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Abstract

Motivation: Intimately tied to assembly quality is the complexity of the de Bruijn graph built by the assembler.
Thus, there have been many paradigms developed to decrease the complexity of the de Bruijn graph. One
obvious combinatorial paradigm for this is to allow the value of k to vary; having a larger value of k where the
graph is more complex and a smaller value of k where the graph would likely contain fewer spurious edges and
vertices. One open problem that affects the practicality of this method is how to predict the value of k prior to
building the de Bruijn graph. We show that optimal values of k can be predicted prior to assembly by using the
information contained in a phylogenetically-close genome and therefore, help make the use of multiple values of
k practical for genome assembly.

Results: We present HyDA-Vista, which is a genome assembler that uses homology information to choose a value
of k for each read prior to the de Bruijn graph construction. The chosen k is optimal if there are no sequencing
errors and the coverage is sufficient. Fundamental to our method is the construction of the maximal sequence
landscape, which is a data structure that stores for each position in the input string, the largest repeated substring
containing that position. In particular, we show the maximal sequence landscape can be constructed in O(n + n
log n)-time and O(n)-space. HyDA-Vista first constructs the maximal sequence landscape for a homologous
genome. The reads are then aligned to this reference genome, and values of k are assigned to each read using the
maximal sequence landscape and the alignments. Eventually, all the reads are assembled by an iterative de Bruijn
graph construction method. Our results and comparison to other assemblers demonstrate that HyDA-Vista achieves
the best assembly of E. coli before repeat resolution or scaffolding.

Availability: HyDA-Vista is freely available [1]. The code for constructing the maximal sequence landscape and
choosing the optimal value of k for each read is also separately available on the website and could be
incorporated into any genome assembler.

Introduction
The ability to accurately assemble genomes is a fundamen-
tal problem in bioinformatics that is vital to the success of
many scientific projects, including the 10,000 vertebrate
genomes (Genome 10K) [2], Arabidopsis variations (1001
genomes) [3], human variations (1000 genomes) [4], and
Human Microbiome Project [5]. The genome assembly
process aims to build contiguous sequences, called contigs,

predominantly from short read sequencing data. Other
sources of information have also been used to boost the
accuracy, including genetic linkage data [6], optical map-
ping data [7], and longer sequencing reads (e.g. PacBio
data) [8]. A potential source of information that has not
been fully explored is the information contained in phylo-
genetically-close genomes. The genome of an individual of
the same species or that of a phylogenetically-close species
can potentially be used as an extra source of information,
and increase the assembly quality. We argue that genome
assemblers can benefit from using a reference genome to
help guide the assembly process, particularly in those
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regions of the genome that are pervaded by repetitive
sequences.
In Eulerian sequence assembly [9,10], a de Bruijn graph

is constructed with a vertex v for every (k − 1)-mer pre-
sent in an input set of reads, and an edge

(
v − v′) for

every observed k-mer in the reads with (k − 1)-mer prefix
v and (k − 1)-mer suffix v′. A contig corresponds to a
non-branching path through this graph. SPAdes [11],
IDBA [12], Euler-SR [13], Velvet [14], SOAPdenovo [15],
ABySS [16] and ALLPATHS [17] all use this paradigm
for assembly. The majority of de Bruijn graph based
assemblers follow the same general outline: break the
(possibly error corrected) reads into k-mers, construct
the de Bruijn graph on the set of resulting k-mers, sim-
plify the de Bruijn graph, resolve the repeated regions by
using mate-pair information, and construct the contigs
(simple paths in the de Bruijn graph). Therefore, the
majority of assemblers require or allow the value of k to
be specified by the user.
The problem of determining an appropriate value of k

for the de Bruijn graph construction is important since
it has a direct impact on assembly quality; stated very
briefly, when k is too small the resulting graph is com-
plicated by spurious edges and vertices, and when k is
too large the graph becomes too sparse and possibly dis-
connected. Repetitive regions are especially problematic
for genome assembly since they inadvertently result in
spurious edges and vertices in the de Bruijn graph [18]
and are very sensitive to the choice of k. There has been
a significant effort in developing algorithms that will
choose an ideal value for k by preprocessing the
sequence reads, and thus, reduce the complexity of the
de Bruijn graph [11,12,19].
A more obvious combinatorial approach for building a

simplified de Bruijn graph would be to allow the value
of k to vary; having a larger value of k where the graph
is more complex and a smaller value of k where the
graph would likely contain fewer spurious edges and
vertices. A major difficulty in implementing this
approach is determining a practical method that makes
this idea feasible assembling large genomes. Peng et al.
[12] and Bankevich et al. [11] both introduced assem-
blers that use various values of k. IDBA builds the de
Bruijn graph in an iterative manner from k = kmin to k =
kmax; these values of k are predetermined and (by
default) do not change for different datasets or genomes.
At iteration i, the de Bruin graph for ki is built from the
current set of reads and the contigs for that graph are
constructed, then all the reads that align to at least one
of those contigs are removed from the current set of
reads. In the next iteration the graph is built by convert-
ing every edge from the previous graph to a vertex while
treating contigs as edges. SPAdes [11] uses a similar
approach but uses all the reads at each iteration.

While this method has been shown to greatly improve
assembly quality [11,12], it is not efficient since all the
reads are assembled at each iteration. Thus, one chal-
lenge that remains to be addressed is how to efficiently
determine which values of k should be used for this
iterative assembly process and how to assign a k-mer
value for each read. If this could be accomplished prior
to assembly of the de Bruijn graph(s) then these iterative
assembly methods could be made more efficient without
degrading the assemblies quality.
Our contribution. We introduce an efficient algorithm

for determining an optimal value of k for each read
prior to constructing the de Bruijn graph, and imple-
ment this method into a modified version of HyDA, a
de novo assembler developed by Movahedi et al. [20].
This modified assembler, which we refer to as HyDA-
Vista, takes as input a phylogenetically-close genome
and a set of paired-end reads. Imperative to HyDA-Vista
is the construction of the maximal sequence landscape,
which is a data structure that stores for every position
in the input string, the longest repeat containing it.
Prior to de Bruijn graph construction, HyDA-Vista con-
structs the maximal sequence landscape for the phylo-
genetically-close genome, and aligns the reads to the
reference genome. The alignment and landscape allows
the optimal value of k for each read be determined in
linear time in the length of the read, provided the read
is longer than the longest repeat. These values of k are
“optimal” in the sense that for unchanged parts of the
genome, the de Bruijn graph will have no spurious
edges or vertices if there are no sequencing errors, and
the length of the repeat is smaller than the read length.
Unaligned reads are assigned a default value of k. After
the assignment of values of k to each read, HyDA-Vista
constructs the de Bruijn graph in an iterative manner.
Our approach for choosing values of k for each read

takes into consideration the repeat structure of the gen-
ome, which enables us to avoid overly-complex regions
of the graph since the assignment of values of k to reads
is done prior to the assembly rather than during the
assembly. We compare HyDA-Vista versus IDBA [12],
SPAdes [11], SOAPdenovo [15], ABySS [16] and HyDA
[20]. Our results demonstrate that HyDA-Vista produces
the best assembly of E. coli before repeat resolution or
scaffolding. We aim to achieve the best assembly with-
out repeat resolution and scaffolding and note that such
methods could be applied to all these initial assemblies.
Lastly, we demonstrate that this method improves the
efficiency of iterative assembly.
Roadmap. We review related tools for the problem in

the remainder of this section. Section then sets notation
and formally lays down the problem and the data struc-
tures that will be used for the construction of the maxi-
mal sequence. We formally define the maximal sequence
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landscape in Section. Section gives details of HyDA-Vista.
In Section we give results that demonstrate how HyDA-
Vista compares against competing assemblers. Finally,
Section offers reflections and some future areas of
research that warrant investigation.
Related work. The re-sequencing methods include

LOCAS and SUPERLOCAS [21,22], e-RGA [23], Colom-
bus module of Velvet [24] and IDBA-Hybrid [25]. Since
these methods aim to determine structural variations
between species, and require extremely high sequence
similarity to produce reasonable results, they have only
been applied to individuals of the same species. Our
focus is to produce high quality de novo assemblies
using homology information contained in the reference
genome of the same species or phylogenetically-close
species. Gnerre et al. [26] also consider how to improve
assembly quality by using the alignment of reads to a
reference genome. Their method simultaneously builds
a de novo assembly from the reads and aligns these
same reads to one or more related genomes. The align-
ment is then used to improve the assembly quality, e.g.,
reads that were not used in the assembly are incorpo-
rated into the assembly using the alignment.
Complementary to the work of Chikhi and Medvedev

[19], Peng et al. [12], and Bankevich et al. [11], there
has been an effort in developing methods that use
paired-end data to constrain the construction of the de
Bruijn graph [21,27-30]. Medvedev et al. [29] introduced
the concept of a paired de Brujin graph. Since the insert
size is variable among mate pairs, this method requires
that all the paths within some threshold be considered
in order to ensure an edge is not missed. Thus, Banke-
vich et al. [11] improve upon this idea by developing
the rectangle graph, which eliminates the need to con-
sider all paths. Vyahhi et al. [30] furthered this study of
rectangle graphs for genome assembly. These methods
merit mentioning the goal of these methods is the same
as the goal of increasing the value of k in certain
regions; both aim to minimize spurious edges and
branching in the graph but in a different manner.
Determining all maximal exact repeats in a string has

been previously studied [31-33]. It has been shown that
all maximal repeats of a string can be found and stored
in O(n)-time and O(n)-space using a suffix tree
(although the output maybe of size Θ(n2)) or directed
acrylic graph [32]. Therefore, the maximal sequence
landscape, which we define in this paper, can be con-
structed from either a suffix tree or a directed acrylic
graph in O(n)-time and O(n)-space using these algo-
rithms directly or adapting them. However, the constant
in the order notation of the space complexity of these
constructions is relatively large. The algorithm we pre-
sent uses a suffix array and thus, requires linear space
with a smaller constant and O(n log n)-time. Hence, we

pay a log n cost in time to remove the large constant
from the linear space time. We also note that the related
problem of finding inexact maximal repeats also has
been previously studied [34-37].

Background
Strings. Consider a fixed alphabet Σ = {s1,..., sm} and a
total order ≤L defined over Σ = Σ ∪ {$} where $ ∉ Σ, and
for all s ∈ Σ we have $ ≤L s. We denote a finite string s
as s1s2 ... sn, where si ∈ Σ. We use sij , where 1 ≤ i ≤ j ≤ n,
to indicate substring sisi+1 sj of string s. We call sub-
strings sPre

i = s1i and sSuf
i = sin with i ∈ {1, . . . , n} the ith

prefix and ith suffix of s respectively. Based on the total
order ≤L, we define a lexicographical total order on the
strings in Σ*.
Arrays. We denote arrays of integers by all capital letter

strings like A, SP, LCP, etc. A[i], with 1 ≤ i ≤ |A|, stands
for the integer in the ith cell of array A. Also, A[i, j] indi-
cates the projection of A onto indices i to j, inclusive of
both ends. For an array A, with |A| = n, that holds a per-
mutation of integers {1, ..., n}, index array of A is another
array I(A) with |I(A)| = n such that I(A)[i] = j if and only
if A[j] = i.
Suffix and longest common prefix arrays. SAs, for some

string s, denotes the suffix array associated with s [38]. SAs

[i] = l for i ∈ {1, ... , n} if and only if sSuf
l is the ith string in

the lexicographically sorted list of all suffixes of s. We also
indicate the longest common prefix array of some string s
with LCPs, and LCPs[i] = l for i ∈ {1, . . . , n − 1} if and
only if the length of the longest common prefix between
sSuf
SAs[i]

and sSuf
SAs[i]+1 equals to l.

Approach
The maximal sequence landscape
We formally define the maximal sequence landscape in
this section. Clift et al. [32] introduced the concept of a
sequence landscape, which is a data structure that stores
the occurrences of any substring from a source string s
in a target string t. In set representation, the sequence
landscape Lt|s of a target string t with respect to a
source string s is defined as a set of tuples {m1, m2, ...,
ml}, where mi = (bi, ei, fi) corresponds to the occurrence
of substring sbi ei = sbi sbi +1 sei from s in t with fre-
quency fi. If s and t are equal then the sequence land-
scape categorizes all repeated substrings in the source
string s. We define to this special case where s = t as
the self sequence landscape. Figure 1 illustrates an exam-
ple of a self sequence landscape and a sequence land-
scape. Given a position i of the input string s, all the
repeated substrings containing si can be recovered from
the self sequence landscape in linear-time in the number
of different repetitions.
The occurrences of the substrings in the source string

are defined as mountains. This terminology reflects the
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visual representation that was first introduced by Clift
et al. [32] that illustrates each occurrence as a mountain
having height equal to the length of the substring, i.e.
the height of mountain mi of Lt|s is denoted as h(mi)
and equal to ei − bi + 1. The peak of each mountain is
labelled with the frequency of the substring correspond-
ing to it. In Figure 1 (left), the substring CAT is repre-
sented as two mountains each of which has a height
equal to three and frequency equal to two.
We say that a mountain mj = (bj , ej , fj ) in a land-

scape Lt|s covers index i and denote it by mj Δ i if and
only if i ∈ {bj ..., ej }. Hence, the cover set of a specific
index i of the sequence landscape Lt|s is the set of all
the mountains that covers i. We denote the cover set as
CLt|s (i) and define it as follows:

CLt|s (i) =
{
mj|mj�i, h

(
mj

)
> 1.fj > 1

}
. (1)

Lastly, we define the summit of index i as the highest
mountains in its cover set. We denote the summit of i
by SLt s (i) and define it as follows:

SLt|s (i) =
{
mj|h

(
mj

) ≥ h (mk) ∀mk ∈ CLt|s (i)
}

. (2)

Please note that the summit of index i can be empty
or non-unique so the height of summit of index i is
defined to be zero for empty set.
Definition 1 The maximal sequence landscape, which

we denote as L∗
t|s, is the set of the summits of all positions

in s that have frequency greater than one. L∗
t|s can be for-

mally defined as follows: L∗
t|s =

{
SLt|s (i) |i = 1, . . . , n

}
The

maximal sequence landscape is highlighted in light grey
in Figure 1.
The maximal sequence landscape is obtained from the

sequence landscape by removing all mountains except
those that are highest and have frequency greater than

one at each position. In the case of the maximal sequence
landscape constructed from a self sequence landscape,
this results in a data structure containing the longest
repeat at each position of the input string. In Subsection
we give an algorithm that builds the maximal sequence
landscape and returns an array containing the length of
the longest repeat at each position of the input string.
Therefore, given a position i in s, we can determine the
length of the longest repeat in s containing that position
in constant time by simply indexing the maximal
sequence landscape at position i. By choosing a value for
k that is larger than the length of this repeat it can guar-
anteed that there will be no branching in the correspond-
ing vertices of the de Bruijn graph, if the same substring
is not repeated in changed parts of the genome that is
being assembled. This is our idea based on which we
determine the optimal value of k for each read. We con-
sider the maximal sequence landscape constructed from
the self sequence landscape for the remainder of this
paper since it is what is used by HyDA-Vista.

Methods
Algorithm 1 gives an overview of HyDA-Vista algo-
rithm. We explain each of these steps in detail in the
subsequent subsections.
Algorithm 1 An overview of HyDA-Vista
1: Build the maximal sequence landscape for the refer-

ence genome.
2: Align all reads to the reference using BWA.
3: For each aligned read: assign a value of k using the

maximal sequence landscape.
4: Unaligned reads are assigned a value of k using a

heuristic.
5: The de Bruijn graph is constructed in an iterative

manner, as shown in Algorithm 2.

Figure 1 (left)The self sequence landscape for CATCATTTG, and (right) the sequence landscape of another string
GGCATCATTGGGTATAACC with respect to CATCATTTG. The mountains (light grey or black) demonstrate occurrences of substrings of source
string in the target string. Numbers at the peak of the mountains denote the frequency of occurrence. The maximal sequence landscape is
highlighted in light grey, and the arrows demonstrate the ascent and descent of the landscapes.
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Construction of the maximal sequence landscape
In this section we demonstrate that the maximal
sequence landscape for an input string s can be built in
O(n + n log n)-time and O(n)-space using a simple algo-
rithm, where n is the length of s. Our method relies on
the use of suffix array and longest common prefix array
and thus, begins by building the suffix array (SAs) and
the longest common prefix array (LCPs). This construc-
tion can be done in O(n)-space and O(n)time [39]. Two
other auxiliary data structures are constructed at the
beginning of the algorithm. However, we delay the defi-
nition of these to later in this section. The algorithm
then iterates through each position of s and finds the
longest repeated substring in s that contains it using
SAs, LCPs, and the auxiliary data structures. An impor-
tant aspect of our algorithm that allows us to achieve O
(n + n log n)-time is that we only search the interval of
SAs that is between the indices SAmin and SAmax at each
iteration; not the entire array. In other words this invar-
iant holds at each iteration of our algorithm: [SAmin,
SAmax] holds the the interval in the suffix array that cor-
responding suffixes share the same prefix. This prefix is
the longest repeat that has been seen so far and covers
that position. Thus, each time the largest repeated sub-
string is found for a particular position, the maximal
sequence landscape, SAmin, and SAmax are updated for
search at the next iteration. Two possibilities exist at each
iteration i of the algorithm when we are processing si;
(a) The longest repeated substring at position i - 1 can

be extended by appending si. The maximal sequence
landscape, SAmin, and SAmax are updated.
(b) The longest repeated substring at position i - 1

cannot be extended by appending si (either the extended
string does not occur or it does occur but its frequency
is one). Let p = sj ... si−1 be the longest repeated sub-
string yet found that contains si−1 , and p′ = sj+1 · · · si be
the string obtained by removing the first letter of p and
appending si. If the frequency of occurrence of the p′ is
greater than one, then the maximal sequence landscape,
and the search interval is updated as in (a). Otherwise,
the search for the longest repeated substring continues
by eliminating the first character of p′ each time until a
repeating match is found or the null string is reached. If
the null string is reached then the maximal sequence
landscape is empty at that position and the search inter-
val is updated to [1, n].
The search interval contains all indices in SAs for

which the corresponding suffixes have the current long-
est repeated substring as a prefix. In (a), the interval is
updated by performing binary search. In (b) the search
interval is no longer valid since we removed a letter
from the beginning of the current longest repeated sub-
string and we need (a more complicated) scheme to effi-
ciently find the correct search interval. To accomplish

this we need two auxiliary data structures that are con-
structed at the beginning of the algorithm: the SPs array,
and an ordered binary search tree containing all conse-
cutive intervals of LCPs. SPs[j] holds the index in SAs
that is obtained by removing the first letter from the
beginning of sjsj+1 · · · sn in order to obtain sj+1 · · · sn. This
array can be built in linear time by scanning the index
array of SAs. Thus, to find the correct interval in (b), we
locate an index of SAs (denoted as sp) where the corre-
sponding suffix contains sj+1 . . . si−1 as a prefix, and find
the largest interval around sp where all the suffixes in
the interval have sj+1 . . . si−1 as prefix. This is the new
search interval. The sp index can be found in constant
time by correctly indexing SPs . The second step is
equivalent to finding the largest interval [d, u] around
sp that for all j ∈ [d, u] we have LCPs

[
j
] ≥ ∣

∣p′∣∣ − 1. This
can be done in O(log n)-time and O(n)-space using an
ordered binary search tree.
The time complexity can be seen by first noting that at

each iteration of the algorithm the maximal sequence
landscape either ascends by one after a number of des-
cents (possible zero) or it is undefined after a number of
nonzero descents, and each of these ascents or descents
require O(log n)-time. Note that in (a) the maximal
sequence landscape is ascending, and in (b) the maximal
sequence landscape is descending, and the frequency of a
substring in s can be determined in constant time using
LCPs. Second, since each time it ascends one character
from s is processed and the number of ascents equals the
number of descents, the total number of ascents and des-
cents is 2n. Therefore, since the data structures are con-
structed in O(n)-time, and since there are at most 2n
ascents or descents which take O(log n)-time, the run-
ning time of the algorithm is O(n + n log n).

Assignment of k-mer sizes to reads
We assign values of k to the reads using the maximal
sequence landscape constructed for the reference gen-
ome by first aligning the reads to the reference genome
using BWA (version 0.7.4) [40] in pairedend mode. We
consider all forward and reverse alignments of every
read. Let p be the position in the reference genome
where a read of length l aligns, and let k* be the maxi-
mum of {MSL[p] + 1, MSL[p + 1] + 1, ... , MSL[p + l] +
1}, where MSL is the maximal sequence landscape array
that contains the height of the maximal sequence land-
scape at each position. We compute k* for each forward
alignment and let K* be the set of all these values. The
optimal value of k for the (forward) read is equal to the
maximum value in K*. We follow the same procedure
for the reverse alignments with the exception that we
compute the reverse complement of the read. Thus, the
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optimal values of k can be computed in linear time in
the length of the read.
If the computed k-mer size (maximum of all maximal

sequence landscape heights of all aligned nucleotides) is
larger than the read length, then a default value (k = 77
is the default) is used instead. Unaligned reads are also
assigned a default k-mer value (k = 55 is the default).

The de Bruijn graphs
Let R = {r1,..., rN } denote the set of reads. We also
denote the k-mer size assigned to ri in the previous sec-
tion by K(ri). In the first step of constructing the assem-
bly de Bruijn graphs, we partition R into Rk := {r ∈ R |
K(r) = k}, in which k ranges from kmin = minr∈R K(r) to
kmax = maxr∈R K(r). The HyDA-Vista assembly proce-
dure, shown in Algorithm 2, iteratively builds de Bruijn
graphs Gkmin , · · · , Gkmax with k = kmin,..., kmax respectively
and obtains Akmin , . . . , Akmax assembly contig sequences
after iterative graph condensation and error removal.
Each Gk is constructed from the reads whose assigned
k-mer size is not more than k and the contigs resulting
from Gk−1 constructed in the previous iteration,

k∪
j=kmin

Rj ∪ Ak−1. (3)

The rationale behind this idea is that those reads that
have an assigned k-mer size not more than k should ide-
ally not create any repeats when they are assembled
with the k-mer size k. The iterative inclusion of contigs
from previous rounds, first introduced in IDBA [12] and
later adopted by others [11], is an idea that has already
shown merit in improving assembly quality. In Algo-
rithm 2, HyDA is a function that accepts a set of input
sequences and an integer k, and returns a set of contigs
which are obtained from assembling the input sequences
with a k de Bruijn graph.
Algorithm 2 Construction of the de Bruijn graphs
1: function HyDA-Vista(R, K)
2: kmin ← min

r∈R
K (r) , kmax ← max

r∈R
K (r)

3: for all kmin ≤ k ≤ kmax do
4: Rk ←	 0
5: end for
6: for all r ∈ R do
7: k ¬ K(r)
8: Rk ¬ Rk ∪ {r}
9: end for
10: R′ ←	 0
11: Akmin−1 ←	 0 ▷ assembly contigs
12: for k := kmin to kmax do
13: R′ ← R′ ∪ Rk
14: Ak ← HyDA

(
R′ ∪ Ak−1, k

)
▷ contigs result-

ing from assembly with HyDA
15: end for

16: return Akmax

17: end function

Results
Improved efficiency due to maximal sequence landscape
HyDA-Vista uses the maximal landscape to break the
reads into groups by assigning each a value of k. It then
uses these groups to build the graph iteratively. This is
in contrast to other methods that also iteratively build
of the graph; SPAdes [11] uses all the reads at each
iteration, and IDBA [12] uses a more complicated
approach to remove some subset of reads at each itera-
tion. Thus, one of the main advantages of using the
maximal sequence landscape is that it increases the effi-
ciency of building the assembly graph iteratively without
degrading assembly quality (see the next subsection for
a comparison of the different assemblers). To demon-
strate this efficiency experimentally we ran HyDA-Vista
with and without the maximal sequence landscape on
multicell E. coli (substr. K-12) Illumina data and the
E. coli (substr. K-12) reference genome. See Subsection
for a description of this dataset. Without the maximal
sequence landscape the assembly took 1,414 minutes,
and with the maximal sequence landscape the assembly
took 822 minutes with 42 number of minutes for build-
ing the maximal sequence landscape and assigning the
values of k to the reads.

Comparison between competing assemblers and
HyDA-Vista on E.Coli
The first data set consists of approximately 27 million
paired-end 100 bp reads from multicell E. coli (substr.
K-12), generated by the Illumina Genome Analayzer
(GA) IIx platform. It was obtained from the NCBI Short
Read Archive (accession ERA000206, EMBL-EBI
Sequence Read Archive). To assess assembly quality, we
aligned the reads to the E. coli reference genome (substr.
K-12) using BWA (version 0.5.9) [40] with default para-
meters. We call a read mapped if BWA outputs an
alignment for it and unmapped otherwise. Analysis of
the alignments revealed that 98% of the reads mapped
to the reference genome, representing an average depth
of approximately 600×; An analysis using BLAST against
known contaminants revealed that the unmapped reads
are attributed to minor contamination of the sample
[41]. All reads were error corrected using BayesHammer
[42] with default parameters.
KmerGenie [19] predicted 41 to be the optimal k-mer

value for this dataset. Therefore, for the assemblers that
require a single value of k to be specified (SOAP-
denovo, ABySS, HyDA) we used k = 41. HyDA and
HyDA-Vista were ran with a cut off of five. All other
parameters of SOAPdenovo and ABySS were kept at
their default. SPAdes and IDBA were run with their
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default parameters in single-end mode. Since the input
reads were corrected prior to assembly, the reported
data for SPAdes is from the “only assembly” stage.
IDBA was run with and without error correction, yield-
ing the same statistics as expected.
Table 1 gives the standard assembly statistics of all the

assemblies. All statistics in Table 1 were computed by
QUAST in default mode [43]. The results demonstrate
that HyDA-Vista achieves the best assembly prior to
repeat resolution or scaffolding. Note that upon deter-
mination of k-mer sizes, all assemblers were run in sin-
gle-end mode, i.e., ignoring the pairing information, to
study only the effect of our k assignment on contigs.
HyDA provides a skeletal de Bruijn graph implementa-
tion on which other technologies can be developed.
HyDA alone does not compete with some of the state of
the art assemblers such as SPAdes and IDBA that
employ multiple sophisticated technologies. However,
empowered by only the maximum landscape informa-
tion without any other sophisticated technology particu-
larly pairing information, HyDA-Vista increases the N50
and NG50 more than twice (in comparison to HyDA)
and outperforms the competing assemblers in all mea-
sures (the NG50 of 36 kbps obtained by HyDA increases
to 82 kbps by HyDA-Vista).

Conclusion
We demonstrated that HyDA-Vista achieves superior
performance with respect to standard assembly statistics
for ecoli genome before repeat resolution and scaffold-
ing. A crucial aspect of our method is the construction
of the maximal sequence landscape for the phylogeneti-
cally-close genome, which allows for the optimal k-mer
value to be computed for each read. The maximal
sequence landscape requires that a pair of substrings be
an exact match in order for them to be considered to be
the same repetition. An area that warrants future inves-
tigation is determining if there is an efficient algorithm
for computing the maximal sequence landscape for
inexact matches, i.e., the maximal sequence landscape

with the condition that two substrings x and y are con-
sidered to represent the same repetition (mountain) if
the Hamming distance or edit distance between the two
is at most d, where d is a parameter in the problem.
Another open problem is determining whether the max-
imal sequence landscape could be constructed with only
a suffix array. Since all the data structures (including the
suffix array) are constructed in O(n)-time and O(n)-
space the order notation of the running time of such a
maximal sequence landscape construction algorithm
would likely not improve the running time of the exist-
ing algorithm by more than a small constant factor.
However, the removal of the auxiliary data structures
may simplify the algorithm and would be of theoretical
interest.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
B.S. observed the possibility of using sequence landscape for improving
sequence assembly and introduced the concept of maximal sequence
landscape. C.B. and B.S. conceived the project, defined the problem, and
designed the maximal landscape algorithm. H.Ch. and N.S.M.T. designed the
assembly algorithm. B.S., N.S.M.T., and H.Ch. implemented the algorithms. B.
S., N.S.M.T., and C.B. ran the experiments and interpreted the results. B.S., C.B.,
and H.Ch. wrote the manuscript.

Declarations
B.S. and C.B. were funded by the Colorado Clinical and Translational Sciences
Institute which is funded by the National Institutes of Health (NIH-NCATS,
UL1TR001082, TL1TR001081, KL2TR001080). N.S.M.T.and H.Ch. were funded by
the National Science Foundation through grant number DBI-1262565 to H.
Ch. Publications costs were covered by computer science department of
Colorado State University.
This article has been published as part of BMC Genomics Volume 15
Supplement 10, 2014: Proceedings of the 25th International Conference on
Genome Informatics (GIW/ISCB-Asia): Genomics. The full contents of the
supplement are available online at http://www.biomedcentral.com/
bmcgenomics/supplements/15/S10.

Authors’ details
1Department of Computer Science, Colorado State University, Fort Collins,
CO, USA. 2Department of Computer Science, Wayne State University, Detroit,
MI, USA.

Published: 12 December 2014

Table 1 The performance comparison between major assembly tools and HyDA-Vista on the error-corrected standard
multicell E.coli dataset (6.2 Gbps, 28 million reads, 100 bp, treated as single-end) using QUAST in default mode [43].

Assembler NGA50 NA50 Largest (bp) Total (bp) MA GF (%) Unaligned (bp)

SOAPdenovo 32,032 35,343 101,201 4,304,232 3 95.2 3,421

ABySS 31,237 32,987 110,012 4,530,701 0 97.56 0

SPAdes 60,338 60,768 173,976 4,545,775 0 97.8 3,001

IDBA 57,826 58,549 173,964 4,538,426 0 97.7 2,349

HyDA 36,292 39,069 123,771 4,524,075 0 97.4 0

HyDA-Vista 82,838 94,910 204,602 4,544,286 0 97.9 0

All statistics are based on contigs no shorter than 500 bp. Since there are not (QUAST-defined) misassemblies in any of the assemblies, the length statistics are
based on correct contigs. NGA50 (NA50) is a (QUAST-corrected) contig size the contigs larger than which cover half of the genome (assembly) size [43,44]. Total
is sum of the length of all contigs. MA is the number of misassemblies. GF is the genome fraction percentage, which is the fraction of genome bases that are
covered by the assembly. Unaligned is the total length of all of the contigs that could not be aligned to the reference.
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