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Background. DNA methylation is an important part of epigenetic modification, and its abnormality is closely related to esophageal
adenocarcinoma (EAC). This study was aimed at using bioinformatics analysis to identify methylation-driven genes (MDGs) in
EAC patients and establish a risk model as a biological indicator of EAC prognosis. Method. Downloaded EAC DNA
methylation, transcriptome, and related clinical data from TCGA database. MethylMix was used to identify MDGs. R package
clusterProfiler and the ConsensusPathDB online database were used to analyze the rich functions and pathways of these MDGs.
The prognostic risk model was established by univariate Cox regression, Lasso regression, and multivariate Cox regression
analysis. Finally each MDG in the model were carried out through the survival R package. Results. A total of 273 MDGs were
identified, which were enriched in transcriptional regulation and embryonic organ morphogenesis. Cox regression analysis
established a risk model consisting of GPBAR1, OLFM4, FOXI2, and CASP10. In addition, further survival analysis revealed
that OLFM4 and its two related sites were significantly related to the EAC patients’ survival. Conclusion. In summary, this study
used bioinformatics methods to identify EAC MDGs and established a reliable risk prognosis model. It provided potential
biomarkers for the early treatment and prognosis evaluation of EAC.

1. Introduction

Esophageal cancer (EC) is a common malignant tumor of the
digestive system. Its global morbidity and total mortality
ranked seventh and sixth, respectively, in 2018 [1]. There are
two main histological subtypes of EC, esophageal adenocarci-
noma (EAC) and esophageal squamous cell carcinoma
(ESCC). Among them, ESCC is the principal subtype,
accounting for 80% of all EC [2]. ESCC is one of the most
aggressive squamous cell carcinomas, which is very wide-
spread in Southeast Asia and Africa. Since the diagnosis is gen-
erally at an advanced stage, the mortality rate is high [3, 4].
However, in the western world, the incidence of EAC is
increasing at an alarming rate, and the overall 5-year relative
survival rate of esophageal cancer diagnosed in the United

States from 2009 to 2015 is only 20%, most of which are
EAC patients [5]. Almost all EAC develop from Barrett’s
esophagus (BE), which is the most important facilitator for
EAC. However, progress from BE to EAC is very slow, and
patients with BE usually have no obvious symptoms, which
make early diagnosis and treatment impossible [6]. Current
treatment methods for EAC include a combination of surgery,
chemotherapy, and radiation therapy. However, EAC usually
has metastasized at the time of diagnosis, so the patient’s prog-
nosis is poor [7]. Therefore, early diagnosis and intervention
are of great significance to reduce the morbidity and mortality
of EAC.

Epigenetic modification plays an important role in the
occurrence and development of tumors and may cause
changes in the expression of tumor-related genes in the early
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stage [8]. Among them, DNA methylation is an important
aspect of epigenetics research, and its relationship between
tumors has been a hot research topic in recent years [9–11].
Generally, tumor-suppressor genes are usually hypermethy-
lated and their transcription levels are reduced, while hypo-
methylation of tumor-promoting genes increases their
expression, thereby jointly promoting the maintenance and
development of tumors [12]. Since DNAmethylation usually
occurs in the early stages of cancer, and in future studies, we
are expected to detect EAC early by detecting changes in
DNA methylation in the blood, so we can detect the occur-
rence of cancer earlier by monitoring changes in the gene
DNA methylation status [13].

With the superiority of the big data field, online publicly
available databases such as The Cancer Genome Atlas
(TCGA) contain gene expression levels, methylation charac-
teristics, and related clinical prognosis information of various
tumors and normal samples [14]. This allows us to find
potential aberrant DNA methylation genes through online
databases. In order to findmethylation-driven genes (MDGs)
in EAC patients, we used the MethylMix R software package,
which is an algorithm based on the β mixed model that can
compare the DNA methylation status of tumors and normal
samples and perform correlation analysis through tran-
scriptome data to identify the MDGs of the disease. More
precisely, the MethylMix package first identifies each CpG
site and associates it with the closest gene. Secondly, the
methylation status of genes is determined by univariate
mixed β model. The variable included in the mixed model
is the DNA value, which refers to the β value. For a gene, each
β mixed value represents a class of patients, and their β
methylation status is determined as a distribution of specific
DNA values. The methylation status of cancer is compared
with the methylation status of normal tissues to screen out
genes with different degrees of methylation. Finally, if the
methylation level of a gene in the linear regression equation
can be significantly correlated with the gene mRNA expres-
sion, then this is the MDG we need [15, 16].

In this study, we used bioinformatics methods to extract
RNA data, DNA methylation data, and clinical data of EAC
patients from TCGA. Then, MethylMix R software package
was utilized to obtain MDGs. In addition, a practical and
reliable prognostic risk model was established and verified.
This model can effectively identify patients with poor prog-
nosis and guide individualized treatment. Finally, based on
the gene methylation level and the methylation level of
gene-related sites, survival analysis was conducted to further
study the potential key targets in the model.

2. Materials and Methods

2.1. Data Source. RNA-sequencing data (including 9 normal
esophageal tissues and 78 EAC tissues), DNAmethylation data
(including 12 normal esophageal tissues and 87 EAC tissues),
and the original clinical data of EAC patients (including 87
EAC tissues) were downloaded from the official website of
the TCGA database (https://portal.gdc.cancer.gov) (Table S3).
Among them, 78 EAC tissues have both RNA-seq and DNA
methylation data. The transcriptome and methylation data

came from the Illumina HiSeq RNASeq platform and the
Illumina Infinium Human Methylation 450k platform,
respectively. Meanwhile, when studying the clinical prognosis,
samples with incomplete clinical information (including 16
EAC tissues) had been excluded (Table S1).

At the same time, we downloaded the EAC and esopha-
geal normal squamous tissue methylation expression data
set GSE81334 from GEO (https://www.ncbi.nlm.nih.gov/
geo/). We selected 56 cases of esophageal normal squamous
tissue and 23 cases of EAC in this data set for the next study.
The GSE81334 data set was built on the results of the Illu-
mina HumanMethylation450 BeadChip.

2.2. Identification of MDGs. First, the LIMMA package in R
software was used to normalize the downloaded data [17].
With the help of theMethylMix R software package, we obtain
the DNA methylation value of all CpG sites related to each
gene, and the total β value of each gene was calculated by aver-
aging all the methylation value. Then, the MDGs were identi-
fied with the screening criteria of (∣logFC ∣ >0:2, P < 0:05,
∣Cor ∣ >0:3). At the same time, Pheatmap R software package
was used to draw the differential distribution map of the
expression and methylation of these genes. Finally, we estab-
lished a β-mixed model with these MDGs. All data came
directly from the TCGA database and did not require the
approval of the local ethics committee.

2.3. Enrichment Analysis and Functional Annotations of the
MDGs. Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways of these MDGs were
performed using the R package cluster profiler based on the
http://org.Hs.eg.db database [18]. The GO and KEGG analy-
sis results were visualized using the enrichplot and the
GOplot package [19]. In addition, the signal pathway analysis
of MDGs was carried out by ConsensusPathDB, which
contains 32 different public databases and describes multiple
functional aspects of genes, proteins, complexes, and metab-
olites [20]. We set the P value < 0.05 as the default setting.

2.4. Construction of a Prediction Risk Model Based on the
MDGs. In order to screen out the MDGs related to the prog-
nosis of EAC patients, we used Survival R software package to
perform univariate Cox regression analysis, Lasso regression
analysis, and multivariate Cox regression analysis to
construct a prognostic risk model [21]. The regression coeffi-
cient was then multiplied by the corresponding mRNA level
to obtain the prognostic risk score. The screening criteria
were all P < 0:05.

2.5. Assessment of the Accuracy of the Risk Model. According
to the formula, the risk score of each EAC patient in TCGA
was obtained, and then, the median was taken to divide the
EAC patients into two groups (high-risk and low-risk). The
Kaplan-Meier survival analysis in the survival R package
was used to compare the overall survival (OS) rate of the
two groups [22]. Then, we used the survivalROC package
to draw a 3-year dependent receiver operating characteristic
(ROC) curve to evaluate the accuracy of the model [23].
The AUC value is between 1.0 and 0.5. When the AUC is
closer to 1, the diagnostic effect is better. In addition, the
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Figure 1: Heat map of MDGs between esophageal adenocarcinoma (EAC) and esophageal normal tissues. The blue rectangular bar at the top
of the figure represents esophageal normal tissues, and the red rectangular bar represents EAC tissues. (a) Heat map of mRNA expression of
MDGs: red: upregulated genes; blue: downregulated genes. (b) Heat map of DNA methylation β value: red: hypermethylated genes; green:
hypomethylated genes.
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clinical characteristics (age, gender, stage, T, M, and N) and
risk score were combined to perform univariate Cox analysis,
and multivariate analysis was then performed to further
determine whether the risk score was an independent risk
factor. At the same time, a stratified analysis was carried
out according to the clinical pathological characteristics of
the patient’s gender, tumor grade, and stage.

2.6. Validation of the Methylation Risk Model through the
GEO Data Set. The GSE81334 data set was used to verify
the difference in methylation levels of the four MDGs in
the model between normal esophageal squamous tissue and
EAC. Meanwhile, each sample was scored by the model
formula to verify the wide applicability of the model in tumor
and normal samples.

2.7. Survival Analysis of MDGs and Related Sites in the Risk
Model. In order to evaluate the independent prognostic
evaluation of eachMDG in the risk model, we conducted sur-
vival analysis on the methylation level of each MDG and per-
formed Kaplan-Meier curve analysis through the survival R
package. In addition, we used the Perl software package to
extract methylation-related sites from the methylation data
of EAC patients downloaded by TCGA. We combined meth-
ylation sites with corresponding transcriptome data to assess
the effect of methylation sites on their expression. ∣Cor ∣ >
0:45 was considered to be highly correlated [24]. We
performed a prognostic survival analysis for each highly cor-
related methylation site and drew a Kaplan-Meier curve
through the survival R package. P < 0:05 was considered
statistically significant.
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Figure 2: Typical examples of MDGs. (a, c) Correlation between methylation level and gene expression: the abscissa is the β value of the DNA
methylation, and the ordinate represents the mRNA expression of the gene. Cor is the correlation coefficient. (b, d) Distribution of
methylation level of MDGs: red curve: the methylation level of EAC tissue; green curve: the methylation level of normal tissue; 1: normal
tissue; 2: tumor tissue.
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Figure 3: Functional annotation and enrichment analysis of MDGs in EAC. (a) GO analysis is divided into three functional groups: biological
process (BP), cell component (CC), and molecular function (MF). The scatter plot shows the top 10 important GO items. (b) GO analysis of
significant enrichment items of MDGs in different functional groups. (c) The distribution of MDGs in different KEGG enrichment groups.
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3. Results

3.1. Identification of MDGs in EAC Patients from TCGA.
Download the methylation data of 87 specimens (78 cancer
specimens and 9 normal specimens) and 99 specimens (87
cancer specimens and 12 normal specimens) from TCGA.
First, we performed normalization and difference analysis
on the downloaded data through the LIMMA software pack-
age. Then, we assessed the correlation between the methyla-
tion level and the expression level of each gene based on
the MethylMix software package. With the standard of ∣
logFC ∣ >0:2, P < 0:05, and ∣Cor ∣ >0:3, we screened 273
MDGs related to EAC, including 250 hypermethylated genes

Table 1: Multivariate Cox regression analysis of 4 MDGs associated
with overall survival in EAC patients.

ID Coef HR HR 95L HR 95H P value

GPBAR1 7.29573 1473.992 9.667861 224729.3 0.004447

OLFM4 -4.06339 0.017191 0.000272 1.086215 0.054748

FOXI2 6.166957 476.7333 8.376708 27131.74 0.002783

CASP10 13.10559 491681.2 523.6679 4.62E+08 0.000175

Abbreviation: HR: hazard ratio.
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Figure 5: Prognostic risk model based on EAC MDGs. (a) The choice of the adjustment parameter λ by Lasso-penalized Cox regression
analysis. (b) Each curve represents a MDG. Tenfold cross-validation was utilized to calculate optimal lambda, which leads to minimum
mean cross-validation error. The vertical axis represents the mean-square error, while the horizontal axis represents the value of log (λ).
(c) EAC patients were divided into two groups according to the risk model score, and Kaplan-Meier survival curves were compared by
log-rank test. P < 0:001. (d) ROC curve of the 3-year overall survival rate of the risk model.
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and 23 hypomethylated genes (Table S2). The heat maps of
mRNA expression and DNA methylation β values of these
MDGs are shown in Figures 1(a) and 1(b).

At the same time, the MethylMix R software package was
used to draw a distribution map of the methylation degree of
MDGs. The two genes with the highest correlation between
these genes were selected as shown in Figure 2. The distribu-
tion of the degree of methylation indicated that in the normal
lung tissue group, ZNF518B and ZNF502 presented a hypo-
methylated state, while in the EAC cancer group, ZNF518B
and ZNF502 presented a hypermethylated state. In addition,
Figures 2(a) and 2(c) show the correlation between the meth-
ylation levels of ZNF518B and ZNF502 and their gene expres-
sions, respectively.

3.2. Functional Annotation and Enrichment Analysis of MDGs
in EAC. In order to further explore the molecular mechanism
of these MDGs during the progress of EAC, we used the R
clusterProfiler software package and the ConsensusPathDB
online database for function and pathway enrichment analy-
sis. Functional analysis showed that they weremainly involved

in cell development, DNA binding regulation, and transcrip-
tion regulation. GO analysis showed that in terms of BP, these
genes were enriched in “embryonic organ development,
embryonic organ morphogenesis, pattern specification pro-
cess.” In MF, genes were mainly involved in “DNA-binding
transcription activator activity, RNA polymerase II-specific,
DNA-binding transcription repressor activity, RNA polymer-
ase II-specific and RNA polymerase II activating transcription
factor binding.” In terms of CC, “integral component of
presynaptic membrane” was their main function (Figures 3(a)
and 3(b)).

KEGG showed that these MDGs were mainly enriched in
“Herpes simplex virus 1 infection.” Through the analysis of
the ConsensusPathDB approach, the methylation-driven
genes were mainly enriched in the gene expression, RNA
polymerase II transcription, and generic transcription path-
way (Figure 4).

3.3. Establishment of a Risk Model Based on EACMDGs.Uni-
variate Cox regression analysis was performed on the
obtained MDGs, and 16 MDGs related to EAC’s survival
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Figure 6: The prognostic value of the risk model based on 4 MDGs in EAC. (a) The risk score of each EAC patient in TCGA increases from
left to right. (b) The survival time and survival status of each EAC patient in TCGA. (c) The expression levels of MDGs in the risk model in the
low-risk group and the high-risk group.
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were screened out, and the model was further optimized
through Lasso regression analysis and multivariate Cox
regression analysis (Figures 5(a) and 5(b)). Finally, four
prognostic-related MDGs (GPBAR1, OLFM4, FOXI2, and
CASP10) were supposed to establish a prognostic risk model
(Table 1). Risk score = ð7:2957 × GPBAR1Þ + ð−4:0634 ×
OLFM4Þ + ð6:1670 × FOXI2Þ + ð13:1056 × CASP10Þ. Next,
the EAC patients in TCGA were scored according to the
scoring formula, the median was selected as the cutoff value,
and EAC patients were then divided into high-risk groups
(39 cases) and low-risk groups (39 cases). Kaplan-Meier
survival analysis results show that patients in the high-risk
group had poor survival rates (P < 0:01) (Figure 5(c)).

3.4. The Accuracy and Reliability of the Risk Model. From
Figure 5(d), the AUC value of the model’s 3-year overall
survival rate was 0.868. Compared with other clinical traits,
it can better reflect the prognosis of EAC patients.

Meanwhile, we established a similar prognostic model
based on mRNA expression levels. As shown in Supplemen-
tary Figure 1, although the prognosis model based on mRNA
expression can also distinguish the prognosis of the high- and
low-risk groups, its AUC value was 0.727, which was lower
than the previous model, indicating that its prediction
accuracy was lower than that of the methylation risk model.
At the same time, Figures 6(a) and 6(b), respectively,
showed the risk score, survival time, and survival status of
each EAC patient. It can be seen from Figure 6 that as the
risk score increased, the survival time of EAC patients
decreased and the proportion of deaths gradually increased.
Figure 6(c) showed the methylation levels of the 4 MDGs in
the low-risk group and the high-risk group.

At the same time, in order to further verify the indepen-
dent prognostic value of this model, we extracted EAC
patients with complete clinical information. Combining each
patient’s age, gender, stage, and pathological T, M, N, and
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Figure 7: Cox analysis on the impact of risk score and clinical characteristics on the survival of EAC patients. (a) Forest plot of univariate Cox
regression independent prognostic analysis of EAC patients. (b) Forest plot of independent prognostic analysis of multivariate Cox regression
for EAC patients. Hazard ratio > 1 represents risk factors for survival and hazard ratio < 1 represents protective factors for survival. T: tumor,
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Figure 8: Continued.
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risk scores, univariate and multivariate Cox regression anal-
yses were performed (Figures 7(a) and 7(b)). Both univariate
and multivariate Cox regression analyses showed that the
pathological stage and the prognostic risk score can be used
as independent prognostic factors.

3.5. Verification of the Risk Model by the GEO Data Set. In
order to verify the DNA methylation level of MDGs in the
risk model and the reliability of the risk model, we chose
the data set GSE81334 in GEO. As shown in Figures 8(f)–
8(i), in the EAC tumor group, FOXI2 was in a hypermethy-
lated state, while in the normal group, OLFM4 and CASP10
were in a hypermethylated state. These results maintained
the consistency of the results of the TCGA cohort study
(Figures 8(a)–8(d)). Interestingly, after scoring the EAC
samples and normal esophagus samples in GSE81334, the
EAC risk value was significantly higher than that of the
normal esophagus group (Figure 8(j)), which was consistent
with the results of the TCGA cohort.

3.6. Survival Analysis of MDGs in the Risk Model. To further
explore the independent prognostic value of each MDG in
the risk model, we combined the methylation level of each
MDG with the survival information of EAC patients in
TCGA and drew the survival curve. It can be observed in
Figures 9(a)–9(d) that only the methylation level of OLFM4
had an impact on the survival prognosis. The patient group
with a high OLFM4 methylation level had a better survival
prognosis than the patient group with a low OLFM4 methyl-
ation level. There was a statistical difference between the two
groups (P < 0:05). At the same time, there was no significant
differences in the survival prognosis of EAC patients grouped
based on the GPBAR1, FOXI2, and CASP10 methylation
levels. This indicated that OLFM may have an independent
prognostic correlation for EAC patients.

3.7. Correlation Analysis between Methylation Sites and
Corresponding Gene Expression Levels. To make a thorough
inquiry of the specific role of methylation sites for each
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Figure 8: Validate the risk model with the GEO data set. (a–d) DNAmethylation status of GPBAR1, OLFM4, FOXI2, and CASP10 in normal
and EAC cancer tissues in the TCGA database. (e) The risk values of normal and EAC cancer tissues in the TCGA database. (f–i) DNA
methylation status of GPBAR1, OLFM4, FOXI2, and CASP10 in normal and EAC cancer tissues in the GSE81334 data set. (j) GSE81334
data set normal and EAC cancer tissue risk values. Two-tailed P value by unpaired t test, ∗∗P < 0:0001, ∗P < 0:05.
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MDG in the risk model, we used Perl software to obtain the
methylation site information about GPBAR1, OLFM4,
FOXI2, and CASP10. We found that the GPBAR1 gene had
8 sites, of which only cg22678065 had a high correlation with
GPBAR1 (Figure 10(a)). The OLFM4 gene had 8 sites, of
which cg24932628 and cg12582008 were highly related to
OLFM4 (Figures 10(b) and 10(c)). The FOXI2 gene had 21
sites, of which cg26115633 and cg13929328 were highly
related to FOXI2 (Figures 10(d) and 10(e)). The CASP10
gene had 10 sites, of which cg12105450, cg04781494,
cg24401737, and cg24599065 were highly correlated with

CASP10 (∣Cor ∣ >0:45) (Figures 10(f)–10(i)). This means that
it is possible that these highly correlated sites have a compre-
hensive effect on the corresponding genes’ function.

After that, we performed survival analysis on the highly
correlated sites of genes. Using P < 0:05 as an important
indicator of prognosis, we found that there were only two
prognostic-related sites in these genes: cg24932628 and
cg12582008. The high methylation level of these two sites had
a better prognosis (Figure 11). This means that cg24932628
and cg12582008 may have independent prognostic effects on
EAC patients.
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Figure 9: Kaplan-Meier survival curve of MDGs in the risk model. (a) According to the GPBAR1 methylation level, the EAC patients in the
TCGA were divided into high and low groups and their survival curves were drawn. (b) According to the OLFM4 methylation level, the EAC
patients in the TCGA were divided into high and low groups and their survival curves were drawn. (c) According to the FOXI2 methylation
level, the EAC patients in the TCGA were divided into high and low groups and their survival curves were drawn. (d) According to the
CASP10 methylation level, the EAC patients in the TCGA were divided into high and low groups and their survival curves were drawn.
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Figure 10: Continued.
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4. Discussion

Esophageal cancer (EC) is a common malignant tumor in the
digestive system, and its morbidity and mortality rank
among the top ten in China [25]. Esophageal squamous cell
carcinoma (ESCC) and esophageal adenocarcinoma (EAC)
are the main histological subtypes of EC. Drinking and
smoking are the two main risk factors for ESCC [26], and
the pathogenesis of EAC is mainly related to the abnormal
proliferation of esophageal epithelial cells caused by gastro-
esophageal reflux disease (GERD) [27]. Despite surgical
treatment, radiotherapy, chemotherapy, and the use of
targeted drugs, the prognosis of EC is still very poor [28].
Recent studies have demonstrated that lung cancer and lung
nodules can be distinguished early by detecting changes in
DNA methylation in the blood. This also provides support
for us to establish a risk model based on methylation-

driven genes to predict the prognosis of EAC [29]. Therefore,
it is of great significance to establish a risk model for early
diagnosis and survival of EAC.

With the rapid development of bioinformatics and the
sharing of online databases, we can use big data to study
the molecular characteristics and genetic information about
EC and provide an effective basis for seeking potential
biomarkers. Epigenetics refers to changes in gene expression
that can be inherited without relying on changes in DNA
sequence [8]. DNAmethylation is one of the epigenetic mod-
ifications; it controls cell proliferation, differentiation, and
apoptosis in eukaryotes and directly or indirectly controls
tumorigenesis [30]. In particular, hypermethylation or hypo-
methylation in the promoter region of a gene will affect the
expression of the corresponding mRNA, thereby affecting
different stages of tumor development. Recent studies have
shown that DNA methylation has been widely used in the
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Figure 10: Gene methylation sites and gene expression level in risk model. (a) The correlation between methylation sites and gene GPBAR1
expression. (b, c) The correlation betweenmethylation sites and gene OLFM4 expression. (d, e) The correlation betweenmethylation sites and
gene FOXI2 expression. (f–i) The correlation between methylation sites and gene CASP10 expression.
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Figure 11: Continued.

16 BioMed Research International



0.0

Su
rv

iv
al

 ra
te

Time (year)

Survival curve (P = 0.934)

cg13929328 hypermethylation
cg13929328 hypomethylation

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

(e)

0.0

Su
rv

iv
al

 ra
te

Time (year)

Survival curve (P = 0.909)

cg12105450 hypermethylation
cg12105450 hypomethylation

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

(f)

0.0

Su
rv

iv
al

 ra
te

Time (year)

Survival curve (P = 0.206)

cg04781494 hypermethylation
cg04781494 hypomethylation

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

(g)

0.0

Su
rv

iv
al

 ra
te

Time (year)

Survival curve (P = 0.393)

cg24401737 hypermethylation
cg24401737 hypomethylation

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

(h)

Figure 11: Continued.

17BioMed Research International



diagnosis and prognosis of different cancer types [31]. Previ-
ous studies have shown that abnormal methylation patterns
of genes (APC, CdH1, CDKN2A, and ESR1) are not only
limited to adenocarcinoma tissues but also found in precan-
cerous BE tissues. This indicates that DNA hypermethylation
is an early epigenetic change in the multistep progression of
EAC [32]. In addition, the methylation frequency of multiple
genes (APC, ID4, MGMT, RUNX3, SFRP1, TIMP3, and
TMEFF2) found in metaplastic BE is similar to EAC. It shows
that gene methylation occurs in the early stage of Barrett’s
metaplasia [33]. Therefore, DNA methylation may become
one of the methods for early diagnosis of EAC. Recently, a
study on EC established an epigenetic signature to evaluate
the prognosis of EC [34]. However, the prognostic model
for EAC alone is still lacking. Therefore, it is still of great
significance to discuss the epigenetic changes of EAC and
the molecular mechanism of its progress separately.

In our current study, we screened out 273 MDGs between
EAC patients and normal samples from TCGA. In order to
examine the functional enrichment of these MDGs, we per-
formed GO and KEGG analysis. They had abundant molecu-
lar functions (Mf) with DNA binding transcription activator
activity. In cellular components (CC), these genes showed
abundant expression in the components of the presynaptic
membrane. In addition, the biological process (BP) showed
that they were mainly manifested in the process of embryonic
organ morphogenesis. These functions not only showed the
functions enriched by these MDGs but also showed how
abnormal DNA methylation affects genes.

To further establish a prognostic risk mode, we used uni-
variate Cox, Lasso regression, and multiple Cox regression
analyses to screen out MDGs related to survival. The results
showed that a risk model consisting of the four genes GPBAR1,

OLFM4, FOXI2, and CASP10 can be used as an independent
prognostic factor for EAC.

GPBAR1 (G protein-coupled bile acid receptor 1) is a
member of the G protein-coupled receptor (GPCR) superfam-
ily. GPBAR1 is implicated in the suppression of macrophage
functions and regulation of energy homeostasis by bile acids
[35]. A previous report stated that GPBAR1 is highly expressed
in human gastric adenocarcinoma and is positively correlated
with the expression of the epithelial-mesenchymal transition
(EMT) marker N-cadherin. It suggests that GPBAR1 may be
involved in gastric adenocarcinoma [36]. OLFM4 (olfactome-
din 4) is a secreted glycoprotein, usually called the antiapopto-
tic molecule GW112 [37]. Olfm4 is frequently upregulated in a
variety of human tumors, and the latest research shows that
the low expression of OLFM4 is independently associated with
the lymph nodemetastasis of EAC, so it may prove to be a new
biomarker [38]. FOXI2 plays a role during development,
especially in the early stages of craniofacial development
[39]. Its methylation status may be associated with an
increased risk of oral cancer and colorectal cancer [40, 41].
CASP10 belongs to the caspase class of promoters, which is
a homolog of caspase-8 and plays an important role in cell
apoptosis. CASP10 can inhibit the occurrence of tumors by
inhibiting ATP-citrate lyase-mediated and epigenetic repro-
gramming [42].

For the MDGs in the risk model, we further studied the
effect of their individual gene methylation levels on the prog-
nosis of EAC patients. The results showed that only OLFM4
had an effect on the prognosis of EAC survival, because DNA
methylation mainly occurs on CpG islands of genomic DNA.
Therefore, we also did a survival analysis on the relevant sites
of each methylation driver gene. We found that only two
related sites of OLFM4 in these genes, cg24932628 and

0.0

Su
rv

iv
al

 ra
te

Time (year)

Survival curve (P = 0.585)

cg24599065 hypermethylation
cg24599065 hypomethylation

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

(i)

Figure 11: Kaplan-Meier survival curve of relevant methylation sites. (a) GPBAR1-related methylation site survival curve. (b, c) OLFM4-
related methylation site survival curve. (d, e) FOXI2-related methylation site survival curve. (f–i) CASP10-related methylation site survival
curve.
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cg12582008, have an impact on the prognosis. This result
also confirmed that OLFM4may affect the occurrence, devel-
opment and patient prognosis of cancer through the abnor-
mal methylation of these two sites.

Compared with previous studies, we separately screened
the risk model of EAC MDGs on the prognosis of EAC
patients. The accuracy and reliability of the model are
verified, and the results show that the model has a certain
predictability for the prognosis of EAC patients.
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in the risk model in the low-risk group and the high-risk
group. (B) EAC patients were divided into two groups
according to the risk model score, and Kaplan-Meier survival
curves were compared by log-rank test. P < 0:001. (C) ROC
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