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Abstract 

Background: Gene regulation is critical for proper cellular function. Next-generation sequencing technology has 
revealed the presence of regulatory networks that regulate gene expression and essential cellular functions. Stud-
ies investigating the epigenome have begun to uncover the complex mechanisms regulating transcription. Assay 
for transposase-accessible chromatin by sequencing (ATAC-seq) is quickly becoming the assay of choice for many 
epigenomic investigations. However, whether intervention-mediated changes in accessible chromatin determined 
by ATAC-seq can be harnessed to generate intervention-inducible reporter constructs has not been systematically 
assayed.

Results: We used the insulin signaling pathway as a model to investigate chromatin regions and gene expression 
changes using ATAC- and RNA-seq in insulin-treated Drosophila S2 cells. We found correlations between ATAC- and 
RNA-seq data, especially when stratifying differentially-accessible chromatin regions by annotated feature type. In par-
ticular, our data demonstrated a weak but significant correlation between chromatin regions annotated to enhancers 
(1-2 kb from the transcription start site) and downstream gene expression. We cloned candidate enhancer regions 
upstream of luciferase and demonstrate insulin-inducibility of several of these reporters.

Conclusions: Insulin-induced chromatin accessibility determined by ATAC-seq reveals enhancer regions that drive 
insulin-inducible reporter gene expression.
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Background
Gene regulation is essential to the development and 
maintenance of life. Gene regulatory networks describe 
the interplay between regulatory regions, such as pro-
moters and enhancers, and expression of their target 
genes [1]. Deciphering how specific regulatory regions 

control gene transcription can provide insights into 
biological processes such as cell type differentiation [2, 
3], responses to addictive substances [4], and other cell 
functions.

The advent of new sequencing techniques has led to 
a greater understanding of how genes are differentially 
expressed. RNA-seq has provided a broader and more 
detailed picture of complex transcriptional states and 
responses [5, 6]. While genome-wide RNA-seq experi-
ments can yield information on the many genes that 
are differentially transcribed in different conditions, 
these rich datasets reveal little about the regulatory 
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mechanisms involved in directing these expression 
changes.

Epigenomic assays such as chromatin immunoprecipi-
tation (ChIP-seq), DNAse-seq, and assay for transposase-
accessible chromatin by sequencing (ATAC-seq) can 
interrogate chromatin accessibility and identify transcrip-
tion factor binding sites [7–9]. The relationship between 
chromatin accessibility and transcription is complicated. 
Previous studies show little overlap between correspond-
ing differences in chromatin and transcription [10–12], 
which highlights the complex interactions between the 
chromatin state and downstream gene expression. Fur-
thermore, few studies have analyzed if changes in open 
chromatin induced by an intervention occur in transcrip-
tional enhancers that can be coupled to heterologous 
minimal promoters to engineer intervention-inducible 
reporter constructs.

Here, we sought to characterize the relationship 
between ATAC-seq and RNA-seq data in more detail, 
with particular focus on whether intervention-induced 
changes in chromatin accessibility can accurately predict 
gene expression. We used the insulin signaling pathway 
as a model because the insulin receptor activates multi-
ple downstream signaling pathways [13–15], resulting in 
widespread changes to the chromatin state [16] and gene 

expression [17]. Our data from Drosophila S2 cells show 
that ATAC-seq and RNA-seq datasets are correlated, 
mainly driven by the ATAC-seq peaks/reads located in 
gene promoter regions. We also show that DNA regions 
with increased accessibility after insulin treatment can 
be harnessed to generate insulin-inducible reporter 
constructs.

Results
ATAC‑seq and RNA‑seq changes in insulin‑exposed S2 cells
To investigate the concordance in changes in gene 
expression and chromatin accessibility, we exposed 
serum-starved Drosophila S2 cells to insulin or vehicle 
and harvested the cells 4 hours later for ATAC-seq and 
RNA-seq analysis. We determined genome-wide changes 
in open chromatin by ATAC-seq and identified 9726 
high-confidence peaks (i.e., regions of accessible DNA 
mapped to the nuclear genome) in the insulin-exposed 
S2 cells and 9560 in the vehicle-exposed S2 cells. Merg-
ing the control and experimental peak sets resulted in 
10,269 peaks. The largest variance in this dataset (6 sam-
ples; 2 treatments × 3 replicates) arose from insulin treat-
ment, as shown by principal component analysis (PCA; 
Fig.  1A). In parallel, we identified 10,287 transcripts in 
vehicle- and insulin-exposed S2 cells using RNA-seq. 

Fig. 1 Insulin induces widespread alterations in chromatin accessibility and transcription. Serum-starved S2 cells were treated with vehicle or 
insulin for 4 h, and nucleic acids were isolated and analyzed. A Principal component analysis of chromatin accessibility determined by ATAC-seq. B 
Principal component analysis of transcript expression by RNA-seq. C Proportions of each genomic feature type in all annotated chromatin peaks 
analyzed by ATAC-seq in S2 cells after treatment with insulin or vehicle. D Proportion of each annotated feature type in each biological replicate. The 
data represent the mean ± SD. None of the proportions were significantly different
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PCA indicated that the largest variance between the 
6 samples resulted from insulin treatment (Fig.  1B). 
Because ATAC-seq provides a view of chromatin acces-
sibility along all features of genes, we evaluated the fea-
ture distribution of both the treatment and the control 
ATAC-seq data (Fig.  1C, D). We observed the same 
genome features in the control and treated data, but the 
relative proportion of features was significantly differ-
ent (χ2 = 19.6, df = 10, p = 0.03). This difference largely 
resulted from a change in the proportion of peaks anno-
tated to distal (1-2 kb from the TSS) and proximal (≤1 kb) 
promoters, which increased from 8 to 9% and 58 to 60%, 
respectively (Fig. 1C), though the proportion of each fea-
ture was not significantly different (Fig. 1D). These results 
suggest that insulin signaling recruits additional regula-
tory features by changing chromatin accessibility.

ATAC‑seq and RNA‑seq reads show weak correlation driven 
by ATAC‑seq peaks in proximal promoters
We next asked whether RNA transcript levels were cor-
related with ATAC-seq reads and whether the feature 
annotation of those ATAC-seq peaks, i.e. where in a gene 
they were located, mattered for any levels of correlation. 
8621 out of 10,269 ATAC-seq peaks were mapped to a 
gene, and we plotted these ATAC-seq peak reads against 
the RNA-seq reads for each peak (thus duplicating many 
RNA-seq data points, since each gene has a median num-
ber of 2 (Quartile 1-3: 2-4) ATAC-seq peaks mapped to 
it). Overall, RNA-seq and ATAC-seq peak reads showed 
only a weak correlation (Pearson correlation coeffi-
cient R = 0.1; Fig. 2A), which was still highly significant 
(p = 2.2e-16) due to the number of data points. To deter-
mine if the counts for specific feature types were corre-
lated, we stratified this analysis by the 11 ATAC-seq peak 
gene features. Only the peak reads in the ≤1 kb promoter 
class correlated with RNA-seq reads (R = 0.2, p = 2.2e-
16; Fig. 2B), though this correlation was also weak. This 
would suggest that more highly transcribed genes require 
a greater extent of DNA accessibility in their promoters, 
which might be expected for efficient transcriptional ini-
tiation. Further, these results indicate that while infor-
mation can be obtained from raw count data, these data 
cannot be used to predict the functional relevance of a 
specific genome feature type.

Differential gene expression and DNA accessibility 
correlate for multiple ATAC‑seq peak feature annotations
Next, we determined the insulin-induced changes in 
DNA accessibility and RNA expression. In the ATAC-seq 
peak set, 773 peaks were significantly differentially acces-
sible (false discovery rate, FDR < 0.1) between the insu-
lin-exposed and control samples. 364 peaks were more 
accessible upon insulin exposure, while 409 peaks were 

less accessible after exposure to insulin (Fig.  3A). The 
feature distribution of those differential peaks was very 
similar to the feature distribution in the whole ATAC-seq 
peak dataset (χ2 = 6.13, df = 10, p = 0.80; Fig. 3B), though 
we did not detect distal downstream elements (1-2 
and 2-3 kb downstream) in the differentially accessible 
peaks. We also examined the significant gene expression 
changes from the RNA-seq dataset. In this dataset, 3616 
genes were differentially expressed (FDR < 0.05) between 
the insulin-exposed and control samples. 2056 genes 
were upregulated after insulin exposure, while 1560 were 
downregulated (Fig. 3C).

Then, we investigated the correlation between all 
ATAC-seq and RNA-seq  log2 fold changes after insulin 
treatment. The overall correlation between the two data-
sets was significant, but very weak (R = 0.05, p = 1.8e-06; 
Fig.  4A). Performing the same analysis after stratifying 
by feature type showed weak but significant correlations 
between the differential RNA-seq transcripts and the 
differential ATAC-seq features in addition to ≤1 kb pro-
moters (R = 0.096, p = 5.7e-13), including weak correla-
tions with ATAC-seq peaks in enhancers (2-3 kb from 
the TSS: R = 0.15, p = 5.4e-4 and 1-2 kb from the TSS: 
R = 0.13, p = 9.0e-05). Furthermore, there were signifi-
cant anticorrelations in ATAC-seq peaks for downstream 
elements (1-2 kb: R = − 0.67, p = 0.035) and distal inter-
genic regions (R = − 0.14, p = 0.0011; Fig. 4B). When we 
restricted the analysis to only the significant changes in 
ATAC-seq (FDR < 0.1) and RNA-seq (FDR < 0.05) peaks, 
the overall correlation for all features increased 8-fold 
(R = 0.42; Fig. 5A).  Log2 fold changes with the same sign 
in ATAC- and RNA-seq peaks (i.e. both increased or 
both decreased) were significantly more numerous than 
half of all the restricted data points (p = 5.38e-10), indi-
cating that increased chromatin accessibility is associated 
with increased gene expression and vice versa. The over-
all feature type correlations also changed when restricted 
to only significant changes (Fig. 5B), particularly the cor-
relation with enhancers 1-2 kb from the TSS (R = 0.65), 
which increased by approximately 5-fold. Conversely, 
the anticorrelations with peaks in downstream and dis-
tal intergenic regions disappeared. Together, these results 
suggest that predicting functionally-relevant genome 
regions may be more accurate when the regions have sig-
nificantly different accessibility. These results also suggest 
that DNA accessibility in enhancers is involved in medi-
ating changes in transcription.

Functional testing of significant differentially accessible 
ATAC‑seq peaks
We next wanted to test whether any of the DNA regions 
from significantly more accessible ATAC-seq peaks could 
drive insulin-induced expression. We cloned a number of 
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ATAC-seq peaks in front of a luciferase gene with a mini-
mal promoter and transfected S2 cells with these vectors 
for 48 h. The cells were serum-starved for 18 h and then 
treated with 10 μM insulin or vehicle for 4 h. We were 
particularly interested in identifying putative enhancer 
elements, which are often distant from proximal pro-
moter sequences [18] and are cell-type specific [19], so 
we focused on regions farther than 1 kb from the TSS. 
Accordingly, we selected three groups of four ATAC-seq 
peaks each: first, we chose the four peaks with the largest 
 log2 fold change, indicating increased accessibility after 
insulin treatment (Additional  file  1). Of the four tested 
plasmids, one showed significantly increased luciferase 
activity after insulin treatment: 3 L114 (annotated to 

CG6149; 1.2-fold increase; p = 0.016; Fig.  6A). Because 
ATAC-seq peaks in enhancer regions were the most 
strongly correlated with differential gene expression in 
our above analysis (Fig.  5B), we next chose four peaks 
with the highest  log2 fold change from enhancer regions 
that were significantly more accessible after insulin. Of 
the tested peaks, 2 produced significantly increased lucif-
erase activity after insulin treatment: 2 L225 (annotated 
to snoRNA:psi285-2996; 1.1-fold increase; p  = 0.0033) 
and 2R111 (annotated to schnurri; 1.4-fold increase; 
p  = 0.025; Fig.  6B). Lastly, because introns often con-
tain regulatory regions that contain instructive DNA for 
expression [20], we chose the four intron regions with 
the largest  log2 fold changes for luciferase assays. One 

Fig. 2 Chromatin peaks annotated to proximal promoters drive the correlation between normalized ATAC-seq and RNA counts. A Transcripts 
identified by RNA-seq were overlapped with chromatin peaks annotated to the same genes. The normalized ATAC- and RNA-seq counts were log 
scaled and analyzed using Pearson correlation analysis. B Overlapping ATAC- and RNA-seq counts from (A) were stratified by genomic feature. 
Pearson correlation analysis was used to identify feature-specific correlations between ATAC- and RNA-seq counts. Here, and in following figures, 
ns = not significant, *p < 0.05; **p < 0.01; ***p < 0.001
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ATAC-seq peak resulted in significantly increased lucif-
erase activity: X216 (annotated to lncRNA flamenco; 1.3-
fold increase; p = 0.05) (Fig.  6C). These data show that 
DNA regions with increased accessibility upon insulin 
treatment can indeed drive insulin-induced increases 
in expression when placed in front of a heterologous 
promoter.

Limited predictability of the levels of expression 
and inducibility
Out of the twelve ATAC-seq peaks we cloned and tested, 
all led to variable levels of luciferase expression, while 
only four caused significant insulin-inducibility. To deter-
mine whether the luciferase expression levels and induc-
ibility by insulin was predictable from our ATAC-seq and 
RNA-seq datasets, we analyzed the correlation between 
the –omics data and luciferase activity. First, we asked 
if expression levels of luciferase were correlated with 
ATAC-seq peak reads, but found no correlation (Fig. 7A), 
even when we stratified the data according to enhancer- 
(Fig.  7B) or intron-derived ATAC-seq peaks (Fig.  7C). 
Similarly, RNA-seq counts did not correlate with S2 lucif-
erase luminescence (Fig. 7D-F). Next, we asked whether 
the  log2 fold changes in the –omics data sets correlated 
with the relative inducibility of luciferase by insulin 

(measured as insulin/vehicle ratios). Again, we failed to 
observe significant correlations of S2 inducibility with 
 log2 fold changes in ATAC-seq (Fig.  8A) and RNA-seq 
(Fig. 8B) reads, even when we analyzed only the cloned 
peaks that led to significant insulin-induced changes 
(Fig. 8C, D).

Discussion
Next-generation sequencing has enabled an unprec-
edented amount of genome-wide information on RNA 
transcript levels and DNA accessibility. ATAC-seq data 
provides accessibility information from distinct fea-
tures/regions of a gene, thereby suggesting gene regions 
that act as functional enhancers (or suppressors) of gene 
expression. Here, we investigated the correlation between 
genome-wide changes in DNA accessibility and tran-
script levels and found weak, but significant correlations 
that were mostly driven by proximal promoter and distal 
enhancer regions. Cloning some of these DNA regions 
with increased accessibility upon insulin stimulation 
showed that some of them indeed act as transcriptional 
enhancers, demonstrating that genome-wide ATAC-seq 
can be harnessed to clone functionally-active insulin-
response elements.

Fig. 3 Insulin induces differential chromatin accessibility and gene expression in S2 cells. A Volcano plot of differential chromatin accessibility 
in significantly different chromatin peaks, stratified by feature type. The dotted line represents FDR = 0.05. B) Proportions of genomic features 
annotated to chromatin peaks with differential accessibility after treatment with insulin or vehicle. C Volcano plot of differential gene expression 
in S2 cells after treatment with vehicle or insulin. Red indicates upregulated genes and blue indicates downregulated genes. The dotted line 
represents FDR = 0.05
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To investigate the functional relevance of differential 
DNA accessibility, we first determined genome-wide 
ATAC-seq reads in Drosophila S2 cells from serum-
starved and insulin-exposed conditions (Fig.  1). The 
insulin receptor activates several downstream path-
ways, including the PI3K [21] and Ras/ERK [22] path-
ways, which have various effects on the chromatin state 
[23, 24] and gene expression [25] during several cellular 
processes including cell growth, protein synthesis, and 
gluconeogenesis [26]. Thus, activating insulin signaling 
provided a way to identify genome-wide chromatin and 
gene expression changes, which allowed us to integrate 
these physiological changes and determine whether chro-
matin regions that become more open after insulin sign-
aling could predict gene regulation. We found significant 
(though weak) overall correlations between ATAC-seq 
reads and transcript levels, which were driven by ATAC-
seq peaks in proximal promoters (Fig. 2). In ATAC-seq, 
genome regions with increased accessibility result in a 

higher mapped read count [9]. Because promoter regions 
are critical for the initiation of transcription, these 
genomic regions are generally accessible for actively-
transcribed genes [27]. Thus, proximal promoter regions 
largely drive the overall weak correlation between ATAC-
seq and RNA-seq counts that we observed. These data 
indicate that normalized counts can identify correlations 
between chromatin and gene expression, but these corre-
lations are likely limited to promoter regions for actively 
transcribed genes.

When we analyzed correlations between all insulin-
induced  log2 fold changes in ATAC-seq peak and tran-
script reads (Fig. 3), changes in open chromatin in distal 
(1-2 and 2-3 kb away from the TSS) promoter regions also 
correlated significantly (though weakly) with changes in 
transcript levels (Fig. 4). This suggests that the application 
of insulin recruits additional enhancers that participate 
in promoting transcription. Conversely, other enhancer 
regions become less accessible, and the linked genes 

Fig. 4 Insulin-induced  log2 fold changes correlate between ATAC-seq and RNA-seq. A Chromatin peaks were overlapped with expressed 
transcripts. Pearson correlation analysis shows a weak correlation between  log2 fold changes in chromatin accessibility and transcript expression. 
B Overlapping ATAC- and RNA-seq  log2 fold change values from (A) were stratified by genomic feature. Pearson correlation analysis was used to 
identify correlations between ATAC- and RNA-seq counts by feature
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are less transcribed with insulin. The weak correlations 
between distal enhancer and proximal promoter with 
transcript levels increased when we analyzed only ATAC-
seq peaks that changed significantly with insulin (Fig. 5). 
These results suggest that perturbations that cause differ-
ential gene expression occur via recruitment of additional 
regulatory promoter features. The correlations between 
differential transcript levels and differentially accessible 
promoter regions were all positive, suggesting that these 
regions play a role in the downstream differential gene 
expression. However, these data do not exclude the possi-
bility that in some genes, insulin might lead to increased 
accessibility at promoters which are then bound by tran-
scriptional repressors, leading to decreased transcription. 
Indeed, numerous ATAC-seq peak/transcript data points 
are in quadrants of anticorrelation (Fig. 5), and the insu-
lin-induced transcription factor FOXO is known to have 
transcriptional repressor activity [28, 29]. Future experi-
ments focusing on such anticorrelated data pairs/genes 
might reveal DNA regions that lead to insulin-induced 
transcriptional repression.

Our main goal was to determine whether we could har-
ness our ATAC-seq data to generate insulin-inducible 
reporter plasmids. We selected ATAC-seq peaks based 
on our correlation analysis of differentially-accessible 
chromatin regions and differential transcript expres-
sion. We particularly focused on enhancers (1-2 kb from 
the TSS) because the correlation increase was the larg-
est for this feature. Distal regions may include regula-
tory regions such as enhancers or repressors that are 
critically involved in regulating gene expression [30]. 
Our results suggested that these regions can drive dif-
ferential gene expression (Fig. 6). We also selected peaks 
with relatively large  log2 fold changes in intron peaks. 
In Drosophila, intronic regions often contain regulatory 
sequences [20], so altering chromatin accessibility in 
genome regions associated with introns is one mecha-
nism to control gene expression [31]. Finally, we selected 
peaks with the largest  log2 fold changes, irrespective of 
feature type. In each of these three categories we found 
peaks that led to significant insulin-induced increases 
in reporter gene expression. However, none of the three 

Fig. 5 Significant insulin-induced changes in ATAC-seq indicates recruitment of enhancers for transcript regulation. A Significant  log2 fold change 
values from differentially-accessible chromatin peaks and differentially-expressed transcripts were analyzed by Pearson correlation analysis. B 
Overlapping chromatin peaks and differentially-expressed genes from (A) were stratified by feature type and reveal that distal (1-2 kb) promoter 
accessibility is correlated with insulin-induced transcript changes
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Fig. 6 Cloned DNA from differentially-accessible chromatin regions can induce luciferase activity upon insulin application. DNA was cloned in front 
of a minimal promoter and luciferase gene, S2 cells were transfected for 18 h and then treated with insulin or vehicle for 4 h. A Candidate ATAC-seq 
peaks were selected by the largest  log2 fold change. B Chromatin peaks from promoters (1-2 kb from the TSS) were the feature that was most highly 
correlated with differential transcript expression. Peaks with the highest  log2 fold change from this correlation were cloned upstream of luciferase 
for functional validation. C Chromatin peaks with significantly different accessibility were selected from introns, a genomic feature known to contain 
regulatory regions. Data represent means ± standard error of three biological replicates. Differences were analyzed by Student’s t-test

Fig. 7 ATAC-seq and RNA-seq counts are not correlated with functional luciferase activity. Log-transformed ATAC-seq counts (A‑C) and RNA-seq 
counts (D‑F) from S2 cells were correlated to insulin-induced luciferase activity. A Overall correlation between counts from the tested ATAC-seq 
peaks and luciferase activity; B) Promoters; C) Introns. D Overall correlations between counts from genes annotated to the tested ATAC-seq peaks 
and luciferase activity; E) Promoters; F) Introns. Associations were analyzed by Pearson correlation analysis. Each point represents a biological 
replicate, and each peak was tested in triplicate
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categories seemed obviously more promising for pre-
dicting insulin-inducibility. Furthermore, neither read 
counts nor  log2 fold changes in ATAC-seq or RNA-seq 
were predictive of insulin-inducibility (Figs.  7, 8). This 
suggests that while ATAC-seq data can be successfully 
harnessed to generate insulin-inducible reporter con-
structs, their efficacy is not obviously predictable and will 
require larger datasets to understand which ATAC-seq 
peaks can be utilized to generate functionally relevant 
transgenes. Indeed, previous studies investigating puta-
tive enhancer elements identified candidates based on 
overlap with known histone marks (H3K4me1, H3K27ac, 
etc. identified by ChIP-seq), known enhancers associated 
with annotated genes of interest [32–34], or used mas-
sively parallel reporter assays [35]. In contrast, our goal 
was to determine whether ATAC-seq alone could predict 
downstream transcription using only feature-based or 
fold change-based selection. Importantly, these previous 
studies showed similar success rates to ours. Peaks with 
increased chromatin accessibility after insulin treatment 
that did not result in insulin-induced luciferase activity 
may represent regulatory elements that are involved in 
setting up poised transcription or may contain repressor 
regions that pause transcription. In contrast, peaks caus-
ing increased luciferase activity may represent sequences 

that are sufficient to initiate transcription or activate 
promoter clearance [36–38]. Additional studies using 
ChIP-seq to identify the histone marks at our tested peak 
sequences will be required to determine whether they are 
enhancers involved in poised versus active transcription.

Conclusions
Our investigation shows that ATAC-seq data can be 
harnessed to isolate regulatory DNA regions that are 
both expressed and inducible. However, because chro-
matin peaks may be one of several regulatory sequences 
[20, 30], these chromatin regions cannot be easily pre-
dicted by analysis of these genome-wide –omics data 
alone and must be functionally validated. Still, our data 
show the feasibility of using ATAC-seq to generate active 
transgenes that are inducible by an intervention or by a 
diseased state to drive a reporter, or even a disease-anti-
dote gene.

Methods
Cell culture
Drosophila S2 cells (Drosophila Genomics Resource 
Center, Bloomington, IN, USA) were cultured in Sch-
neider’s Drosophila Medium (ThermoFisher, Waltham, 
MA, USA) supplemented with 10% fetal bovine serum 

Fig. 8 ATAC-seq and RNA-seq  log2 fold changes do not predict insulin inducibility. A ATAC-seq and B) RNA-seq  log2 fold changes from S2 cells 
were correlated to insulin-induced luciferase activity, shown as the ratio between luciferase activity in vehicle- vs. insulin treated cells. C Correlation 
between the ATAC-seq peaks driving significantly increased luciferase activity and associated ATAC-seq  log2 fold changes. D Correlation between 
the ATAC-seq peaks driving significantly increased luciferase activity and RNA-seq  log2 fold changes in the associated genes. Associations were 
analyzed by Pearson correlation analysis. Each point represents a biological replicate, and each peak was tested in triplicate
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(ThermoFisher) at 25 °C. Cells were cultured in Schnei-
der’s medium without FBS for 24 h before experiments. 
Then, cells were incubated with 10 μM insulin (Sigma 
Aldrich, St. Louis, MO, USA) or vehicle (25 mM HEPES, 
pH 8.2) for 4 h at 25 °C.

ATAC‑seq
S2 cells were incubated with 3 μM DAPI for 10 min. 
60,000 cells per sample were sorted using a BD FACS 
Aria flow cytometer (BD Biosciences, San Jose, CA, 
USA). DAPI-negative cells were collected into ice-cold 
PBS (pH 7.4). After sorting, the samples were washed 
once with ice-cold PBS and centrifuged at 500 g for 5 min 
at 4 °C. ATAC-seq libraries were prepared as previously 
described [39]. Briefly, 50 μL lysis buffer (10 mM Tris-
HCl 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% NP40) was 
added to each sample, and the sample was centrifuged at 
500 g for 10 min at 4 °C. The supernatant was removed, 
and the nuclei pellet was tagmented using a Nextera 
DNA Library Prep kit (Illumina, Inc., San Diego, CA, 
USA) as previously described. Then, the tagmented DNA 
was purified using a Qiagen MinElute PCR Purification 
Kit (Qiagen, Germantown, MD, USA). The purified DNA 
was PCR amplified for 5 cycles using a Nextera DNA 
Library Index kit (Illumina) and Phusion HF Master Mix 
(New England BioLabs, Inc., Ipswich, MA, USA) with the 
following protocol: 72 °C for 5 min, 98 °C for 30 sec, and 
5 cycles of 98 °C for 10 sec, 63 °C for 30 sec, and 72 °C for 
1 min. A 5-μL aliquot of the pre-amplified reaction was 
analyzed by qPCR using SsoFast EvaGreen Supermix 
(Bio-Rad Life Science, Inc., Hercules, CA, USA) and an 
Applied Biosystems 7900HT qPCR instrument (Ther-
moFisher) using the following protocol: 1 cycle of 98 °C 
for 30 sec and 40 cycles of 98 °C for 10 sec, 63 °C for 30 sec, 
and 72 °C for 1 min. Then, the pre-amplified PCR mixture 
was amplified for another 10 cycles (corresponding to 
1/3 maximum fluorescence from the qPCR assay) using 
the same thermocycling parameters. After amplifica-
tion, the libraries were purified using AMPure XP beads 
(Beckman Coulter Life Sciences, Indianapolis, IN, USA). 
Libraries were sequenced on an Illumina HiSeq 2500 
instrument using 50-bp single-end reads.

RNA‑seq
Total RNA was isolated from S2 cells using a PureLink 
RNA purification kit (ThermoFisher). Then, rRNA was 
removed from each sample with a Ribo-Zero rRNA 
Removal kit (Illumina). RNA libraries were constructed 
using a NEBNext Ultra II RNA Library Kit for Illumina 
and NEBNext Multiplex Oligos for Illumina, Primer Set 
1 (New England Biolabs). Libraries were sequenced on an 
Illumina HiSeq 2500 instrument using 50-bp single-end 
reads.

ATAC‑seq data analysis
ATAC-seq Fastq files were aligned to the dm6 genome 
assembly (http:// ftp. flyba se. net/ relea ses/ FB2018_ 06/ 
dmel_ r6. 25/ fasta/) using Novocraft Novoalign with the 
following settings: --NonC -o SAM -r Random. SAM 
files were processed to BAM format, sorted, and indexed 
using Samtools [40]. BAM files were reads per million-
normalized and converted to bigWig files using the Bio-
ToolBox ‘bam2wig.pl’ program (https:// github. com/ 
tjpar nell/ bioto olbox/ blob/ master/ scrip ts/ bam2w ig. pl). 
Peak calling was performed on the bigWig files by utiliz-
ing the Multi-Replicate Macs ChIPseq pipeline (https:// 
github. com/ Hunts manCa ncerI nstit ute/ Multi RepMa 
csChI Pseq) with the following settings: --dupfrac 0.2 
--size 200 --cutoff 2 --peaksize 300 --peakgap 200. Frac-
tions of reads in peaks values were calculated in R using 
the Rsubread package (version 2.8.2). Transcription start 
site enrichment was calculated using Deeptools (version 
3.3.2). Called peaks were annotated in R with the ChIP-
seeker package [41]. Count data for called peaks was col-
lected from processed BAM files using the Bio-ToolBox 
‘get_datasets.pl’ program (https:// metac pan. org/ pod/ 
distr ibuti on/ Bio- ToolB ox/ scrip ts/ get_ datas ets. pl). The 
count data was then used to identify differentially acces-
sible regions with the R package DEseq2 [42]. ATAC-seq 
quality metrics are shown in Additional file 1.

RNA‑seq data analysis
RNA-seq fastq files were aligned to the BDGP6 genome 
assembly using the STAR aligner [43] with the follow-
ing settings: --twopassMode Basic --outSAMtype BAM 
SortedByCoordinate --outWigType bedGraph --outWig-
Strand Unstranded --clip3pAdapterseq AGA TCG GAA 
GAG CAC ACG TCT GAA CTC CAG TCA. The resulting 
sorted BAM files were indexed using Samtools (Li et al., 
2009). FeatureCounts was used to collect count data for 
BDGP6 genes using the following command: -T 16 -s 2 
[44]. Count data for all replicates and experimental con-
ditions were combined into a single count matrix in R. 
The count matrix was subsequently used to identify dif-
ferentially expressed genes with the R package DEseq2 
[42].

Integration analysis of ATAC‑Seq and RNA‑Seq datasets
The ATAC-seq peak data were compared to the RNA-seq 
data to determine how chromatin accessibility influenced 
gene expression. The raw RNA-seq and ATAC-seq counts 
for each sample were compared using the gene annota-
tion of the ATAC-seq peak and the assigned RNA-seq 
gene. The raw count value was averaged by experimen-
tal condition and genomic assay type. Then, the RNA-seq 
and ATAC-seq datasets were compared using the anno-
tated genes and the  log2 fold change values for each peak/

http://ftp.flybase.net/releases/FB2018_06/dmel_r6.25/fasta/
http://ftp.flybase.net/releases/FB2018_06/dmel_r6.25/fasta/
https://github.com/tjparnell/biotoolbox/blob/master/scripts/bam2wig.pl
https://github.com/tjparnell/biotoolbox/blob/master/scripts/bam2wig.pl
https://github.com/HuntsmanCancerInstitute/MultiRepMacsChIPseq
https://github.com/HuntsmanCancerInstitute/MultiRepMacsChIPseq
https://github.com/HuntsmanCancerInstitute/MultiRepMacsChIPseq
https://metacpan.org/pod/distribution/Bio-ToolBox/scripts/get_datasets.pl
https://metacpan.org/pod/distribution/Bio-ToolBox/scripts/get_datasets.pl
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gene in the respective genomic assay. ATAC-seq peaks 
with an FDR < 0.1 and genes detected by RNA-seq with 
an FDR < 0.05 were used to compare the differentially 
accessible peaks and differentially expressed genes. Pear-
son correlation analysis was performed between the  log2 
fold change values of the genomic assays and between the 
average raw count values of the genomic assays (control-
ling for the experimental condition).

Plasmid construction and transformation
A multiple cloning site (MCS) was cloned into the 
backbone pDEST VanGlow-GL vector [45]. Then, we 
removed the mini-white+ cassette using the restric-
tion enzymes AflII (3 L137, 3R131, X216, 3 L114, 2 L796, 
3 L981, 2 L220, 2R177, 2 L225, and FOXO TFBS) or SmaI 
and PmlI (X950, 2 L846, and 2R111). The digested plas-
mids were incubated with T4 ligase for 15 min at room 
temperature and purified by 1% gel electrophoresis. The 
plasmids were linearized using AvrII and PacI (sites con-
tained in MCS; all enzymes from New England BioLabs).

Genomic DNA was purified from S2 cells using a Mon-
arch Genomic DNA Purification kit. Candidate chroma-
tin peak sequences and 100-200 bp flanking sequences 
[34] (Additional  file  2) were amplified using Phusion 
High-Fidelity PCR MasterMix (primer sequences are 
listed in Additional  file  3) and a C1000 thermocycler 
(Bio-Rad Life Science). The peak sequences were ampli-
fied for 98 °C for 5 min, followed by 35 cycles of 98 °C for 
30 sec, 52-68 °C gradient for 30 sec, 72 °C for 4 min, and 
a final incubation for 5 min at 72 °C. The amplified frag-
ments were purified on 1% agarose gels and extracted 
using a Monarch Gel Purification kit and cloned into 
linearized VanGlo-GL-MCS plasmid using NEBuilder 
HiFi Assembly master mix. The assembled plasmids 
were transformed into DH5α cells and grown over-
night. Clones were screened by restriction digestion 
using EcoRI-HF. Sequences were confirmed by Sanger 
sequencing at GeneWiz (South Plainfield, NJ, USA). Con-
firmed plasmids were transformed into S2 cells using 
TransIT Insect Transfection Reagent (Mirus Bio, Madi-
son, WI, USA). Transformed cells were grown for 48 h 
before use in experiments.

Luciferase assays
Transformed S2 cells were serum starved for 24 h and 
treated with insulin or vehicle as described above (Cell 
culture). Then, luciferase activity was assayed using a 
Luciferase Reporter Substrate Assay Kit-Firefly (Abcam, 
Cambridge, MA, USA). Luminescence was detected with 
a BioTek Synergy HTX microplate reader (BioTek Instru-
ments, Winooski, VT, USA) and Gen5 2.01.17 software 
(BioTek Instruments).

Statistical analysis
Statistical differences in relative luminescence data 
were analyzed by Student’s t-tests with at least three 
biological replicates using GraphPad Prism 9.0 soft-
ware. Differences between genome feature propor-
tions were analyzed using χ2 tests included in R [46] 
Correlations were analyzed using Pearson correlation 
tests included in R. One-proportion z-tests were per-
formed using the binom.test function in R. Heatmaps 
were generated using the R package ComplexHeatmap 
[47]. PCA plots were created using the R package pca-
Explorer [48]. Correlation plots were produced with 
the R package ggpubr (https:// github. com/ kassa mbara/ 
ggpubr).
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