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Abstract
Bayes factor analysis has the attractive property of accommodating the risks of both false negatives and false positives when
identifying susceptibility gene variants in genome-wide association studies (GWASs). For a particular SNP, the critical
aspect of this analysis is that it incorporates the probability of obtaining the observed value of a statistic on disease
association under the alternative hypotheses of non-null association. An approximate Bayes factor (ABF) was proposed by
Wakefield (Genetic Epidemiology 2009;33:79–86) based on a normal prior for the underlying effect-size distribution.
However, misspecification of the prior can lead to failure in incorporating the probability under the alternative hypothesis. In
this paper, we propose a semi-parametric, empirical Bayes factor (SP-EBF) based on a nonparametric effect-size distribution
estimated from the data. Analysis of several GWAS datasets revealed the presence of substantial numbers of SNPs with
small effect sizes, and the SP-EBF attributed much greater significance to such SNPs than the ABF. Overall, the SP-EBF
incorporates an effect-size distribution that is estimated from the data, and it has the potential to improve the accuracy of
Bayes factor analysis in GWASs.

Introduction

Genome-wide association studies (GWASs) are comprehen-
sive studies on the relationship between disease traits and
single nucleotide polymorphisms (SNPs), throughout the

genome, and have identified susceptibility gene variants for
many complicated diseases [1, 2]. The data-analysis approach
commonly used for identifying susceptibility gene variants in
GWASs is statistical hypothesis testing based on the P value.
Many authors, however, have pointed out that the P value has
fundamental limitations [3]. A critical limitation is that the P
value only conveys information about dissociation from the
null hypothesis (null association), and it controls the prob-
ability of yielding a false positive based on the probability
distribution of a test statistic under the null hypothesis, but not
the probability of yielding a false negative. In GWASs, the
lack of power due to the use of the extremely strict, genome-
wide significance level [4, 5], 5 × 10−8, has also been criti-
cized [6–8], as several studies have shown that many SNPs
not reaching genome-wide significance are associated with
various traits [9–11].

Thus far, increasing numbers of studies have used the
Bayes factor (BF), in addition to the P value [12–14].
Typically, the BF is based on a sufficient statistic regarding
the association between a disease and a particular SNP, and
it compares the probability of observing a value of the
statistic under the null hypothesis and the corresponding
probability of observing this value under the alternative
hypothesis. Thus, the BF conveys more information than
the P value, since it takes into account not only the false

* Junji Morisawa
morisawa.junji@a.mbox.nagoya-u.ac.jp

* Shigeyuki Matsui
smatsui@med.nagoya-u.ac.jp

1 Department of Biostatistics, Nagoya University Graduate School
of Medicine, Nagoya, Japan

2 Department of Public Health, Graduate School of Medical
Sciences, Nagoya City University, Nagoya, Japan

3 Division of Bioinformatics, National Cancer Center Research
Institute, Tokyo, Japan

4 Medical and Dental Data Science Center, Tokyo Medical and
Dental University, Tokyo, Japan

5 Department of Data Science, The Institute of Statistical
Mathematics, Tokyo, Japan

Supplementary information The online version of this article (https://
doi.org/10.1038/s41431-020-00800-x) contains supplementary
material, which is available to authorized users.

12
34

56
78

90
()
;,:

12
34
56
78
90
();
,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41431-020-00800-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41431-020-00800-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41431-020-00800-x&domain=pdf
http://orcid.org/0000-0001-5961-1904
http://orcid.org/0000-0001-5961-1904
http://orcid.org/0000-0001-5961-1904
http://orcid.org/0000-0001-5961-1904
http://orcid.org/0000-0001-5961-1904
http://orcid.org/0000-0003-1722-6762
http://orcid.org/0000-0003-1722-6762
http://orcid.org/0000-0003-1722-6762
http://orcid.org/0000-0003-1722-6762
http://orcid.org/0000-0003-1722-6762
http://orcid.org/0000-0003-2983-1919
http://orcid.org/0000-0003-2983-1919
http://orcid.org/0000-0003-2983-1919
http://orcid.org/0000-0003-2983-1919
http://orcid.org/0000-0003-2983-1919
mailto:morisawa.junji@a.mbox.nagoya-u.ac.jp
mailto:smatsui@med.nagoya-u.ac.jp
https://doi.org/10.1038/s41431-020-00800-x
https://doi.org/10.1038/s41431-020-00800-x


positive, but also the false negative. This is particularly true
in the Bayesian decision-theoretic testing [15]; the rejection
of the null hypothesis based on the posterior odds ratio
across the two hypotheses is transformed to a comparison of
the BF and the threshold, expressed as the product of a prior
odds ratio and the cost of the false negative relative to the
false positive (see also “Hypothesis testing and the BF”).

When calculating the denominator of the BF, which
represents the probability that the observed statistic value is
under the alternative hypothesis, it is necessary to specify a
prior distribution for an association parameter or effect size
of a SNP (such as a coefficient of the log odds ratio in a
logistic model), as well as nuisance parameters (such as an
intercept coefficient in a logistic model), under the alter-
native hypothesis. Wakefield [16] sidestepped the specifi-
cation of the prior distribution for the nuisance parameters
and derived an explicit form of an approximate BF (ABF)
for the association parameter of interest based on two
approximations, (1) asymptotic normality of the estimated
effect size and (2) a normal prior N(0, W) with the variance
W for the effect-size distribution [16].

However, the difficulty in specifying the prior distribu-
tion (as seen in many Bayesian analyses) also applies to the
BF analysis. For the ABF, Wakefield proposed some spe-
cifications of the prior variance W [16]. For example, W can
be specified as W= 0.212 with a 95% belief that the effect
size in terms of the odds ratio is within 1/1.5–1.5. More
complex specifications incorporating dependence of the
effect on the minor allele frequency (MAF) are also possible
[16]. However, even with these arguments, there is always a
risk of mis-specifying the prior distribution, especially in
exploratory GWASs with limited prior information. To
address misspecification of the variance W, some authors
proposed to introduce a prior distribution for W [17] or to
perform an empirical Bayes estimation of W [18]. However,
normality of the effect-size distribution is a conventional
assumption as there is no guarantee that it is reasonable.
Some authors suggest the use of other parametric priors,
such as Laplace priors [19]. Actually, the effect-size dis-
tribution is expected to have various distributional forms,
reflecting complicated biological mechanisms between
genetic factors and disease (see Figs. 1 and S4).

In this paper, we propose an empirical Bayes method with
a flexible, nonparametric prior for the effect-size distribution
to address the issue of misspecification. Our model is semi-
parametric because of a combination of the nonparametric
prior with the theoretically reasonable, asymptotic normality
for the sampling distribution of the estimated effect size
[8, 11, 20] (as done in the ABF). Even with the nonpara-
metric prior, we can accurately estimate the effect-size dis-
tribution from high-dimensional genomic data, plausibly
involving a large quantity of parallel data structures. See

Nishino et al. [11] and Otani et al. [8] for the effectiveness of
our estimation approach in the context of GWAS.

As such, our semi-parametric empirical BF (SP-EBF)
method intends to improve the current BF analysis, possibly
with inappropriate prior distributions. In other words, with
the use of appropriate (nonparametric) prior distributions,
our method aims to realize the inherent effectiveness of the
BF analysis, potentially rendering it superior to traditional
GWAS analysis based only on the P value.

Methods

Hypothesis testing and the BF

In a GWAS, each SNP is tested individually for its asso-
ciation with disease. Typically, the following univariate
logistic regression model is assumed for the jth SNP,

log
ηij

1� ηij
¼ αj þ βjxij;

where ηij is the probability of disease for the ith subject with
genotype xij (xij= 0, 1, or 2), and αj and βj are intercept and
effect-size (log odds ratio) parameters [21] (i= 1, …, n; j=
1, …, m). When performing a test of the null hypothesis,
H0:βj= 0, a Wald Z value is expressed as follows, zj ¼
β̂j=

ffiffiffiffiffi
Vj

p
; where β̂j is a maximum likelihood estimate of βj,

and Vj is an estimated variance of β̂j. Note that this test is a
usual univariate test on single SNPs for common variants.
Typical quality control processes remove low-frequency

Fig. 1 The estimated effect-size distribution used in the SP-EBF (red
line) and the prior distribution N(0,W) withW= 0.212 used in the ABF
(blue line) in the bipolar disorder dataset.
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variants (e.g., MAF < 1%), so that the following BF
analyses that are based on summary statistics ðβ̂j;VjÞ would
not cover such rare variants.

The BF is defined by the ratio of the probability of
observing β̂j under H0 and the corresponding probability
under an alternative hypothesis H1:βj ≠ 0,

BFðβ̂jÞ ¼
Pr β̂jjH0
� �

Pr β̂jjH1
� �

For example, when the BF= 0.01, the obtained value β̂j
can be interpreted as being 100 times more likely to occur
under the alternative hypothesis than under the null
hypothesis.

For a particular SNP, a formal Bayesian decision-
theoretic testing is to reject H0 if the posterior odds of H0,
i.e., Pr H0jβ̂j

� �
= Pr H1jβ̂j

� �
, is smaller than the ratio of costs,

R ¼ cFN=cFP, where cFP and cFN are the costs of the false
positive (type I error) and false negative (type II error),
respectively [15]. As the posterior odds of H0 are expressed
as a product of the BF and the prior odds of H0, that is,
Pr H0jβ̂j
� �

= Pr H1jβ̂j
� � ¼ BF� PrðH0Þ=PrðH1Þf g, the afore-

mentioned Bayesian decision-theoretic testing can be
transformed to a decision rule to compare the BF with a
relative cost R divided by the prior odds, i.e., if
BFðβ̂jÞ<R=ðPr H0ð Þ=PrðH1ÞÞ; then H0 is rejected.

The ABF

The ABF was proposed by Wakefield [16]. In this analysis,
for the jth SNP an approximation of asymptotic normality
is employed for the estimate of βj, i.e., β̂j. Thus, under
H0: βj= 0, the distribution of β̂j is specified as N (0, Vj).
Similarly, under the alternative hypothesis, H1:βj ≠ 0, the
distribution of β̂j (given βj) is specified as N (βj, Vj), but a
normal prior N (0, W) is specified for the distribution of
βj. Here, the variance W can be specified as W= 0.212 with
a 95% belief that the odds ratio is within 1/1.5 to 1.5.
Specifications of W incorporating effect-MAF dependence
are also possible [16]. Accordingly, the ABF is expressed as
a ratio of the probability density f0;ABF β̂j

� �
under H0 and the

probability density f1;ABF β̂j
� �

under H1,

ABF β̂j
� � ¼ f0;ABF β̂j

� �
f1;ABF β̂j

� � ¼ φ0;Vj
β̂j
� �

R1
�1 φβ;Vj

β̂j
� � � φ0;W βð Þ

n o
dβ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vj þW

Vj

s
exp � z2j

2
W

ðVj þWÞ

 !
;

ð1Þ
where φμ; σ2 is the density of the normal distribution with
mean μ and variance σ2.

The SP-EBF

For the jth SNP, we assume the following two-component
mixture model for the marginal distribution of β̂j,

f β̂j
� � ¼ 1� πð Þf0 β̂j

� �þ πf1 β̂j
� �

; ð2Þ

where π is the prior probability of H1, and f0 and f1 are the
density distributions of β̂j under H0 and H1, respectively. As
with the ABF, we employ asymptotic normality for the
sampling distribution of β̂j. Accordingly, we specify
N (0, Vj) for f0 under H0. In forming f1 under H1, we also
specify the sampling distribution of β̂j as N (βj, Vj) for
a given value of βj, but specify a nonparametric distribution,
g, for the prior distribution of βj. We then obtain the
following BF,

f0 β̂j
� �

f1ðβ̂jÞ
¼ φ0;Vj

β̂j
� �

R1
�1 φβ;Vj

β̂j
� � � g βð Þ

n o
dβ

ð3Þ

We estimate the priors π and g based on the data, i.e., the
empirical Bayes approach. To this end, we apply the
smoothing-and-roughening algorithm [22], a form of the
expectation–maximization algorithm [8, 11, 20]. We discretize
the effect-size distribution g into mass point probabilities p ¼
p1; p2; ¼ ; pBð Þ at points, t ¼ t1; t2; ¼ ; tBð Þ (excluding 0).
As such, we approximate f1 (yj), the denominator of Eq. (3) as
f1ðβ̂jÞ �

P
k φtk ;Vj

β̂j
� � � pk . This discretized prior distribution

excludes the probability mass at the zero point of the null
hypothesis [23] (see Section S1 of Supplementary Materials
for the details of the algorithms).

Another approach to flexible modeling of the effect-size
distribution g is to specify parametric finite mixture normal
distributions whose components have mean zero, but dis-
tinct variances [24, 25]. However, this model could not
capture components with non-zero mean (small peaks with
relatively large effects) as seen in actual effect-size dis-
tributions, e.g., those in schizophrenia and coronary artery
disease (see “Applications”). Furthermore, as indicated by
these distributions, there is no guarantee that actual effect-
size distributions are symmetric. In contrast, our method
utilizes a nonparametric distribution for g to flexibly capture
any forms of the effect-size distribution, including asym-
metric multimodal distributions.

We then obtain an estimated BF, i.e., the SP-EBF
expressed as

SPEBF β̂j
� � ¼ f0 β̂j

� �
bf1ðβ̂jÞ ¼

φ0;Vj
β̂j
� �P

k φtk ;Vj
β̂j
� � � bpk :

R code to implement the estimation of the SP-EBF
(including the estimation of the hierarchical mixture model
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in Eq. (2)) is provided in Section S6 of Supplementary
Materials. We ascertained superiority of the SP-EBF over
the ABF for various forms of the effect-size distribution by
simulation experiments (see Section S4 of Supplementary
Materials).

Applications

We investigated the characteristics of the SP-EBF in com-
parison with the ABF through their applications to a meta-
analysis of seven GWAS studies in bipolar disorder [26],
consisting of 7482 cases and 9250 controls (see Section S2
of Supplementary Materials). We utilized summary statistic
data and MAF available at the Psychiatric Genomics Con-
sortium website (https://www.med.unc.edu/pgc) on 2135,534
SNPs, after excluding those with no information about allele
frequency based on the HapMap CEU sample. In Section S3
of Supplementary Materials, we briefly summarize similar
results of our analyses of other two GWAS datasets, in
schizophrenia and coronary artery disease.

Estimation of the effect-size distribution

Figure 1 shows an estimate of the nonparametric effect-size
distribution (g) for the bipolar disorder dataset. The esti-
mated effect-size distribution was greatly different in dis-
persion from the ABF normal prior N (0, W) with W=
0.212. This result indicates that the ABF prior missed sub-
stantial numbers of small effects, while assuming the pre-
sence of substantial numbers of large effects that might not
actually be present. The estimation also indicated that the
form of the effect-size distribution was not normal (note:
this was particularly apparent in the other datasets, speci-
fically in schizophrenia and coronary artery disease (see
Fig. S4 in Supplementary Materials); the estimated effect-
size distributions had very complex forms with multiple
peaks).

Comparison of the SP-EBF and ABF

Figure 2 shows plots of the P value, ABF, and SP-EBF
across all the SNPs in the bipolar disorder dataset. Note that
the scales in the P value plot and those in the BF plots are
different, reflecting that the P value and BF are different
measures of association. In the following, for the sake of
convenience, we shall use the term “significance” when the
P value or BFs suggest the alternative hypothesis. At first
glance of the SP-EBF plot, the SP-EBF seems to down-
weigh the associations consistently for all SNPs, like a
zoomed out version of the ABF plot, but actually it is not.

The SP-EBF generally down-weighs (or greatly shrinks) the
associations for SNPs with very small P values, but could
up-weigh for those with very small effect-size estimates
with large P values (with larger supports by the estimated
effect-size distribution), according to the shape of the esti-
mated prior distribution shown in Fig. 1. In other words,
compared with the SP-EBF, the ABF attributed greater
degrees of significance to significant SNPs.

Figure 3 shows scatter plots of the P value versus the
ABF or SP-EBF for all the SNPs in the bipolar disorder
dataset, color-coded by the absolute value of the estimated
effect size β̂j

�� ��. In the scatter plots of the P value versus the
ABF, the points form almost a straight line (this is parti-
cularly the case for SNPs with high significance), indicating
that the ranking of SNPs using the ABF is almost the same
that using the P value. In contrast, in the scatter plot for the
P value versus the SP-EBF, the points are relatively more
scattered, indicating a greater difference in SNP ranking
between the SP-EBF and the P value.

In Fig. 3, as expected by a large difference in the shape
of the prior distribution between the ABF and SP-EBF, the
ABF and SP-EBF show an opposite tendency in that for a
given P value, there is a larger –log10 ABF (greater sig-
nificance) for larger β̂j

�� �� but a larger –log10 SP-EBF for
smaller β̂j

�� ��. In other words, the SP-EBF ascribed greater
significance to SNPs with smaller β̂j

�� �� (for a given P value).
We also observed similar results in figures colored based on
the variance or MAF (see Figs. S1 and S2 in Supplementary
Materials). We observed that for a given P value, the SP-
EBF attributed greater significance to SNPs with smaller
variances or larger MAF. These results are essentially the
same as those in Fig. 3, since a small β̂j

�� �� corresponds to a
small standard error or large MAF for a given P value (or z
value).

Figure 4 shows a plot of the SP-EBF versus the ABF for
the 100 SNPs with the smallest P values. These SNPs could
be roughly divided into six regions that were in linkage
disequilibrium. We observed that SNPs in each region had
similar estimated effect sizes. Table 1 presents the SNPs
with the smallest P values in each of the six regions, and
shows their rankings among the top 100 SNPs (without
regard to region) based on the ABF, SP-EBF, and P value.
Again, the rankings based on the ABF and P value are
almost the same. In comparison, the SP-EBF resulted in a
lower ranking of representative SNPs with relatively large
β̂j
�� �� (such as rs10994415 (NC_000010.10:g.62322034T>C)
with β̂j

�� ��= 0.271 and rs17138230 (NC_000011.9:
g.79075852A>T) with β̂j

�� ��= 0.163), and a higher ranking
of SNPs with relatively small β̂j

�� ��. Of note, similar results
were obtained when dividing SNPs into LD clumps and
then comparing the rankings of the associated regions
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(see Fig. S3 and Table S1). It is interesting to observe that
the first-ranked 1 SNP based on the ABF and P value,
rs10994415, is ranked sixth based on the SP-EBF, while the
fourth-ranked SNP based on the ABF and P value,
rs9371601 (NC_000006.11:g.152790573G>T), is ranked
first based on the SP-EBF.

Discussion

The applications to real-life GWAS datasets indicated that
the ABF prior was excessively dispersed compared to the
effect-size distribution estimated by our method (see Figs. 1
and S4). In such situations, it is expected that smaller BFs
(more evidence for the alternative hypothesis) to SNPs with
smaller effect sizes than those with larger effect sizes,
because the estimated effect-size distribution may put more

weight on smaller effect sizes. In particular, compared with
the SP-EBF, in the ABF a SNP with a large absolute value
of the estimated effect size β̂j

�� ��, which is of greater interest
in GWASs, may have a larger denominator of the BF (the
probability of observing β̂ under the alternative hypothesis),
leading to a smaller value of the BF (or larger value of
–log10 BF) (see Fig. 2). That is, the ABF tends to attribute a
higher degree of significance to a significant SNP. On the
other hand, the ABF may attribute less significance to a
SNP with a small β̂j

�� �� because of the relatively small prior
probability assigned to the small absolute value of the
estimated effect size.

Another observation in the applications to real-life
GWAS datasets was that the SNP rankings were similar
between the ABF and P value. One reason for this is that the
ranking based on P value and that based on Pr β̂jH0

� �
are

generally close (perfectly equal if the estimated variances of

Fig. 2 Plots of the P value, ABF, and SBF (–log10 P, –log10 ABF,
and –log10 SP-EBF) for all SNPs, ordered according to the position
on the chromosome in the bipolar disorder dataset. Note that the
scales in the P value plot and those in the BF plots are different,

reflecting that P value and BF are different measures of association.
The red horizontal line in –log10 P represents the genome-wide
significance level.

Fig. 3 The –log10 P versus the ABF and SP-EBF (–log10 ABF and
–log10 SP-EBF), color-coded by the absolute value of the estimated
effect size β̂j

�� �� in the bipolar disorder dataset; red: small (0–90
percentile), yellow: medium (90–99 percentile), green: large
(99–99.9 percentile), blue: very large (99.9–100 percentile). The red

horizontal lines in –log10 P represent the genome-wide significance
level. Note that the scales of x-axis are different between the ABF and
SP-EBF to incorporate the difference in magnitude between them as
noted in “Comparison of the SP-EBF and ABF”.
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β̂ are the same across SNPs). Moreover, if the support by a
prior effect-size distribution is almost constant (due to its
flat form) over an actual range of non-null effect sizes (as
indicated by Fig. 1), Pr β̂jHA

� �
will be almost constant

regardless of the absolute value of the estimated effect size
β̂j
�� ��. Therefore, the ABF prior with a large variance W
essentially functions as a non-informative prior distribution.
In other words, it can be said that such a prior distribution
may fail to incorporate the information about the alternative
hypothesis, although this is the main motivation of using
the BF.

On the other hand, the SP-EBF could resolve the afore-
mentioned issues in the ABF by utilizing an actual effect-
size distribution estimated under a flexible, semi-parametric
hierarchical mixture model. In the applications to real-life
GWAS datasets, the estimated effect-size distributions
indicated the presence of large numbers of SNPs with small
effect sizes. Accordingly, for a SNP with a small absolute

value of the estimated effect size β̂j
�� ��, Pr β̂jHA

� �
may

become larger (due to relatively greater support by the
effect-size distribution), leading to a smaller (more sig-
nificant) BF in the SP-EBF. In contrast, a SNP with a very
large absolute value of the estimated effect size would
become less significant by using the SP-EBF because of less
support by the effect-size distribution. As such, the SP-EBF
could successfully incorporate the information about the
alternative hypothesis by being based on an actual effect-
size distribution.

Based on the arguments above, with the SP-EBF we can
expect that SNPs with small effect sizes, where the P values are
not strongly significant, become more significant and worthy of
further investigation in subsequent studies. In the bipolar
example, rs6746896 (NC_000002.11:g.97410949A>G) and
rs736408 (NC_000003.11:g.52835354C>T) had small effect
sizes that did not exceed the genome-wide significance level
but that were slightly more significant in the SP-EBF than in
the ABF. However, other GWASs [27, 28] reported that
bipolar disorder was associated with the gene LMAN2L,
encoded near rs6746896 (Chr2). Meanwhile, in a pooled
population of bipolar and schizophrenia patients, an association
was demonstrated [26] with rs736408 (Chr3) in the intron
region of ITIH3. Of note, for rs10994415, rs9371601, and
rs7296288 (NC_000012.11:g.49479968A>C) that exceeded
the genome-wide significant level, several studies [29, 30]
investigated biological mechanism. The rank improved for
rs9371601 for the SP-EBF, although its values were sub-
stantially larger than the ABF owing to a less support by the
estimated effect-size distribution. The SP-EBF analysis is
expected to be particularly useful for detecting novel SNPs
with small effect sizes that cannot be detected by standard
analysis based on the P value, and could therefore address the
so called “missing heritability” problem in many complex
diseases (see also Nishino et al. [11] and Otani et al. [8]).

Last, as a further extension of our BF analysis, a
byproduct of obtaining an estimate, say π̂, of the prior
probability of null association π in Eq. (2), is that it may
allow for more accurate Bayesian decision-theoretic
testing based on the rule given in “Hypothesis testing and
the BF,” utilizing an estimate, π̂=ð1� π̂Þ; for the prior odds,

Fig. 4 Plot of the ranking in SP-EBF versus that in the ABF for the
top 100 SNPs with the smallest P values. SNPs in the same linkage
disequilibrium region, that had r2 > 0.2 (according to Haploleg v4.1) or
that shared the same GENCODE gene, are plotted using the same
color. Representative SNPs (SNPs with the smallest P value in each
region) are plotted using large dark-colored triangles.

Table 1 Representative SNPs from linkage disequilibrium regions.

rsID (Chr) Absolute value of the
estimated effect size β̂j

�� �� P value (rank) ABF (rank) SP-EBF (rank) GENCODE genes

rs10994415 (Chr.10) 0.271 6.97 × 10−10 (1) 5.53 × 10−8 (1) 7.14 × 10−4 (6) ANK3

rs9371601 (Chr.6) 0.143 4.33 × 10−9 (4) 3.76 × 10−7 (4) 2.25 × 10−4 (1) SYNE1

rs7296288 (Chr.12) 0.137 9.39 × 10−9 (9) 8.13 × 10−7 (9) 3.55 × 10−4 (4) 3.2 kb 3′ of DHH

rs17138230 (Chr.11) 0.163 4.60 × 10−8 (25) 3.28 × 10−6 (23) 4.09 × 10−3 (72) ODZ4

rs736408 (Chr.3) 0.134 2.00 × 10−7 (82) 1.46 × 10−5 (82) 5.16 × 10−3 (81) ITIH3

rs6746896 (Chr.2) 0.127 4.20 × 10−7 (98) 2.85 × 10−5 (98) 6.85 × 10−3 (93) 5.1 kb 5′ of LMAN2L

Semi-parametric empirical Bayes factor for genome-wide association studies 805



Pr (H0)/Pr(H1). In practice, we may also consider accom-
modation of stratification factors, permitting possible
varying effect-size distributions as well as possible depen-
dence of the probabilities of null association on the strati-
fication factors. See Nishino et al. [11] for stratified analyses
based on the derived allele frequency and the status of
eQTL. Our method can be easily applied to continuous
traits in which a least-square estimate of the slope para-
meter, rather than the log-odd ratio β̂. Compared with
empirical Bayes methods under parametric effect-size dis-
tributions in the context of human or animal genetic studies
[31–33], we can incorporate a nonparametric effect-size
distribution into our hierarchical mixture model in Eq. (2) to
derive the corresponding SP-EBF such as Eq. (3) (see also
Otani et al. [34] for handling continuous traits).
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