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Automatic Segmentation of the Gross
Target Volume in Non-Small Cell Lung
Cancer Using a Modified Version of ResNet

Fuli Zhang, PhD1 , Qiusheng Wang, PhD2, and Haipeng Li, MS2

Abstract
Radiotherapy plays an important role in the treatment of non-small cell lung cancer. Accurate segmentation of the gross target
volume is very important for successful radiotherapy delivery. Deep learning techniques can obtain fast and accurate segmen-
tation, which is independent of experts’ experience and saves time compared with manual delineation. In this paper, we introduce
a modified version of ResNet and apply it to segment the gross target volume in computed tomography images of patients with
non-small cell lung cancer. Normalization was applied to reduce the differences among images and data augmentation techniques
were employed to further enrich the data of the training set. Two different residual convolutional blocks were used to efficiently
extract the deep features of the computed tomography images, and the features from all levels of the ResNet were merged into a
single output. This simple design achieved a fusion of deep semantic features and shallow appearance features to generate dense
pixel outputs. The test loss tended to be stable after 50 training epochs, and the segmentation took 21 ms per computed
tomography image. The average evaluation metrics were: Dice similarity coefficient, 0.73; Jaccard similarity coefficient, 0.68; true
positive rate, 0.71; and false positive rate, 0.0012. Those results were better than those of U-Net, which was used as a benchmark.
The modified ResNet directly extracted multi-scale context features from original input images. Thus, the proposed automatic
segmentation method can quickly segment the gross target volume in non-small cell lung cancer cases and be applied to improve
consistency in contouring.
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Introduction

Lung cancer is a major cause of cancer-related death among

both men and women, accounting for 1.6 million deaths annu-

ally worldwide.1,2 According to the 2017 China Urban Cancer

Data Report, lung cancers are the most prevalent malignancies

in terms of morbidity and mortality in urban areas, and non-

small cell lung cancer (NSCLC) accounts for about 75% to

80% of all lung cancer cases. Patients with lung cancer require

comprehensive treatment, and radiotherapy can be used in all

stages. At least one session of radiotherapy is performed on
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over half of patients for either curative or palliative purposes.3

Radiotherapy of NSCLC requires accurate location about the

tumor. Precise, patient-specific radiotherapy plans are usually

designed based on computed tomography (CT) images to

deliver high irradiated doses to the target volume while sparing

organs at risk (OARs) as much as possible.4

Accurate segmentation of the target volume is very impor-

tant for successful radiotherapy delivery. Traditionally, such

segmentation has been performed by manual delineation on

planning CT images, with the help of magnetic resonance ima-

ging (MRI) or positron emission tomography (PET) images

when necessary. However, manual delineation is labor-

intensive, time-consuming, and subjective, and it has consid-

erable inter- and intra-observer variability.5,6 Thus, accurate

automatic segmentation methods are highly desired and useful

for pre-treatment radiotherapy planning.

In recent years, deep learning methods have gained popu-

larity and shown outstanding capabilities in autosegmentation

of tumors of regions such as the head and neck, breast, and

rectum.7-18 Some studies have also reported deep learning-

based automatic segmentation of lung tumors.19-24 Bi Nan

et al. focused on autosegmentation of the clinical target volume

(CTV) of lung cancer using a network based on ResNet-101.19

Four recent studies addressed the application of deep learning-

based autosegmentation in primary lung tumors on the basis of

MR or PET/CT images.20-23 Jiang J et al. developed two mul-

tiple resolution residually connected networks (MRRN) for

lung cancer but only evaluated the accuracy of the proposed

models without clinical implications such as time gain.24 Thus,

few studies have explored the role of deep learning in auto-

segmentation of the gross target volume (GTV) of NSCLC on

CT images as well as the efficiency of autosegmentation in

end-to-end clinical application.

In this paper, we used a modified version of ResNet to

segment the GTV in patients with medically/technically inop-

erable NSCLC. We adopted an encoder-decoder structure sim-

ilar to U-Net, which is becoming more widely used in semantic

segmentation tasks.25 Compared with fully convolutional net-

works, which rely heavily on the use of atrous convolution to

generate high-quality segmentation results, it has shown out-

standing performance in terms of memory and computing

power and no limitations on the type of backbone network that

can be used.26,27 As the encoder, ResNet34 was used to fully

extract deeper image features and prevent the disappearance of

the gradient during the training process.28 The decoder

employs feature fusion and upsampling that are inspired by

feature pyramid, but more lightweight.29,30 The features from

all levels of the ResNet34 architecture were merged into a

single output to achieve deep fusion of deep semantic features

with shallow appearance ones, which increased the accuracy of

the segmentation results. Then, the performance of the modi-

fied ResNet was compared with that of U-Net, which is com-

monly used in medical image processing.12,14,20 Finally, the

efficiency of the autosegmentation in clinical work was eval-

uated by comparison with manual delineation in terms of con-

touring time.

Materials and Methods

Dataset

Patients with different NSCLC staging, tumor size, and loca-

tion were included. All patients were aged 40–89 years. For

patients with lymph node involvement, only the primary tumor

mass was assessed in this study. The full CT image dataset was

divided into two parts: the training and test sets. The training

set consisted of 300 patients, whose tumor sizes (but not tumor

positions) had a roughly even distribution. To ensure that the

test set would facilitate objective evaluation of the automatic

segmentation model, the test set included 30 patients with an

even spread of tumor sizes and tumor positions. The general

characteristics of the patients in the training and test sets are

shown in Table 1. All patients received regular 3D CT scans.

The CT images were acquired on a Philips Brilliance Big

Bore simulator (Philips Medical Systems, Madison, WI) from

the level of the larynx to the bottom of the lungs with 5-mm

slice thickness on helical scan mode. There were 57–121 slices

per patient. The study was approved by the ethics committee of

the Seventh Medical Center of people’s liberation army(PLA)

General Hospital. All patients provided written consent for

storage of their medical information in the hospital database.

The GTVs of all cases (including training and test cases) were

delineated by an experienced senior radiation oncologist who

specializes in the thoracic region (Xu WD) and were then peer-

reviewed by two other experts (Wang YD and Gao JM). These

manual delineations were used to generate the ground truth in

this study. Then, the CTV was defined as the GTV plus addi-

tional margins of 6 mm and 8 mm for squamous cell carcinoma

and adenocarcinoma, respectively. Further additional margins

were added to form the final planning target volume.

Data Preprocessing and Augmentation

The CT image values of different tissues and organs were

converted into gray values and stored in Digital Imaging and

Communications in Medicine format. To highlight the infor-

mation about the tumor and the surrounding tissues in the CT

images, it was necessary to convert the 4096-level grayscale

images into 255-level ones.

The performance of convolutional neural networks (CNNs)

relies heavily on the size of the training dataset used. In our

study, data augmentation techniques were employed to further

enrich the data of the training set. The size, shape, and location

of tumors vary from patient to patient in CT images of NSCLC,

but the pixel intensity of tumors after CT scanning remains

relatively fixed. Therefore, the data augmentation techniques

applied in GTV autosegmentation did not change the pixel

intensity values in the original CT images. Applying flip, trans-

lation, scaling, and cropping operations to a CT image only

made minor adjustments to the position, shape, and size of the

tumor without changing the pixel intensity, which was equiv-

alent to creating a new CT image. Thus, augmentation helped

the network to learn invariance and reduced overfitting during

network training. In addition, the data augmentation was
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performed randomly: the image data and their augmentations

were both randomly chosen. During each epoch, 2/3 of the

training set was randomly selected for augmentation. To create

each augmented image, 4 augmentation techniques were ran-

domly combined. Therefore, each epoch’s training images con-

sisted of two groups: one comprised 4032 augmented images,

which accounted for 2/3 of the training set, and the other com-

prised 2016 original images, which accounted for 1/3 of the

training set. These two groups comprised the entire training set.

The same transformations were also applied to the test set.

Figure 1 shows an example of a CT image and its ground truth

labeling before and after data augmentations.

Proposed Deep Learning Model

Convolutional layers, pooling layers, and the activation func-

tion are the basic components of a CNN.31 Convolutional

layers convolve an image using convolutional kernels to obtain

feature maps in which each element is connected to the previ-

ous layer by the corresponding weights of the convolutional

kernels.13 Pooling layers fuse the spatial features of adjacent

pixels into feature maps, making the images’ feature represen-

tations more compact.25 The activation function is responsible

for increasing the network’s nonlinear expression.

The configuration of the modified ResNet is shown in Fig-

ure 2. An encoder-decoder was used to increase feature reso-

lution. The encoding path used a ResNet34 backbone to fully

extract the deep features of the CT images while avoiding any

performance degradation caused by deepening the network. A

lightweight dense-prediction branch was applied in the decod-

ing path. A simple design that merges the features from all

levels of the ResNet34 into a single output was proposed: deep

semantic features at multiple spatial resolutions were concate-

nated in the channel dimension and then were merged with

shallow appearance features to generate dense pixel outputs.

The ResNet34-based encoder was divided into five stages,

each of which generated feature map output at different scales.

The ResNet34 architecture employed cross-layer connection

via identity mapping, which could learn new features in addi-

tion to receive input features, effectively solving the network

degradation problem because of the deep layered network

structure. The structure of the residual learning block contained

an identity residual block and a convolutional residual block, as

shown in Figure 3.

In the identity residual block, the input X was passed

directly to the output as the initial result. The network’s learn-

ing goal was changed from the desired output H(X) to the

difference between the desired output and the input, which

was called the residual FðX Þ¼HðX Þ � X . The identity map-

ping would have been achieved if FðX Þ ¼ 0, and therefore,

HðX Þ¼X . However, the residual was not actually equal to 0.

The convolutional residual block added the convolution val-

ues to the appropriate branch of the identity map to change the

dimension of the feature map. In the experiment, the identity

residual block and the convolutional residual block were used

interchangeably.

The decoding network’s feature fusion and upsampling

were inspired by the feature pyramid network, but the present

network’s advantage is the fusion of deep semantic features

with shallow appearance ones. We proposed a simple architec-

ture that merges the features from all levels of the ResNet34

into a single output. The feature maps of stages 3, 4, and 5 were

upsampled by bilinear upsampling and convolution until they

reached 1/4 of the input image’s scale. These deep semantic

features (which included different levels of global information)

were concatenated in the channel dimension to form “thicker”

features.32 The feature maps were passed through a stack of

convolutional layers to fuse different features and reduce the

channel dimension until the number of channels was the same

as the number of feature maps in stage 2. Then, the feature

values were summed to increase the expression in a single

channel. Finally, the feature maps were upsampled by bilinear

upsampling and convolution again until they reached the scale

of the input image, and then pixel-level classification was

performed.

Model Training

The proposed models were implemented in the Python devel-

opment environment on Windows operating system using a

custom version of the Keras framework based on Tensorflow.

All training and test experiments were run on an NVIDIA

GeForce GTX 1080 Ti GPU with 11 GB memory. The dimen-

sions of the training data and the minibatch size played a sig-

nificant role in the computational burden of the proposed

autosegmentation method. A minibatch of size 8 was used

because of the GPU’s limited memory.

All input images were single-channel grayscale ones of size

512� 512. Normalization was performed using population-

level data to prevent gradient convergence from slowing

because of differences in CT images’ magnitudes. The

Table 1. Characteristics of Patients in Training and Test Sets.

Characteristics Training set Testing set

No. patients 300 30

Tumor site, right:

left

136:164 13:17

Stage at diagnosis I ¼ 11; II ¼ 84; III ¼
118; IV ¼ 87

I ¼ 2; II ¼ 8; III ¼
11; IV ¼ 9

Tumor volume,

median (range)

85.4cc(1.6cc-678.6 cc) 75.4cc(5.6cc-349.4

cc)

Lobe location

Upper left 112 10

Lower left 67 7

Upper right 53 6

Middle right 48 4

Lower right 20 3

Contact with chest

wall

31 4

Contact with

mediastinum

105 15
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encoding network performed convolution, pooling, and activa-

tion operations on the normalized input images to obtain fea-

ture maps. The size of the feature maps was continuously

reduced until it reached 16� 16, and then the size of feature

maps was gradually restored to 512� 512 by the decoding

network. Finally, the sigmoid function was used to predict the

probability that each pixel belonged to each category, and

cross-entropy was applied to measure the similarity between

the probability distribution predicted by the model and that of

real samples. Weighted cross-entropy was applied to force the

loss function to pay more attention to the foreground class,33 as

defined in Eq. 1:

HðyÞ ¼ � 1
N

XN
i¼1

�N �X
i
ŷiX

i
ŷi

yilogðŷiÞ þ ð1� yiÞlogð1� ŷiÞ
�" #

ð1Þ

where yi belongs to the probability distribution of real samples,

and ŷi belongs to the predicted one.

Figure 1. CT images and corresponding labels before and after data augmentation. A. Original CT image. B. Original ground truth. C.

Augmented CT image. D. Augmented ground truth.

Figure 2. Proposed network structure.
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The network training duration was set as 50 epochs. Adap-

tive Adam optimization was applied because of the sparseness

of single images’ data. Adam performs better than other types

of optimization, such as stochastic gradient descent, with a

sparse gradient.34,35 The loss drops quickly when the Adam

optimizer is used, so the learning rate is relatively small (set

as 0.0001). Each parameter’s learning rate was dynamically

adjusted by the first and second moment estimations of the

gradient. The exponential decay rates of the first and second

moment estimations in the Adam optimization algorithm were

set as 0.9 and 0.999, respectively. To prevent overfitting, a

dropout layer and L2 regularization were employed in our

study. Additionally, it was important to use batch normaliza-

tion, which helps the inputs of each layer of the neural network

maintain the same distribution, making training easier.

Evaluation Metric

The proposed model’s performance was verified by compari-

son with the expert segmentation results, which were regarded

as the ground truth. We evaluated the similarity between the

autosegmentation results and ground truth by the Dice similar-

ity coefficient (DSC), Jaccard similarity coefficient (JSC), true

positive rate (TPR), and false positive rate (FPR).

Statistical Analysis

Student’s t-test was performed to compare the autosegmentation

results of the two models by using SPSS 20 software (version

20.0, SPSS Inc, Chicago, USA). Quantitative data were

expressed in the form of mean+standard deviation (�x+s). A

value of p � 0.05 was considered statistically significant.

Results

Delineation Results by the Modified ResNet

Training of the modified ResNet took approximately 12 hours.

In the encoder, the size of the feature maps shrank, but the

contained semantic information increased, at deeper network

layers. In the decoder, the size of the feature maps expanded

with increased numbers of upsampling operations. After 50

epochs of training, the cross-entropy loss of the training and

test datasets were stable at 0.0009 and 0.0080, respectively.

During dense-pixel prediction, if a pixel value from the

sigmoid function was greater than 0.5, the pixel was considered

as part of the target. Otherwise, the pixel was considered as part

of the background. The autosegmentation method based on the

modified ResNet was applied to the test dataset, and the DSC,

JSC, TPR, and FPR values were calculated. The proposed

method achieved comparable results to the manual segmenta-

tion, especially for larger tumors. Figure 4 shows typical auto-

segmentation results of test set images along with their

corresponding reference results.

Figure 4 shows that there was a large overlap between the

autosegmentation results and the ground truth. The average

DSC value of the entire test set was 0.73, and the DSC of the

best single test image reached 0.96.

Comparison of the Modified ResNet and U-Net

For further comparison, we also segmented the GTV of

NSCLC using U-Net, which is commonly applied as a bench-

mark in medical image segmentation. The U-Net was trained

from scratch on this dataset, and the hyperparameters were

consistent with those used by the modified ResNet. The set-

tings were as follows: single-channel grayscale images of size

512� 512 and Adam optimization algorithm with base

learning rate 0.0001. A sufficient number of training epoch

iterations (50) were performed to ensure that the network was

well-trained. The average values of each metric used in the

two different networks are listed in Table 2. The DSC, JSC,

and TPR values of the modified ResNet were higher than those

of U-Net, indicating that the modified ResNet performed better

than U-Net at GTV autosegmentation of NSCLC images (P <

0.05). Figure 5 shows the autosegmentation results of the test

set images along with the reference results obtained using two

different networks.

Time Gain

The average time for autosegmentation of the GTV by the

proposed model was about 21 ms per slice, but the results still

required additional manual slice-by-slice modification before

the final clinical implementation. The deep learning-assisted

delineation took an average of about 10 min per patient, in

contrast to manual delineation taking an average of about 15

min per patient. Thus, the proposed technique significantly

improved the efficiency of segmentation in our routine clinical

work.

Discussion

The contouring of target volumes is an important aspect of

treatment planning in radiotherapy but is usually time-

consuming, and the quality of the contours relies on the opera-

tor’s skill level. In recent years, deep learning-based automatic

segmentation has become very popular.

Some studies have reported automatic segmentation of lung

tumors using deep learning methods. Bi Nan et al. applied a 2D

Figure 3. Structure of the residual learning block. A. identity residual

block. B. convolutional residual block.
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ResNet101 to achieve effective autosegmentation of the CTV

in postoperative lung cancer. Deep learning-assisted contour-

ing by 11 junior physicians achieved an average DSC of 0.75.19

Wang C et al. developed a patient-specific adaptive CNN

called A-net to simulate the workflow of adaptive radiotherapy

and used past weekly MRI data and target volumes to segment

lung tumors on the current weekly MRI. The patient-specific

A-net can segment tumors with an average DSC of 0.82. Thus,

it outperformed the population-based A-net, which had an aver-

age DSC of 0.64, as well as the population-based U-net, which

had an average DSC of 0.59.20 Zhong ZS used two coupled 3D

U-Nets to realize autosegmentation of NSCLC tumors in PET-

CT images, and the average DSCs on CT and PET were 0.86

and 0.83, respectively. Subsequent cosegmentation by the deep

learning method using both PET and CT data outperformed the

results using either PET or CT alone.21 Zhao XM et al proposed

a novel multi-modality segmentation method based on a 3D

FCN for lung tumor autosegmentation on PET-CT images. The

results demonstrated that the proposed network was effective,

fast, and robust and achieved significant performance gain over

CNN-based methods and traditional methods using PET or CT

data only (average DSC: 0.85).22 Jiang J, Hu YC, et al. pro-

posed an adversarial domain adaptation-based deep learning

method for automatic NSCLC tumor segmentation on

T2-weighted MRI images. The proposed method used a

U-Net trained with a limited number of original MRIs and

some synthesized ones. The method produced a DSC of 0.74

when trained with only synthesized MRIs, and the best DSC

(0.80) was achieved on the test set when the model was trained

in a semi-supervised setting.23 Jiang J, Hu YC, et al. developed

two multiple resolution residually connected network (MRRN)

formulations that simultaneously combine features across mul-

tiple image resolution and feature levels through residual con-

nection to detect and segment lung tumors. The method

achieved average DSCs of 0.74, 0.75, and 0.68 for 3 different

datasets.24

In this study, we proposed a modified ResNet model for

autosegmentation of the GTV of NSCLC, which achieved rapid

and fairly complete end-to-end tumor autosegmentation. We

compared the proposed modified ResNet with U-Net. The pro-

posed modified ResNet performed better than U-Net and

improved the consistency of contouring, which could help to

streamline radiotherapy workflows. Two possible reasons

could be proffered for this: 1) The ResNet34 backbone network

of the encoder introduced more nonlinear expressions and

extracted deeper, more semantically advanced features. 2) The

decoder’s simple design that merged the features from all lev-

els of the ResNet34 into a single output to generate dense-pixel

prediction was effective. Deep semantic features at multiple

spatial resolutions were concatenated in the channel dimension

Table 2. Quantitative Evaluation Metrics of the Modified ResNet and

U-Net (�x+s).

Modified ResNet U-Net P

DSC 0.73 + 0.07 0.64 + 0.09 0.000

JSC 0.68 + 0.09 0.52 + 0.12 0.000

TPR 0.74 + 0.07 0.61 + 0.10 0.000

FPR 0.0012 + 0.0014 0.0008 + 0.0004 0.099

Segmentation

time/slice(ms)

21 + 7 28 + 8 0.000

Figure 4. Segmentation results of GTV. The green part indicates the ground truth. The red part indicates the autosegmentation results. The

yellow part indicates the intersection between the two.
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and then summed with shallow appearance features to increase

the expression in a single channel. Compared with U-Net, these

two improvements ensure that the modified ResNet can

directly extract multi-scale context features from the original

input images. Thus, the modified ResNet performed better at

this task than U-Net.

The developed approach appears promising, but some

aspects of the study have limitations. Firstly, the training set

did not contain many different cases because of the limited

number of available image sets, whereas the GTV autosegmen-

tation results were affected by variations in tumor position

(e.g., some tumors were peripherally located, centrally located,

or had broad chest wall contact), shape, size, and respiratory

and cardiac motion, so correlations between size/shape/loca-

tion and the evaluation metrics were not discussed. Secondly,

distance metrics like Hausdorff distance or distance to agree-

ment were not applied to measure the auto-contour’s degree of

spatial conformity. Thirdly, inter-observer and intra-observer

variability was not examined in this study. The lack of such

performance assessment between the two methods used in this

study results in a limited ability to evaluate geometric

discrepancy.

In addition, if the tumors were small or attached to the

mediastinum closely, accurate segmentation would have been

difficult, as the 2D network implementation ignored the rela-

tionship between different CT slices of the same patient. Thus,

employing a 2.5D or 3D network should be considered to

improve segmentation of the GTV of NSCLC. A 3D network

could obtain more accurate segmentation results on CT

sequences by using information about the previous slice to

guide the segmentation of the next slice. A 2.5D network may

also provide 3D-like context. However, because of the problem

of matching the amount of data and model parameters, a 3D

model would need a larger training dataset to avoid overfitting.

Additionally, attention mechanisms, which can control the

importance of features at different spatial locations through a

gating signal, are a potential solution. As the size of the training

dataset increases, the difference between the weights of the

attention map in the target and background areas should

increase, which would improve the accuracy of

autosegmentation.

To achieve better label balancing of the loss function, the

network performs weighted learning of difficult samples adap-

tively. For example, the focal loss function proposed for the

target detection task focuses on samples with incorrect classi-

fications during the training process.36 Combining sensitivity

and specificity as the network’s loss function is also a popular

trend in medical segmentation tasks, and it has achieved accu-

rate segmentation for small tumors.

Conclusion

A modified version of ResNet was able to perform automatic

segmentation quickly and accurately. The automatically gen-

erated contours offered a good starting point for segmentation

of primary tumors, but the results still require some manual

modification before final clinical implementation. Moreover,

the modified ResNet was efficient and conducive to reducing

oncologists’ labor intensity. Compared with U-Net, the modi-

fied ResNet was notably more accurate based on overlap and

receiver operating characteristic curves. In addition, because

the shape, size, and spatial orientation of the lung tumors in the

Figure 5. Segmentation results of the GTV by the proposed network (bottom figures) and U-Net (top figures). The green part indicates the

ground truth. The red part indicates the autosegmentation results. The yellow part indicates the intersection between the two.
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dataset varied greatly, data augmentation was adopted. The

performance of the proposed method, including accuracy and

efficiency, can be further improved in our future work.
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