we
assessed the developmental milestones at the last examination
(median age 8.35 years, range 3–35 years) (Figure 2B). Head
control was complete in 22 individuals (61%), incomplete in
eight (22%), and not achieved in five (14%). Eye contact was
present in 16 individuals (44%); it was intermittent in 10 (27%)
and absent in nine individuals (25%). Twelve individuals (33%)
could walk autonomously, four (11%) with assistance, and 20

Table 2 Epilepsy Course in Individuals With STXBP1 Disorders Grouped by Age at Seizure Onset

Seizure onset (age range groups)

Whole cohort<1 mo 1–12 mo >12 mo

Seizure onset (individuals, %)
Age at seizure onset: median (range)

23, 48%
7.5 d (1–25 d)

20, 42%
2 m (1–11 m)

5, 10%
2.8 y (1.3–6 y)

48
1 m (1 d–6 y)

Seizure remission (individuals, %) 8, 33% 9, 45% 0% 17, 35%

Age at seizure remission: median (range) 7 m (0.75–12 m) 12 m (1.96 m–31 y) — 7.5 m (21 d–31 y)

Epilepsy duration: median (range) 7 m (0.75–11 m) 7 m (0.8 m–31 y) — 7 m (10 d–31 y)
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Figure 3 Impact of Epilepsy on Development in Individuals With STXBP1-DEE

(A). STXBP1_DevScoredistribution inn = 36 individualswith STXBP1-DEE≥3 years old (medianage8.35years, range3–35 years) basedonageat seizure onset (log10
scale). Seizure onset <1month (n= 15) 1–12months (n= 16), >12months (n = 5). (Pearson correlation coefficient). (B)Developmentalmilestones subscores (mean)
stratified per age range at seizureonset. **p = 0.0049, one-wayANOVA. (C) STXBP1_DevScoredistribution based on age at seizure offset or age at last examination
in the case of active epilepsy (log10 scale). Active epilepsy (n = 23), seizure free (n = 13) (Pearson correlation coefficient). (D) Developmental milestones subscores
(means) stratified per epilepsy outcomes. Active epilepsy (n = 23), seizure free (n = 13). *p = 0.0348. (E) STXBP1_DevScore domain correlations with seizure onset,
offset, and epilepsy duration. Violin plots show only significant correlations (Wilcoxon rank-sum test).
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(56%) were not able to walk at the time of the last assessment.
Similarly, six individuals (17%) acquired the ability to say a few
meaningful words, and three individuals (8%) could say short
sentences.

Because of the observed variability of developmental and
epileptic outcomes, we asked whether epilepsy had an impact
on development in individuals with STXBP1-DEE. When the
individuals were grouped based on their age at seizure onset
(<1 month, 1–12 months, and >12 months), the cumulative
incidence of signs of neurodevelopmental impairment over
time was different between seizure onset groups, especially
between seizure onset <1 month and >12 months (p = 0.033,
one-way ANOVA) (Figure 2A).

Next, we analyzed development before and after epilepsy
onset. Development before epilepsy onset was referred to be
typical (or with no neurologic abnormalities in the neonatal
period) in 26 individuals (54%), whereas 22 (46%) showed
developmental abnormality (or neurologic abnormalities in
the neonatal period), independently from the age at seizure
onset (Figure 2C, left).

After epilepsy onset, most individuals presented impaired
development at last examination (Figure 2C, right). Two
individuals with seizure onset at 0.3 and 10 months did not
show signs of delay at the last follow-up (10 and 13 months).

We used the STXBP1_DevScore, a disease-specific scoring
system, to assess the differences in development across indi-
viduals. We assessed development across various domains
(see Table 1). Individuals with typical development or no
abnormalities in each of the domains were assigned a score of
1, whereas individuals with observed delay or abnormalities
were assigned a score of 0 or 0.5. We applied the STXBP1_
DevScore only to the 36 individuals aged a minimum of 3
years old at the time of the study. The median overall
STXBP1_DevScore in these individuals was 3.5 (range: 0–9).

We observed a correlation between age at epilepsy onset and
STXBP1_DevScore (p = 0.03, Pearson correlation coefficient,
Figure 3A), suggesting that the developmental trajectories
and outcomes are more favorable when epilepsy onset is after
12 months. This correlation was evident also in the de-
velopmental milestones achieved by the different ages at sei-
zure onset groups (Figure 3B), with a prominent difference in
the ability to walk between individuals with seizures onset <1
and >12 months (p = 0.0049, one-way ANOVA).

We then analyzed the impact of epilepsy outcomes in neu-
rodevelopment. No correlation was observed between
STXBP1_DevScore and age at seizure offset (p = 0.64,
Pearson correlation coefficient) (Figure 3C) or the epilepsy
duration (p = 0.86, Pearson correlation coefficient, data not
shown). However, when assessing the duration in individ-
uals with active epilepsy, the age at last evaluation was used,
and we acknowledge that the absence of a correlation

between development and epilepsy duration can be limited.
Similarly, no prominent differences were found between
individuals with seizure remission and individuals with active
epilepsy regarding head control, walking, and speech mile-
stones. However, we noticed a difference (p = 0.0348, t test)
in eye contact, being more present in individuals who ach-
ieved seizure remission (Figure 3D).

Finally, we analyzed the correlation between all domains of
the STXBP1_DevScore and age at seizure onset, seizure re-
mission, and epilepsy duration (Figure 3E). Seizure onset was
significantly correlated with an abnormal examination at birth,
presence of neurologic abnormalities in the neonatal period
and of signs of delay in infantile period, walking and speech
ability, abnormal neurologic examination, and behavioral ab-
normalities (Wilcoxon rank-sum test). Age at seizure re-
mission and epilepsy duration did not show any significant
correlation with any of the STXBP1_DevScore domains. No
correlation was observed between the variant type (missense
vs others) and seizure onset, offset, or epilepsy duration.

Discussion
We report detailed phenotypic data and developmental tra-
jectories of a cohort of 48 individuals with STXBP1-related
epilepsy. The epileptic phenotype in our STXBP1 cohort
shows considerable variability in seizure types and onset. One-
third of individuals became seizure free and most of them
(76%) within the first year of life. We did not identify any
prognostic factors regarding epilepsy offset. About half of the
individuals showed developmental impairment before epi-
lepsy onset.

The most common first-line ASMs, including phenobarbital,
reflected the predominant neonatal-infantile seizure onset in
individuals with STXBP1 variants with no superiority of one
specific ASM or ASMs combination. Dramatic efficacy of
levetiracetam has been reported,17,18 given the specific
mechanism of action of this drug, which binds SV2A and
modulates the neurotransmitter release system. However, we
were not able to confirm this finding in our cohort.

We assessed the impact of epilepsy on developmental out-
comes in our cohort using a composite developmental score,
STXBP1_DevScore. The developmental milestones that
could be achieved were very limited for most individuals, with
speech being the domain with the greatest observed delay and
impairment. When we stratified development based on age at
seizure onset, we observed an almost direct proportionality:
patients with later seizure onset have more favorable de-
velopmental outcomes, especially when assessing the ability
to walk.

When we analyzed the impact of epilepsy remission on de-
velopmental outcomes, we found little difference between
individuals with remitted epilepsy and with active epilepsy.
The individuals with later epilepsy onset still had seizures at
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the time of the study, which affected their ability to make eye
contact, which in this case is regarded as a trait associated with
autistic behavior, rather than a visual engagement defect.
However, our observation may suggest a greater frequency of
features associated with autism in individuals with STXBP1-
DEE and active epilepsy. Thus, seizure control could have a
beneficial impact on behavioral and interactive skills despite
not having an impact on global development. We did not
analyze the social interaction in our cohort, but a recent
study19 showed that social motivation is present in greater
frequency in the STXBP1 cohort than in mixed ID cohorts;
therefore, the precise genetic etiology may be a discriminating
factor in behavioral features.

These observations provide evidence that age at epilepsy
onset but not epilepsy outcome correlates with neuro-
developmental outcome in STXBP1-DEE. We were not able
to conclude whether the relationship between age at epilepsy
onset and development stands as a causal relationship or a
contributing factor or whether there is a genetic basis for the
difference in baseline development. These conclusions are
limited by the number of individuals in this cohort and by the
absence of a control group of individuals with STXBP1-related
disorders without epilepsy (estimated 5% of the reported
cases in the literature6).

The STXBP1_DevScore was elaborated for this study to compare
the development of individuals with STXBP1 using a standardized
framework that integrates developmental trajectories with de-
velopmental outcomes. Disease-specific scoring systems have
been elaborated for other rare disorders based on the need for an
internal control (e.g., Aicardi-Goutieres syndrome,20 Batten dis-
ease,21 SMA,22 and Niemann-Pick type C23). As different genetic
disorders and DEEs can have unique natural disease courses, a
distinct scale system that assesses development across various
domains within STXBP1 disorders is especially critical to ensure
that meaningful differences such as the acquisition of certain skills
are captured between individuals with STXBP1 variants. The
STXBP1_DevScore is not intended for clinical and diagnostic use.
However, we aim to further develop and validate this framework
in prospective studies, adding more granularity and specificity to
each domain, including metrics to measure cognition.

Nevertheless, the results of this study suggest the existence of
distinct subgroups in the STXBP1 population that vary with
regard to their epilepsy course, developmental trajectories,
and outcomes; these phenotypic groups should be further
investigated in the context of natural history studies.

We report the presence of brain MRI abnormalities in indi-
viduals with STXBP1 variants and epilepsy. One patient with
FCD IB underwent a successful lobectomy, and, notably, the
mTOR gene panel on resected tissue resulted negative. A
similar individual was reported with FCD IB and a germline
STXBP1 variant and lesional mosaicism of heterozygous and
homozygous STXBP1 variants; however, mTOR analysis was
not performed.24 Another case report described a patient with

FCD IA,25 who benefited from surgery, but genetics was not
performed on the resected tissue. A casual co-occurrence of the
two conditions cannot be excluded. However, STXBP1 may
have a role in neuronal maturation and migration, especially
radial migration.26,27 Therefore, a genetic diagnosis should not
exclude epilepsy surgery evaluation in individuals with pre-
dominant focal electroclinical features. Fundamental research
should address the hypothesis of the role of STXBP1 in cor-
ticogenesis as a mechanism of neurodevelopmental disorder.

We also report two monozygotic twins with the c.578+1G>A
variant. One other individual with c.578+1G>A variant and
infantile-onset epileptic encephalopathy is reported in the
literature.28 The similarity of the phenotypes and the course
of the disease between the two siblings, but not in the other
reported case, points to shared modifier factors in the un-
derlying genetic architecture that play a role in the phenotypic
variability of STXBP1 phenotypes.

Two probands of our cohort have a positive family history for
seizure in one first-degree relative, but the segregation analysis
confirmed a de novo variant in both cases. Although nearly all
disease-causing STXBP1 variants are de novo, mosaicism was
reported in one family.29 An autosomal recessive mechanism
was described in one family with unaffected heterozygote
members and affected siblings with homozygous variant in
STXBP1, with an apparent gain-of-function effect on release
probability and synaptic transmission.30 Thus, these very rare
cases should be taken into account during genetic counseling
when discussing potential transmission risk.

Genotype-phenotype correlations seem to be limited or absent in
our STXBP1 cohort, as previously reported in the literature.6 The
identified variants span all domains of STXBP1, with no preference
of specific variant types for distinct domains. No significant dif-
ferences were found in individuals with missense variants com-
pared with all the other variants (stop, indel, frameshift, and splice
site) regarding epilepsy onset, remission, and duration, suggesting
that missense variants are equally disruptive for STXBP1 protein
function. A recent study used a computational framework to an-
alyze the phenotypic landscape of >500 individuals with STXBP1-
related disorders, being the most extensive analysis to date.31 The
study shows that protein-truncating variants and deletions in
STXBP1 were more phenotypically similar compared with mis-
sense variants; furthermore, no significant phenotypic similarity
was identified in the major recurrent variants in STXBP1. These
findings confirm the complexity of STXBP1-related disorders.

The involvement of genetic modifiers or epigenetic factors
might determine the expressivity of the disease, as suggested
in other genetically determined epilepsies.32,33 One possible
way to dissect the underlying causes of heterogeneity would
be to look for common variants in other genes and/or reg-
ulatory regions in STXBP1 individuals. Another important
point is the possible emergence of age-dependent differences
in individuals with different variants31,34; therefore, pro-
spective evaluation and adult studies are crucial as they
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might highlight the presence of distinct natural histories in
this condition.

STXBP1 is one of the most common genes implicated in
DEEs.35 In adults with epilepsy and ID, STXBP1 is the 3rd
genetic diagnosis.36 The frequency of STXBP1 variants and the
life-long clinical impact in individuals with STXBP1-related
disorders call for a targeted therapy approach. Insights into
possible targeted interventions have been recently given, with
different approaches ranging from chemical chaperones37,38 to
micro-RNAs modulation39 that will likely be available for hu-
man trials in the upcoming few years. However, as the paradigm
of clinical trials is changing for rare disorders and novel ther-
apies, there is a need for studies leveraging longitudinal data for
therapeutic end points that include cognitive and behavioral
features, beyond epilepsy, and that are tailored to the individ-
uals with STXBP1-related disorders.

The major limitations of our study include selection bias to-
ward individuals with epilepsy, the limited number of indi-
viduals recruited, and the retrospective nature of data, which
restricted some analyses to the evaluation of neuro-
development and of epilepsy duration based on ages at last
assessment. Nevertheless, the standardized data collection
and the use of STXBP1_DevScore allowed us to address the
heterogeneity in the retrospective data concerning neuro-
development and, finally, to compare epilepsy and de-
velopmental trajectories of different individuals and to
identify meaningful correlations.

Disease-causing variants in STXBP1 lead to a severe neuro-
developmental syndrome with epilepsy. However, the epi-
lepsy history and developmental trajectories in individuals
with STXBP1-DEE show diverse patterns of progression. A
disease-specific composite score is, therefore, necessary to
quantify the developmental trajectories among different in-
dividuals and to unravel the relationship between epilepsy and
development. Age at seizure onset was the only epilepsy-
related feature associated with the neurodevelopment out-
come in STXBP1-DEE. These observations point toward a
deep developmental impact of STXBP1 variants that goes
beyond the impact of concomitant drug-resistant epilepsy.
Our findings can inform future dedicated natural history
studies and trial design. Given future clinical trials, an exten-
sive prospective evaluation of individuals with STXBP1-DEE
should be set, including detailed neurocognitive and psy-
chosocial evaluations at different stages, that (1) delineate the
detailed natural histories of the disease, taking into account
the variability of epilepsy and developmental outcomes in
subgroups; (2) identify appropriate and beneficial end-
points and windows for therapeutic interventions; and (3)
specifically address the genetic causes of developmental var-
iability in the STXBP1 population.
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