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Abstract
Background: Aim of the present study was to evaluate whether the presence of body shadows during virtual reality (VR) training
with BTS NIRVANA (BTs-N) may lead to a better functional recovery.

Methods:We enrolled 20 poststroke rehabilitation inpatients, who underwent a neurocognitive-rehabilitative training consisting of
24 sessions (3 times a week for 8 weeks) of BTs-N. All the patients were randomized into 2 groups: semi-immersive virtual training
with (S-IVTS group) or without (S-IVT group) body shadows. Each participant was evaluated before (T0) and immediately (T1) after the
end of the training (Trial Registration Number: NCT03095560).

Results: The S-IVTS group showed a greater improvement in visuo-constructive skills and sustained attention, as compared with
the S-IVT group. The other measures showed nonsignificant within-group and between-group differences.

Conclusion: Our results showed that body shadow may represent a high-priority class of stimuli that act by “pushing” attention
toward the body itself. Further studies are needed to clarify the role of body shadow in promoting the internal representation
construction and thus self-recognition.

Abbreviations: AM = attentive matrices, ARE = asymptotic relative efficiency, BTs-N = BTS NIRVANA, FAB = Frontal
Assessment Battery, FIM= Functional Independence Measure, MI=Motricity Index, MMSE=Mini-Mental State Examination, MoCA
=Montreal Cognitive Assessment Test, MV =movement visualization, MWU =Mann-Whitney U, SD = standard deviation, S-IVT =
semi-immersive virtual training without body shadows, S-IVTS = semi-immersive virtual training with body shadows, TCT = Trunk
Control Test, TMT = Trail Making Test, VR = virtual reality, WSR = Wilcoxon signed rank.
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1. Introduction

Stroke is one of the leading causes of death and disability, and this
has been described as a worldwide epidemic.[1] The effects of a
stroke may include sensory, motor, and cognitive impairment, as
well as a reduced ability to perform self-care and participate in
social and community activities.[2] Although most recovery is
thought to occur in the first few weeks after stroke, patients may
make improvements on functional tasks many months after
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having a stroke, given that neuroplasticity exists also in the
chronic phase.
Cognitive impairment and neuropsychiatric symptoms, in-

cluding attention and concentration, memory, spatial awareness,
perception, praxis, and executive functioning deficits, frequently
occur in poststroke patients. Indeed, about two-thirds of stroke
survivors may experience cognitive changes.[4,5] These changes
have a significant impact on long-term outcome and appear to be
associated with an increased risk of disability, depression, and
quality of life.[6] Early recognition and monitoring of cognitive
changes in stroke is necessary to optimize patient care, and this
can guide therapy and rehabilitation strategies.[7]

The use of alternative rehabilitation tools is a growing field,
given that the standard rehabilitation for stroke is not always so
effective in improving functional outcomes.[8] Virtual reality
(VR) has a prominent role in promoting functional recovery after
stroke, as it can integrate multisensory stimulation to provide a
realistic environment and to enrich motivational training
improving patients’ adherence to the rehabilitative program.[8]

VR has been defined as the “use of interactive simulations
created with computer hardware and software to present users
with opportunities to engage in environments that appear and
feel similar to real-world objects and events,”[9] and it is believed
to optimize motor learning.[10] VR offers clinicians the ability to
control and grade tasks to challenge the user, as VR programs
often incorporate multimodal feedback provided in real time.
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However, there are few studies on the role of VR training in
cognitive rehabilitation (CR) of stroke patients, though an
improvement in balance and gait has been reported.[11] Virtual
rehabilitation system provides 3 different types of information to
the patient: movement visualization (MV), performance feed-
back, and context information.[12] Movement observation plays
an important role for central sensory stimulation therapies, such
as mirror therapy or mental training; indeed, the observation or
imagination of body movements facilitates motor recovery[13–15]

and provides new possibilities for cortical reorganization. Thus, it
appears that MV is a key element of VR-based rehabilitation
intervention.[11] The presence of body shadow, considered as
MV, has recently been a target of an increasing number of studies,
mainly showing that information conveyed by shadows can
support several tasks performed in everyday life.[16] When
applied to body shadows, the shadow-correspondence problem
may thus be central to a perceptual decision that promotes self-
identification and self-recognition.[16]

The aim of the present study was to detect the differences in
functional outcomes between the presence or not of body shadow
during a VR training with BTS NIRVANA (BTs-N), using an
interactive-semi-immersive program.
2. Materials and methods

We enrolled 20 poststroke inpatients (12 males and 8 females,
mean age 64±6), who attended our Robotic and Behavioral
Neurorehabilitation Center from June 2016 to January 2017.
The inclusion criteria were ischemic or hemorrhagic stroke in the
chronic phase (at least 6 months after the ischemic/hemorrhagic
accident) with a severe upper limb impairment; presence of
moderate-to-mild cognitive impairment (Mini-Mental State
Examination [MMSE] from 11 to 26) assessed after the stroke;
and absence of disabling sensory alterations (ie, audio-visual
deficits) and severe psychiatric illness.
The exclusion criteria were age >75 years, presence of severe

medical and psychiatric illness, and intake of drugs potentially
affecting neurocognitive functions. The study was approved by
the Local Ethical Committee, and registered on the www.
clinicaltrials.com (NCT03095560). All the patients provided
informed consent to enter the study. All the participants were
randomized (by using a randomized block design) into 2 groups:
semi-immersive virtual training with (S-IVTS) or without (S-IVT)
body shadow, and underwent the same conventional physiother-
apy program in addition to a VR neurocognitive-rehabilitative
training (24 sessions of BTs-N, 45 minutes daily, 3 times a week,
for 8 weeks). Each participant was evaluated by skilled
neuropsychologist and neurologist before (T0) and immediately
(T1) after the end of the training. Primary outcomes were assessed
using the Montreal Cognitive Assessment Test (MoCA) and the
Functional Independence Measure (FIM). In addition, we
administered the Frontal Assessment Battery (FAB) to assess
executive functions, attentive matrices (AM), and Trail Making
Test (TMTA, TMTB, and TMTB-A) to measure the attention
process, and the Trunk Control Test (TCT) and Motricity Index
(MI) for upper and lower limbs to evaluate motor function.
NIRVANA is a device based on optoelectronic infrared

sensors, through which the patient can interact with a virtual
scenario. The system is connected to a projector or a big screen,
reproducing an interactive series of exercises, thanks to an
infrared video camera analyzing the patient’s movements, it
creates interactivity. In the BTs-N device we used, the projector
was located behind the patient in the S-IVTS group, projecting the
2

shadow of the patient on the screen, whereas the projector was
located in front of the patient in the S-IVT group, being thus the
shadow not visible. The virtual cognitive rehabilitative program
with BTs-N we carried out in both the groups is described in
details in Table 1.
AWilcoxon signed rank (WSR) test was employed to compare

within-group changes from baseline (T0) to post-treatment (T1).
Baseline between-group differences were tested through the
Mann-Whitney U test (MWU). The MWU was also used for
between-group comparisons by computing the differences
between T1 and T0 for all outcome measures. We set the
alpha-level for significance at .05, adjusted for multiple
comparisons using a Bonferroni correction. Data are reported
as median and interquartile distribution.
To understand how large the differences between S-IVTS and S-

IVT were, we calculated the effect size Cohen d. Given the
relatively small sample size, we applied Hedge g correction to the
biased effect size estimate. Effect size is simply a way of
quantifying the size of the difference between 2 groups, that is, it
is a quantitative measure of the strength of a phenomenon.
Indeed, the amount of variation found within- or between-group
is quantified in the calculation of the effect size. For these reasons,
effect size is an important tool in reporting and interpreting
effectiveness of a treatment. Specifically, Cohen d is defined as the
difference between 2 means divided by a standard deviation (SD)
for the data.
According to the available literature on the effects of VR

training in patients with stroke, we calculated a minimal sample
size based on the asymptotic relative efficiency (ARE) of the
MWU relative to the t tests. We estimated that a minimal sample
of 20 participants per group would be necessary to confirm the
data of our pilot study.
3. Results

Clinical data at T0 and T1 are summarized in Table 2. There was
a large effect size for the improvement in MoCA in the S-IVTS

group (P< .001, d=0.9) at T1 as compared with T0, which was
more evident than that observed in S-IVT group at the same
interval (P= .02, d=0.6; MWU: P= .03, d=0.6). In particular,
only S-IVTS group showed a large effect size for the amelioration
in visuo constructive (P= .002, d=0.7; MWU: P= .02, d=0.9),
and a moderate effect size for the improvement in attention
(P= .001, d=0.6; MWU: P= .02, d=0.6). FIM slightly improved
in both the groups, without reaching the statistical significance.
Both the groups improved in all secondary outcome measures

at T1 as comparedwith T0, albeit only AM (S-IVTS: P< .001, d=
0.8; S-IVT: P= .02, d=0.6) and MI (S-IVTS: P< .001, d=0.6; S-
IVT: P= .002, d=0.4) reached the statistical significance with
moderate-to-large effect size. Such improvements were more
evident in the S-IVTS than S-IVT group (MWU for AM: P= .02,
d=0.6; MWU for MI: P< .001, d=0.8).
4. Discussion

Our results suggest that the use of VR training with BTs-N is
useful in improving cognitive abilities (specifically, visuo-
constructive abilities and attention) in the poststroke rehabilita-
tion, as suggested by the moderate-to-large effect size in nearly all
outcome measures (favoring S-IVTS).
Despite more than 40% of stroke survivors may experience a

decline in cognitive function, the majority of the published data
have paid attention mainly to motor recovery.[17] Cognition is
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Table 1

Virtual Cognitive Rehabilitative Program used in patients undergoing BTs-N System.

BTs-N BTs-N
Cognitive domain S-IVTS S-IVT

Executive and visuo-spatial To program some movements finalized to virtual touch, to move
or manipulate specific objects, in different directions (ie, balls,
flowers, butterfly, and so on); or to realize specific associations
(ie, number-color) with a dynamic interaction in virtual
environment. When the patient touches virtual objects
determine a video and audio feedback (using sprites task,
observing his or her shadow reflected on the virtual scenarios).
These rehabilitation exercises with audio-visual stimuli involve
the visuo-spatial and praxis abilities of patients, resulting in a
very motivational training.

To program some movements finalized to virtual touch, to move
or manipulate specific objects, in different directions (ie, balls,
flowers, butterfly, and so on); or to realize specific associations
(ie, number-color) with a dynamic interaction in virtual
environment. When the patient touches virtual objects
determine a video and audio feedback (using sprites task,
interacting directly with some virtual scenarios, without
observing his or her shadow). These rehabilitation exercises
with audio-visual stimuli involve the visuo-spatial and praxis
abilities of patients, resulting in a very motivational training.

In particular, the subject realizes ideo-motor sequences (from
simple to complex serious of actions), after the verbal consign
by therapist. The patient observes his or her shadow during
the execution of executive and visuo-spatial virtual tasks.

The level of difficulty increases (from first to third level) with the
increase of the complexity of virtual ideo-motor difficult to
realize.

The level of difficulty increases (from first to third level) with the
increase of the complexity of virtual ideo-motor difficult to
realize.

Attention process To select, with an immediate and recall feedback (audio and
video), some various elements (colors, musical strings,
geometric or shapeless, animals, and so on) are observed in
the virtual environment. These elements remain visible to
observer for a variable time, established by the interaction
among the virtual system, therapist, and patient. The patient
touches the virtual target element, in a specific time, and so,
this action causes a visual change with a peculiar audio
feedback (positive reinforce); otherwise the element disappears
(negative reinforce) (Hunt task). The patient observes his or her
shadow during the execution of attention virtual tasks.

To select, with an immediate and recall feedback (audio and
video), some various elements (colors, musical strings,
geometric or shapeless, animals and so on) are observed in
the virtual environment. These elements remain visible to
observer for a variable time, established by the interaction
among the virtual system, therapist, and patient. The patient
touches the virtual target element, in a specific time, and so,
this action causes a visual change with a peculiar audio
feedback (positive reinforce); otherwise the element disappears
(negative reinforce) (Hunt task).

The level of difficulty increases with the increase in the number
of distracters and reducing the usable time of execution.

The level of difficulty increases with the increase in the number
of distracters and reducing the usable time of execution.

Memory To observe in the first time peculiar elements and then (in the
immediate and recall time) to remember these (egg, season,
colors, balls, numbers, environments, animals, geometric form
or not, fruit, job, and so on) with a dynamic interaction in
semi-immersive virtual environment (sprites task). The patient
remembers where (the position; visuo-spatial memory) and the
name (verbal information) of element(s) observed. The patient
observes his or her shadow during the execution of memory
virtual tasks.

Memory training tasks are conducted on paper and pencil
approach in a virtual rehabilitative setting with an interaction
between patient and BTs-N System.

The forms of these virtual tasks include recalling a series of
locations of items on a specific rehabilitative table (in a
cognitive room), recalling digits or letters in either the order
presented or reverse order, or recalling specifically where a
particular number or name or digit was in a sequence. The
patient interacts directly with these virtual scenarios, without
observing her shadow. The patient is immersive in virtual
environment, without her shadow, during the execution of
memory virtual tasks.

The level of difficulty increases with the increase in the number
of elements to remember and with the reduction of the time to
execution.

The memory training is articulate in 3 level of complexity (easy,
medium, and high difficulty) in relation to time and number of
verbal and not stimuli to remember.

BTs-N = BTS NIRVANA, S-IVTS = semi-immersive virtual training with body shadows, S-IVT = semi-immersive virtual training without body shadow.
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not a unitary concept, but it incorporates multiple domains,
including attention, executive functions, problem solving, visual-
spatial ability, language, social cognition, and emotions.[18]

Executive function is the term generally used to describe the
brain processes that we employ to organize ourselves and solve
problems.Moreover, executive function is strictly related to other
important “subfunctions,” including inhibition (ie, the ability to
suspend prepotent/default responses), mental flexibility (ie, the
ability to switch back and forth between rules or response sets),
3

and working memory. These functions are critically important
for quality of life, as they are implicated in job performance,
social relationships, and both basic and instrumental activities of
daily living.[19]

Attention is the behavioral and cognitive process of selectively
concentrating on a discrete aspect of information, whether
deemed subjective or objective, while ignoring other perceivable
information. Focalization and concentration of consciousness are
of its essence.
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Table 2

Clinical data of the experimental and control group at T0 and T1.

S-IVTS S-IVT

T0 T1 T0 T1

MoCA Total 17±1 21±1 21±1 24±2
Executive functions 0.2±0.4 0.3±0.5 0.3±0.5 0.2±0.4
Visuo-constructive skills 1.7±0.5 3.3±0.8 3.3±0.8 3.7±0.5
Naming 3 3 3 3
Memory 0 0 0 0
Selective attention 0.8±0.8 1.7±0.5 1.6±0.5 2
Sustained attention 0.2±0.4 1 1 1
Calculation 1.5±1.1 1.8±1 1.8±1 2.3±0.8
Sentence repetition 1.7±0.5 1.8±0.4 1.8±0.4 1.8±0.4
Verbal fluency 0.3±0.5 0.3±0.5 0.3±0.5 0.5±0.5
Abstraction 0.7±0.8 0.8±0.8 0.8±0.8 0.8±0.8
Delayed recall 1.7±0.8 2.2±0.8 2.2±0.8 3.5±1.2
Orientation 5.3±1 5±1 5±1 5.1±1

FAB 13.8±2.2 14.5±1.9 14±2.4 14±1.9
AM 28.9±0.9 41.1±4.5 41.2±4.5 50.7±6.6
TMT A 89.2±19.3 88.3±18.7 88.3±18.7 85.8±18.3

B 265±77 265±77 265±77 260±78
BA 193±64 193±63 177±74 174±73

TCT 64±12 71±15 71±15 76±12
MI 18±10 23±11 20±11 23±11
FIM 62±9 67±8 64±8 68±8

AM= attentive matrices, FAB=Frontal Assessment Battery, FIM=Functional Independence Measure, MI=Motricity Index, MoCA=Montreal Cognitive Assessment Test, TCT=Trunk Control Test, TMT=Trail
Making Test.

Russo et al. Medicine (2017) 96:38 Medicine
Visuo-spatial ability is the capacity to understand, reason, and
remember the spatial relations among objects or space that
includes your own body parts.[20–22]

Besides the aforementioned cognitive alterations, memory
deficits can also be considered a relatively common consequence
of stroke,[23] such problems being persistent, debilitating, and
often difficult to treat.[17] Although we used MMSE for the
patients’ screening, we preferredMoCA for the assessment, given
that such test is divided into subitems better investigating those
domains we believed may benefit from BTs-N training, also
taking into account that several studies have considered MoCA
as a valuable tool for cognitive assessment in poststroke
patients.[24–26]

CR therapy encompasses any intervention targeting the
restoration, remediation, and adaptation of cognitive functions.
CR techniques may be classified in 2 main categories, that is,

conventional/classic (paper/pencil exercises) and computer-
assisted/not conventional (ie, computerized cognitive rehabilita-
tion [CCR]), both based on the use of cognitive strategies to
retrain or alleviate the patient’s deficits in attention and
concentration, visual processing, language, memory, reasoning
and problem solving, and executive functions. Conventional
techniques consist of manual exercises with the therapist,
whereas computerized exercises train cognitive skills in gamelike
programs. Computer use in CR extends to memory training,
attention, problem solving, and job simulation. CCR uses
multimedia and informatics resources with particular hardware
systems and software, that is, ad hoc programs built to reactivate
compromised neuropsychological functions.[27]

VR and interactive technologies have emerged as a valuable
tool in stroke rehabilitation by providing the opportunity to
practice cognitive and motor activities that cannot be
practiced within the clinical environment, such as performing
simulations of real-life scenarios and activities in urban virtual
environments.[28]
4

Despite the growing scientific and engineering activity in VR-
based systems, the majority of the studies were designed to
address motor impairments.[28,29] Indeed, according to a recent
Cochrane review,[8] there are only few randomized controlled
studies that include CR and/or cognition assessment,[30] though a
positive effect of VR in poststroke balance and gait deficit has
been reported.[31,32]

Timing of CR therapy is also noteworthy, as previous literature
has indicated that functional recovery typically occurs in ∼95%
of stroke patients within the first ∼3 months from the acute
event.[33]

In fact, it is thought that most of the neurological recovery that
occurs following a stroke is a direct result of brain plasticity and
its ability to repair and reorganize,[34] largely depending on the
lesion severity and site.[35]

On the assumption that reorganization would occur to replace
functions of a damaged brain part, a VR rehabilitation training
may sustain the improvement in cognitive abilities through
complex mechanisms.[8] Action observation, in association with
physical training, can enhance the effects of rehabilitation
training after stroke[36,37] and, more than just playing or training,
the implementation of VR training may gear use-dependent
neuroplasticity changes.[8]

In keeping with this argument, growing evidence suggests the
role of “mirror neurons” during the execution or observation of
actions performed by other individuals, thus enhancing motor
and cognitive recovery.[38]

Thus, the more significant improvement in visuo-constructive
abilities, attentive functions, and upper limb motricity in the S-
IVTS patients could be due to the shadow effect (ie, the patient’s
shadow on the screen while performing VR training) of
BTs-N.
Body shadow processing can be reflected at the level of the

human mirror neuron system, even when shadows are not
relevant for the specific task.[16] This issue makes body shadow
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potentially capable of contributing to the construction of the
internal representation of body shape and its extension in space.
When applied to body shadows, the shadow-correspondence
problem may thus be central to a perceptual decision that
promotes self-identification and self-recognition,[39,40] potential-
ly leading to better functional outcomes.
It is worth noting that not only diagnostic resources and

treatments evolve, but also the rehabilitation techniques with
therapies and devices, which in the future (and present) can help
stroke patients, as demonstrated by our promising tool.
There are some limitations to acknowledge. The sample size is

obviously small, as this is a pilot study. Therefore, larger sample
trials should be fostered to confirm these interesting data.
Baseline data were slightly different between the groups. This
might obviously influence S-IVT aftereffects. However, baseline
between-group differences were tested through the MWU, which
did not disclose significant differences between the 2 groups. This
fact may depend on either the relatively high SD or the small
sample enrolled (as a pilot study). This aspect needs verification in
future larger sample studies.
In conclusion, our results suggest that body shadow may

represent a high-priority class of stimuli that act by “pushing”
attention toward the body itself, thus contributing to cognitive
and motor recovery. Further studies should be developed to
clarify the role of body shadow in the self-recognition and the
internal representation construction, which, in turn, can be
considered future target of neurorehabilitation.
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