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Abstract: Snowpack is an important fresh water storage; the retrieval of snow water equivalents
from satellite data permits to estimate potentially available water amounts which is an essential
parameter in water management plans running in several application fields (e.g., basic needs,
hydroelectric, agriculture, hazard and risk monitoring, climate change studies). The possibility
to assess snowpack height from Global Navigation Satellite Systems (GNSS) observations by means
of the GNSS reflectometry technique (GNSS-R) has been shown by several studies. However,
in general, studies are being conducted using observations collected by continuously operating
reference stations (CORS) built for geodetic purposes and equipped with geodetic-grade instruments.
Moreover, CORS are located on sites selected according to criteria different from those more suitable
for snowpack studies. In this work, beside an overview of key elements of GNSS reflectometry,
single-frequency GNSS observations collected by u-blox M8T GNSS receivers and patch antennas
from u-blox and Tallysman have been considered for the determination of antenna height from the
snowpack surface on a selected test site. Results demonstrate the feasibility of GNSS-R even with
non-geodetic-grade instruments, opening the way towards diffuse GNSS-R targeted applications.

Keywords: GNSS reflectometry; snowpack characterization; low-cost GNSS receivers; GNSS single-
frequency signals

1. Introduction

Initially developed for positioning, navigation and timing purposes, Global Navigation
Satellite Systems (GNSS) nowadays are being widely used in many and different application fields,
e.g., in geodesy, geodynamics, tropospheric and ionospheric sensing and monitoring, geomatics and
surveying, space applications and so on. On one hand, precise point positioning (PPP) and differential
positioning (DP) models are adopted on a standard base in high precision applications, on the other,
GNSS instruments operate as sensors for observation and further understanding of many natural
phenomena. For an in-depth discussion about GNSS fundamentals, models and applications see [1]
and references therein and also [2] for GNSS in environmental sensing.

One of the first applications of GNSS in a non-conventional field was presented by Martin-Neira
in 1993 [3]. For the study of oceanic surface Martin-Neira presented a methodology focused on Global
Positioning System (GPS) signals reflected by the water surface rather than on direct signals emitted
by satellites only. Disturbances induced by signal reflections were related to the distance between the
GPS antenna and the reflective surface.

In the following years, many further studies focused on the possibilities offered by reflectometry,
not only in the oceanographic field [4–6] but also for other purposes such as determination of soil
moisture [7,8], ice and snow monitoring [9–18] and as a remote sensing tool for agriculture [19]. In the
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early studies specific instruments setup were realized, in particular involving antennas with opposite
polarization: one mounted in a standard “face-up” way for the detection of direct signals and one
mounted “face-down” for the detection of reflected signals. Nowadays, in what is knows as GNSS
Reflectometry (GNSS-R), measurements from a single antenna with standard pointing are being used
to collect observations of the interference between reflected and direct and signals [1,20–22].

In standard GNSS-R applications, geodetic-grade GNSS instruments are used, in particular,
from existing Continuously Operating Reference Stations (CORS). This kind of station is equipped
with high quality antennas and receivers with specific hardware (antenna radiation patterns and
physical shielding), firmware solutions and technologies specifically designed to suppress or mitigate
as much as possible multi-path effects on the GNSS measurements [23–29]. The implementation
of solutions of that kind essentially implies a degradation of the quantity which one try to exploit
more in GNSS-R. Low-cost GNSS instruments are equipped with less powerful multi-path mitigation
technologies. On the other hand, electronic components of low-cost instruments are of lower quality
with respect to those of geodetic-grade instruments.

On the basis of seminal works leaded by Kristine Larson [10,11,14] in this work u-blox receivers
with u-blox and Tallysman patch antennas were tested, along with Leica receivers and antennas,
to evaluate the performance of GNSS-R in retrieving antenna heights above snowpack surface from
single-frequency observations. GNSS acquisition campaigns were performed in ad-hoc selected sites
and for relatively short time acquisition sessions. For short acquisition sessions snow density and snow
complex permittivity can be considered constant. In this work, a few centimeters away form antennas
installed in conventional position (face-up), other antennas were mounted face-down to empirically
investigate the possibility to exploit some portions of antenna radiation patterns once reversed.

Computations were performed using originally developed code in Matlab language along with
existing Matlab functions. Standard GNSS software, such as teqc [30] and gfzrnx [31], were used to
ease as much as possible the processing of observations files from many receivers and observations
files in both RINEX 2.x and 3.x format.

In the next section an overview of GNSS-R principles is provided. Then data collection and
processing are presented. Results and Discussions sections close the paper.

2. GNSS-R in Short

GNSS signals are Right Hand Circularly Polarized (RHCP) after a reflection polarization changes
so that reflected signals are Left Hand Circularly Polarized (LHCP) [1,21]. The interference between
direct and reflected signals produce a characteristic disturbance visible on Signal-to-Noise Ratio (SNR)
data, usually used as a proxy of signal quality, see Figure 1a. GNSS user antennas present a dual
polarization, RHCP for direct signals and LHCP for reflected signals, and specific radiation patterns
for each polarization. Radiation patterns are optimized to facilitate omnidirectional acquisition of
RHCP signals (high gain) and to reduce antenna sensitivity to LHCP signals (low gain). In Figure 1b
RHCP and LHCP radiation patterns for L1 frequency are sketched.

In general, for elevation angles greater that around 10–15 degrees, the RHCP gain is larger than
the LHCP gain. However, for low angles the differences become smaller and for very small or negative
angles the radiation patterns are designed to be as low as possible. Beside the interference impact,
SNR values depend on satellite elevation angle. The SNR signal can be seen as the result of the
sum of a signal with high amplitude and low frequency (direct component, SNRD) and a signal
with low amplitude and high frequency (reflected component, SNRR). The high frequency signal
presents a lower amplitude due to design features of radiation patterns and appears more clearly at
low elevation angles. For high elevation angles SNRR, amplitude is lower than observations noise
while for low satellite elevations the multipath effect is clearly visible.

To remove the SNRD component and isolate the signal generated by surface reflections one should
model antenna radiation patterns which are rarely released to users. As an alternative, the amplitude
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of the direct component can be removed after a low order polynomial fitting exposing the SNR
component due to multipath (SNRR).
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Figure 1. Schematic representation of (a) radiation patterns of a GNSS antenna and (b) samples of SNR
observations on L1 band acquired using geodetic-grade instruments.

In Figure 2 typical SNR data for Galileo, GPS and GLONASS signals for descending tracks are
reported along with samples of direct and residual reflected SNR components decoupling.
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Figure 2. Cont.
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Figure 2. SNR observations with modeled direct component and residual reflected component for
descending tracks of (a) Galileo E8 (signal E1), (c) GPS G15 (signal L1) and (e) GLONASS R14
(signal L1) satellites with relative skyplots for (b) Galileo E8, (d) GPS 15 and (f) GLONASS R14
satellites.

The relationship between SNR values, amplitude and phase of direct and reflected signals can be
easily derived in the case of horizontal reflector exploiting a polar representation of amplitude-phase
quantities. In this case the following equality holds:

SNR2 = A2
D + A2

R + 2AD AR cos ∆φ (1)

where AD and AR are the amplitudes of direct and reflected signals, φD and φR are the phases of direct
and reflected signals, and the quantity ∆Φ = φR − φD is the multipath relative phase. According to the
amplitude difference between direct and reflected signals, see Figure 2, when AD >> AR Equation (1)
can be simplified as:

SNR2 = A2
D + 2AD AR cos ∆φ. (2)

In the case of the horizontal reflector, the additional path covered by a reflected signal relative
to the path covered by a correspondent direct signal can be computed knowing the antenna height
above the reflective surface and the elevation angle of the direct signal. From the geometry of
a satellite–reflector–antenna configuration the phase difference ∆φ can be written as:

∆φ =
2π

λ
δ (3)

where
δ = 2h sin(θ) (4)

is the additional path, h is the antenna height, θ is the satellite elevation angle and λ is the signal
wavelength.

Substituting Equation (3) in (2) one get the observation equation relating SNR values to the
antenna height which is the main unknown in GNSS-R applications.

Since terms of Equation (3) are time dependent the time derivative of ∆φ reads:

d∆φ

dt
=

4π

λ

[
dh
dt

sin(θ) + h cos(θ)
dθ

dt

]
. (5)

Satellite elevation angle, and its time derivative, can be computed from orbital information in the
satellites navigation message.
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According to Equations (2) and (5) reflections from objects located near the antenna generate
small SNR fluctuations whereas reflections from objects located farther from the antenna generate
bigger SNR fluctuations.

By a change of variable from t to s = sin(θ(t)) it is possible to rewrite Equation (5) to express
frequency of SNR fluctuations as a function of satellite elevation angle:

dφ

ds
=

4π

λ

[
dh
ds

tan(θ)
(

dθ

ds

)−1
+ h
]

. (6)

When the time derivative of antenna height can be neglected with respect to other therms,
the frequency of SNR fluctuations due to multipath is proportional to h:

dφ

ds
=

4π

λ
h. (7)

The quantity fM = 2h/λ can be interpreted as the multipath frequency relative to a complete
semi-arc of a given satellite trajectory, i.e., for θ ∈ [0, π/2]. For a generic portion of a satellite arc,
with θ ∈ [θmin, θmin] one get:

h =
λ fM

2 [sin(θmax)− sin(θmin)]
(8)

which expresses the antenna height above the reflective surface as a function of the multipath frequency.
In practice, the multipath frequency can be determined by means of the Lomb Scargle Periodogram

(LSP) of SNR data [32–36]. SNR data are evenly sampled in time, but the corresponding sin(θ) values
are unevenly distributed. As a matter of fact the LSP is largely adopted for detecting and characterizing
periodicity in unevenly spaced data. According to LSP method the signal power spectral density is:

P( f ) =
1

2σ2

{
[∑j(hj − h) cos(2π f )(tj − τ)]2

∑j cos2(2π f )(tj − τ)
+

[∑j(hj − h) sin(2π f )(tj − τ)]2

∑j sin2(2π f )(tj − τ)

}
(9)

where h and σ2 are the mean and the variance of the observed sequence hj, tj are the sample
epochs, f denotes the frequency under consideration, and τ is a temporal offset computed from
the following expression:

tan(4π f τ) =
∑j sin(4π f tj)

∑j cos(4π f tj)
. (10)

In practical application of the LSP-based spectral analysis, a set of frequencies fd must be
constructed according to specific criteria and algorithms [36,37]. Once the frequency set has been
entirely investigated, the LSP can be built and analyzed: highest value of P( f ) denotes the dominant
frequency which, in GNSS-R applications, corresponds to fM.

The reflection of an electromagnetic signal is a complex phenomenon that depends on several
aspects, among which signal wavelength, dielectric properties of the reflective medium, geometric
features of the reflective surface and signal incident angle are of primary importance. Here, surface
roughness is relative to the signal wavelength and the signal incidence angle according to the
Rayleigh roughness criterion. If the incident wave is reflected mainly in one direction the reflection is
referred to as a specular reflection. When the reflected wave is scattered, the phenomenon is called
diffuse reflection.

GNSS signals are transmitted with an aperture angle of about a ten of degrees so that a region of
the reflective surface, rather than a single point, is illuminated by the signal that reaches the antenna
after being reflected. The reflective regions are known as Fresnel zones [38] which are the ellipses
generated from the intersection of the reflecting surface and a family of ellipsoids having the satellite
position and the mirrored antenna point as foci. The first Fresnel zone is the one that contributes most
to the reflection of the incident signal.
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Geometric parameters of Fresnel ellipses are completely determined from the geometry of the
satellite-reflector-antenna configuration. For the first Fresnel ellipse, in the case of horizontal reflector,
the ellipse center C, the semi-major a and semi-minor b axes are given by:

C =
h

tan(θ)

(
1 +

λ

2 sin(θ)

)

a =
1

sin(θ)

√
λh

sin(θ)
+

(
λ

2 sin(θ)

)2
(11)

b = a sin(θ).

3. Data Collection and Processing

In this work data were collected over a set of three GNSS survey campaigns. Due to hardware and
power supply limitations, relying on battery units operating at low temperatures, GNSS campaigns
were relatively short. Short sessions do not permit to observe real changes of the snowpack depth. To
overcome this limitation, antennas were first mounted at a known height above the snowpack surface.
Antenna heights were then manually changed to other know values.

The first campaign took place on March 2018 with geodetic-grade GNSS antennas and receivers;
antennas heights were changed of 13 cm. The second campaign took place on February 2019 with
low-cost GNSS antennas and receivers; antennas heights were changed of 15 cm. Figure 3 reports
a close-up view of the experimental setup during GNSS campaigns with low-cost instruments.

(a) (b)

Figure 3. Pictures of (a) field setup with (b) low-cost patch antennas.

All the GNSS campaigns were conducted on the Lavarone plateau in the Province of Trento, Italy,
at about 1400 m above see level. GNSS data were collected on a site with a wide smooth horizontal
snowpack surface, in particular in the East thru South-West directions. However, in other directions
the snowpack surface was much more complex and a paved road ran at the North of the antennas
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site. A suitable GNSS data selection was performed in order to consider only those signal reflections
occurred on the smooth horizontal regions of the snowpack surface.

To empirically investigate the possibility to exploit antenna radiation patterns once reversed,
for both classes of GNSS instruments, a reference antenna was installed in a conventional
position (face-up) and a secondary antenna was mounted right below the reference antenna in a
face-down setup.

Geodetic-grade instruments were Leica GX1230GG receiver with AX1202GG antenna and a Leica
SmartAntenna ATX1230GG. Leica firmware store SNR with a 0.25 dB resolution.

u-blox NEO-M8T receivers were used along with u-blox ANN-MS and Tallysman TW4721 patch
antennas. Factory firmware (version 3.1) of u-blox NEO-M8T receivers stores only integer values of
SNR. To overcome this limitation receiver firmware were downgraded (Firmware 2.1 permits to track
GPS signals only). from version 3.1 to version 2.1 in order to have SNR values stored with a 0.25 dB
resolution. All the receivers operated at 1 Hz.

Binary files stored by receivers were converted in the Receiver INdependent EXchange (RINEX)
format using UNAVCO teqc software [30]. When necessary, conversions between different versions of
RINEX format were performed using GFZ gfzrnx software [31].

In this work, GNSS data processing (from SNR to satellite elevation angles), computation of
Fresnel ellipses, 1D and 2D plotting, LSP implementation and analysis were performed with original
code written in Matlab language.

Time series of SNR data and satellite elevation angles were divided in order to obtain data set for
ascending and descending satellite arcs. In order to avoid processing of potentially disturbed signals,
to limit the extension of reflective regions and to disregard low informative SNR data associated to
high satellite elevation angles only azimuth angles in the range 90–200 degrees and elevation angles in
the range 5–25 degrees where selected for further processing. To ensure the presence of typical SNR
oscillations caused by multipath, only SNR time series longer that 900 s and presenting at least three
SNR multipath cycles were selected. In Figure 4 sample sets of first Fresnel ellipses are reported before
and after data selection according to azimuth, elevation and acquisition time length criteria.

(a) (b)

Figure 4. Example set of first Fresnel ellipses (a) before and (b) after data selection according to azimuth,
elevation and acquisition length criteria. The black circles have radii of 5, 10 and 15 m.

Before performing the spectral analysis (LPS), selected SNR data were smoothed by means
of a Gaussian-weighted moving average in order to reduce impact of instrumental noise in LSPs.
Then a low-order polynomial fitting of the smoothed SNR data was performed in order to model the
direct component SNRD and expose the reflected component SNRR.

The dominant frequency fM can be computed by means of a numerical implementation of
Equations (9) and (10) and once a suitable family of frequencies fd is at hand. To built the fd set
one must choose the minimum frequency and the maximum frequency to be investigated and the
frequency resolution for spanning the selected range of frequencies. These quantities can be selected
according to analytical criteria developed in the spectral analysis framework for uneven samples.
In practice the frequency resolution in related to the spatial resolution with which the antenna height
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can be resolved from the SNR analysis. The frequency resolution depends on the time length T of the
SNR series under investigation and on a specific parameter named oversampling factor o f . The role
of this parameter is to permit to resolve with good resolution a single cycle of the frequency 1/T.
The minimum frequency is, in general, set equal to the selected frequency resolution. The choice of
the maximum resolution is particularly complex since it is related to the extension of the Nyquist
frequency to finite uneven samples and depends on a specific parameter named max frequency factor
m f . In practice, the role of this parameter is to set the upper bound of detectable antenna height [35,36].

In our case, the value of o f was chosen to resolve antenna height at the centimeter level. The value
of m f was chosen by taking in to account that antenna height above the snowpack surface cannot be
greater than 2 m.

Since LSPs may manifest many peaks, in order to discard poor LSPs, only periodograms with
dominant peak amplitude greater than 2.5 times the amplitude of the second peak were selected for
the estimation of antenna height my means of Equation (8).

Figure 5 shows LSPs for SNR data recorded by the same instrument but relative to different
satellites and different GNSS L-band frequencies. LSPs on the left present clear dominant peaks while
LSPs on the right manifest many peaks. LSPs similar to those of Figure 5b were discarded from
further analysis.
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Figure 5. Spectral analysis applied to SNR series recorded by the same instrument but relative to
different satellites and different GNSS L-band frequencies. In (a) is represented the result of ideal
reflections whilst in (b) the presence of multiple peaks suggest the presence of several reflecting surfaces.

4. Results

4.1. Geodetic-Grade Receivers and Antennas

During the first GNSS campaign (March 2018), after a first session of about 120 min, antenna
heights were shifted downwards of 13 cm from starting value h0 = 1.29 m to new value h1 = 1.16 m
(face-up configuration) and a second session of about 120 min was carried out.

For standard mounted antennas, differences between reference and GNSS-R based antenna
heights were, in general, very small and consistent as shown in Table 1. In the experiment, 12 SNR
series were obtained, five for the antennas in the starting position and seven for the antennas in the
lower position. Results are of good quality, in particular considering the short acquisition periods
(i.e., the low number of LSPs at hand).

Worse results were obtained for the antenna mounted in face-down configuration. Only three
valid SNR series were available, all for the antenna in the lower position. Differences are in the order
of a ten of centimeters with a maximum value of 35 cm.

The set of LSPs for the first acquisition campaign are reported in Figure 6 for both the antenna
configurations and GNSS L-bands.
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Table 1. Geodetic-grade instruments: differences between reference and GNSS-R based antenna heights
[GNSS session March 2018].

Satellite and L-Band

Differences between Reference (h0, h1)
and GNSS-R Antenna Heights [m]

Ant. AX1202GG

h0 = 1.29 h1 = 1.16

G05__L1 +0.12
G19__L1 −0.02
G19__L2 +0.02
G17__L1 0.00
G17__L2 +0.03
G02__L1 −0.03
G02__L2 0.00
G15__L1 +0.15
G15__L2 +0.04
G06__L1 +0.02
G06__L2 +0.01
G13__L1 −0.05

0 0.5 1 1.5 2 2.5 3 3.5
0

200

400

600

800

1000

1200

P
 [w

]

LSP(L1)
 antenna up

h0
h1

(a)

0 0.5 1 1.5 2 2.5 3 3.5
0

200

400

600

800

1000

1200

P
 [w

]

LSP(L2)
 antenna up

h0
h1

(b)

0 0.5 1 1.5 2 2.5 3 3.5
0

200

400

600

800

1000

1200

P
 [w

]

LSP(L1)
 antenna down

h1

(c)

0 0.5 1 1.5 2 2.5 3 3.5
0

100

200

300

400

500

600

P
 [w

]

LSP(L2)
 antenna down

h1

(d)

Figure 6. Geodetic-grade instruments: LSPs of SNR for (a) L1 band and face-up antenna, (b) L2 band
and face-up antenna, (c) L1 band and face-down antenna, (d) L2 band and face-down antenna [GNSS
session March 2018].

4.2. Low-Cost Receivers and Antennas

Low-cost GNSS instruments differ from geodetic-grade solutions essentially at firmware,
hardware and electronic levels. At the very beginning of this work, a test session was conducted
to collect SNR data with GNSS instruments of both classes operating simultaneously in order to
evaluate the quality of SNR series collected by low-cost instruments with respect to reference SNR
series collected for the same satellite set by geodetic-grade instruments. Example SNRR series
shown in Figure 7 manifest clear similarity in signal amplitude and multipath patterns supporting
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further investigation about the use of low-cost receivers and antennas for GNSS-R application for
snowpack characterization.

Figure 7. Example of SNRR data acquired by Leica and u-blox instrumentation tracking the
same satellite.

During the second GNSS campaign (2019/02), after a first session of about 90 min, antenna heights
were shifted downward of 15 cm from starting value h0 = 1.71 m to new value h1 = 1.56 m (face-up
configuration) and a second session of about 90 min was carried out.

In the campaign, observations from a total of 3 antennas were acquired: 2 Tallysman TW4721
antennas, one in a face-up and one in a face-down setup, and 1 u-blox ANN-MS antenna in
face-up configuration.

In the experiment, as shown in Table 2, 17 SNR series were obtained in face-up configuration.
Antenna heights estimated from LSPs were characterized by a greater dispersion with respect to those
obtained using geodetic-grade instruments. However average differences obtained from different
SNR series differ of about 10 and 5 cm from the two antenna height reference values. Results for
u-blox receivers and patch antennas are still of good quality, in particular considering the short
acquisition periods.

The set of LSPs for the second acquisition campaign are reported in Figure 8 for both the antenna
configurations and GNSS L1 band.

Table 2. Low-cost instruments: differences between reference and GNSS-R based antenna heights
[GNSS session February 2019].

Satellite and L-Band

Differences between Reference (h0, h1)
and GNSS-R Antenna Heights [m]

Ant. TW4721 Ant. ANN-MS
h0 = 1.71 h1 = 1.56 h0=1.71 h1=1.56

G13__L1 +0.02 +0.08
G06__L1 +0.02
G23__L1 +0.15 +0.11
G09__L1 +0.27
G17__L1 +0.04 +0.12
G24__L1 −0.03
G12__L1 −0.18 −0.16
G19__L1 −0.07 −0.08
G05__L1 0.00 +0.03
G30__L1 +0.07 +0.19
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Figure 8. Low-cost instruments: LSPs of SNR for (a) L1 band and face-up TW4721 antenna, for (b) L1
band and face-up ANN-MS antenna, for (c) L1 band and face-down TW4721 antenna [GNSS session
February 2019].

Even for low-cost instruments results obtained with the face-down configuration are of very low
quality, see Table 3.

Table 3. Low-cost instruments (antenna face-down): differences between reference and GNSS-R based
antenna heights [GNSS session February 2019].

Satellite and L-Band

Differences between Reference (h0, h1)
and GNSS-R Antenna Heights [m]

Ant. TW4721 face-down
h0 = 1.68 h1 = 1.53

G13__L1 −0.21
G06__L1 +0.17
G12__L1 +0.24
G30__L1 +0.21
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5. Discussion and Perspectives

Results based on SNR observations acquired by geodetic-grade instruments showed GNSS-R
effectiveness in retrieving accurate values of antenna heights from the snowpack surface.
Small variations of antenna height, in the order of a ten of centimeters, can be clearly detected.

In this work, it has been shown that even GNSS-R based on SNR observations acquired by low-cost
receivers and antennas can provide very good results. In this case, accuracy of antenna heights from the
snowpack surface can reach quality levels of a few centimeters even if results present lower consistency
with respect to values obtained from the analysis of observations from geodetic-grade instruments.

Results from antenna mounted in a face-down position demonstrate the inefficacy of this
configuration, very few SNR series were collected and very inaccurate antenna height values
were obtained from the LSP spectral analysis os SNR data. An alternative configuration is under
investigation where four antennas are mounted with the patches placed on vertical planes plus one
antenna mounted in the standard face-up position.

In conclusion, GNSS-R technique with low-cost receivers and antennas can be effectively adopted
to retrieve antenna height above a snowpack surface with a satisfactory degree of accuracy and good
precision (standard deviation of about 5 cm for ANN-MS antennas with respect to 1.56 m reference
height), even with very short SNR series (about 90 min).

In fully operative scenarios, more than one low-cost instrument could be installed. Moreover,
multi-constellation receivers and antennas could be selected. With large SNR observation set at
hand, the definition of specific criteria for selecting and combining LSPs best suited for antenna height
retrieval could help to reduce uncertainty of antenna heights and to investigate residual low frequencies
in the LSP to asses the quality of the direct SNR removal step [39–42]. Moreover, suitable statistics
tools could be exploited in order to increase precision of combined antenna heights. For example,
the effectiveness of a weighted average of LSP peak position involving the ratio between LSP peak
amplitude and LSP spread could be investigated. Areas of the Fresnel ellipses could also be considered
as weighting factors.

The adoption of low-cost instruments opens the opportunity to install more instruments
in a multi-point observation setup for spatially extensive GNSS-R applications. According to
Equations (11), the size of a Fresnel zone increases as the antenna height increases. This fact suggests
the evaluation of instrument installation on top of chairlift pylons serving glacier sky slopes for glacier
monitoring in the summer. In such applications, the hypothesis of an horizontal planar reflective
surface should be removed. In fact, even if it has been demonstrated [11] that this approximation leads
to good results even with slope angles up to 8◦, the multi-path phase difference Equation (3) can be
rewritten to take into account the role of terrain slope properly described by means of a hi-resolution
digital elevation model of a smooth reflective surface that would mildly change during the snow
accumulation period.
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