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In the treatment of ischemic stroke, timely and e�cient recanalization

of occluded brain arteries can successfully salvage the ischemic brain.

Thrombolysis is the first-line treatment for ischemic stroke. Machine learning

models have the potential to select patients who could benefit the

most from thrombolysis. In this study, we identified 29 related previous

machine learning models, reviewed the models on the accuracy and

feasibility, and proposed corresponding improvements. Regarding accuracy,

lack of long-term outcome, treatment option consideration, and advanced

radiological features were found in many previous studies in terms of

model conceptualization. Regarding interpretability, most of the previous

models chose restrictive models for high interpretability and did not mention

processing time consideration. In the future, model conceptualization could

be improved based on comprehensive neurological domain knowledge and

feasibility needs to be achieved by elaborate computer science algorithms to

increase the interpretability of flexible algorithms and shorten the processing

time of the pipeline interpreting medical images.

KEYWORDS

acute ischemic stroke, neuroimaging, machine learning, thrombolysis, clinical

decision support tool, penumbra, translational medicine

1. Introduction

Stroke is the most common neurological disease (1) which can be defined as an acute

central nervous system injury with an abrupt onset. Stroke is the third leading cause of

death and chronic disability globally (1). As a leading cause of adult disability, up to 74%

of stroke survivors are dependent on activities of daily living (2), which causes a huge

burden to society, both in finance and human resources. Among different types of stroke,

ischemic stroke is the most common, accounting for 87% compared to hemorrhagic
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stroke (3). The etiology of ischemic stroke is the obstruction

of cerebral arteries due to multiple reasons, which could be

classified as five subtypes according to the Trial of Org 10172

in Acute Stroke Treatment (TOAST) criteria (4). Because of the

TOASTmechanisms, the decreased blood perfusion to the brain

leads to ischemic stroke.

In the treatment of ischemic stroke, timely and efficient

recanalization of occluded brain arteries can successfully

salvage ischemic brain (5). An intravenous (IV) injection of

recombinant tissue plasminogen activator(rtPA)—also called

alteplase—is the first-line treatment for ischemic stroke (6). For

patients with acute ischemic stroke, a prompt treatment with

thrombolytic drugs could restore blood flow before major brain

damage has occurred and greatly improve short-term and long-

term recovery after stroke (7), as a result largely reducing the

burden stroke brings to the society.

In most cases, IV thrombolysis therapy is subject to

the latest guidelines. The guidelines are drawn up based on

large quantities of clinical evidence, therefore, the proposed

eligibility and dosage consideration for thrombolysis treatment

should normally be safe and efficient for most of the

patients. However, in real clinical practice, still, several patients

present unpredictable outcomes after the IV thrombolysis

treatment, including symptomatic hemorrhage (13% among

patients receiving rtPA) (8) and failed recanalization (37%

among patients receiving rtPA) (9), suggesting that a more

accurate patient-tailored clinical decision support tool based on

guidelines to improve IV thrombolysis safety and efficiency is

needed.

The literature on machine learning models to assist in

stroke thrombolysis has yet to be systematically synthesized and

assessed for accuracy and feasibility. Most of the existing reviews

have focused on the accuracy of clinical outcome prediction

models for patients with acute ischemic stroke, albeit not focused

on thrombolysis specifically (10). Some reviews focusing on

thrombolysis did not analyze the feasibility of these models in

hyperacute clinical stroke settings (11).

To address this gap, we reviewed the literature on the

accuracy and feasibility of machine learning models to assist in

stroke thrombolysis. This review aims to address the following

research questions: (1) What criteria should a machine learning

model meet in order to be accurate and feasible in real clinical

practice? (2) Have previous machine learning models met these

criteria? (3) What improvements could be proposed to increase

the accuracy and feasibility of previous models?

2. Search methods and results

PubMed, Embase, and Scopus (inception to July 2022)

were searched to identify studies developing machine

learning models to assist in deciding the personalized

safety and efficiency of thrombolysis therapy. We used Medical

Subject Headings (MeSH) terms in multiple combinations,

including stroke thrombolysis/machine learning and stroke

thrombolysis/prediction model, to retrieve papers. The search

was limited to human studies with English restrictions applied.

The inclusion and exclusion criteria of each study were reviewed.

We excluded studies where: (1) The full paper was not available.

(2) The paper presented review findings instead of original

research. (3) Participants enrolled did not receive thrombolysis

therapy. (4) The objective was to infer the association between

thrombolysis clinical outcome and biomarkers rather than

predict the outcome accurately. (5) The prediction model can

only be applied to patients with a specific subtype of ischemic

stroke. In the end, we retrieved 29 representative research papers

(Figure 1). The detailed information of the representative papers

is presented in Supplementary Table 1.

3. Feasibility and accuracy

Machine learning models are computer algorithms

developed to imitate the human learning process. The training

of machine learning models consists of a phase where models

improve their accuracy by discovering patterns and associations

within huge datasets. This training principle allows machine

learning models to generate satisfactory results, especially in

evidence-based practices, such asmedicine. Given the fact that in

real clinical practice, thrombolysis therapy respecting guideline

has a relatively low percentage of successful recanalization, some

experienced clinicians might decide the eligibility and dosage

for certain patients based on their own clinical experiences (12).

According to Dr. Patrick D. Lyden’s review article: The decision

to use thrombolytic therapy is—among the most difficult

treatment decisions in medicine, given the risks involved and

the compressed time frame available (13). Machine learning

models with high accuracy and feasibility have the potential

to acquire clinical experience from real world large datasets

of patients undergoing thrombolysis and assist in improving

the safety and efficiency of IV thrombolysis therapy. Figure 2

provides a blueprint of the criteria a machine learning model

should meet in order to be accurate and feasible in assisting

thrombolysis therapy.

In the thrombolysis setting, a model is conceptualized

in order to (1) predict risks and benefits, which can be

considered respectively as poststroke symptomatic intracerebral

hemorrhage and long-term outcome, as well as (2) select patients

with stroke who could benefit the most from thrombolysis

therapy in high accuracy. The accuracy of a machine learning

model largely depends on appropriate model conceptualization.

The widely accepted formal definition of machine learning as

stated by field pioneer Mitchell (14): A computer program is

said to learn from experience E with respect to some class

of tasks T and performance measure P if its performance at

tasks in T, as measured by P, improves with experience E.
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FIGURE 1

Selection of studies. The five exclusion criteria were explained in detail in Section 2.

When conceptualizing a machine learning model, a clinical

data scientist generally answers two questions: what the goal

of the machine learning model is (clinical goal definition)

and what clinical variables capture the experience required

to achieve the goal (clinical feature selection). In some

cases, if raw clinical features are not able to capture the
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FIGURE 2

Blueprint of the criteria a machine learning model should meet in order to be accurate and feasible in assisting thrombolysis therapy. In terms of

accuracy, a model should be able to predict risks and benefits and select target patients who could benefit the most from thrombolysis therapy

with high accuracy. The accuracy of the model largely depends on the conceptualization, which consists of reasonable clinical goal definition,

optimal clinical input selection, and appropriate feature engineering if necessary. In terms of feasibility, in order to pass the clinical validation, a

model should have high interpretability; in order not to delay the door-to-needle time, the model needs to calculate the output in a short time.

semantics that the human brain understands from the dataset,

such as some radiological features representing penumbra

and proximal/distal arterial occlusion information, feature

engineering is required to create/extract features using domain

knowledge. Feature Engineering can use data mining techniques

to preserve these semantics and help machine learning

algorithms to understand data and determine patterns that can

improve the performance of machine learning algorithms.

Besides accuracy, feasibility is also an important, however

often ignored, factor to consider when developing clinical

machine learning models. We here identify two factors that

will hinder the implementation of models in the thrombolysis

setting: the interpretability and processing time of the model.

The interpretability of the algorithm is critical since all clinical

decision support tools must go through clinical trials to be

approved by the local authority before being used in real clinical

practice. The interpretability of the algorithm allows telling

which predictors the algorithm leverages as important factors to

be considered when predicting the clinical outcome or deciding

the thrombolysis eligibility. These predictors then need to be

confirmed related to the clinical outcome of patients going

through thrombolysis by previous clinical trials or following

clinical trials in case the algorithm generates new features during

training. Furthermore, given the fact that human nervous tissue

is rapidly lost as stroke progress and longer thrombolytic door-

to-needle time is associated with higher mortality (15), the

processing time of a thrombolytic clinical decision support tool

should be measured and the tool should be able to produce the

outcome shortly so as not to delay the treatment.

In the following sections, we are going to analyze previous

studies based on these criteria and propose improvements to

increase the accuracy and feasibility of previous models.

4. Clinical goal definition

In a thrombolysis setting, a model is conceptualized in

order to (1) predict risks and benefits, as well as (2) select

patients with stroke who could benefit most from thrombolysis

therapy in high accuracy. Previous studies achieved the goal by

developing an efficiency and safety prediction model. Among

all the literature reviewed, 11 developed models with the

objective to assess thrombolysis efficiency and 16 developed

models with the objective to assess thrombolysis safety. Only
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two assessed both efficiency and safety. The clinical outputs

of models predicting safety are all poststroke symptomatic

intracerebral hemorrhage (16–33) while the clinical outputs of

models predicting efficiency vary: the most common is the

3-month modified Rankin Scale(mRS) (25, 34–38). Huang et

al. (39) used an even longer 6-month mRS. Saposnik et al.

(22) leveraged a composite 3-month outcome of mRS, National

Institutes of Health Stroke Scale (NIHSS), and Barthel index

and Glasgow Outcome Scale score. Some models provided both

predictions on early clinical outcomes and a long-term 3-month

mRS (40, 41). A recent model in 2021 (42) predicted the final

infarct volumes for patients after thrombolysis therapy. Zhu

et al. (43) only predicted 1-h NIHSS after thrombolysis. The

early outcome advantage of thrombolysis does not necessarily

persist during long-term follow-up. To provide a comprehensive

thrombolysis efficiency assessment, both early and long-term

outcome predictions are required.

Most of the models were built on a data cohort where all

patients received thrombolysis therapy with standard dosage,

ignoring the impact of treatment options on the outcome.

Only five of the previous studies took treatment options into

consideration: they achieved the patient selection by introducing

the treatment option into the input features (thrombolysis

or placebo, using standard or low dosage): by predicting

favorable/non-favorable outcome for each patient, the machine

learning model could give insights into what is expected to

the patient under certain treatment option, as a result helping

a clinician to decide the safety and efficiency of thrombolysis

therapy for the patient: Kent et al. (34, 36), Sung et al. (25), and

Tang et al. (40) developed a model to predict expected outcome

for patients with placebo treatment vs. thrombolysis treatment.

A study from Taiwan in 2020 (30) forecasted the poststroke

SICH and 3-month mortality for patients receiving standard

thrombolytic dosage vs. lower thrombolytic dosage.

By defining the objective of the machine learning model

as foreseeing what is expected of the patient under certain

treatment options, previous studies considered treatment

options as an input. Together with all the other clinical variables,

treatment option was processed by the machine learning

classification algorithm as predictors of patients’ outcome.

However, a treatment option in a real clinical situation is a

decision made by neurologists based on the patient’s clinical

profile, financial condition, and a clear understanding of the

current evidence (44). Therefore, treatment options should be

statistically correlated with all the other clinical variables in the

input data, which will influence the prediction and inference

ability of machine learning models. On the one hand, machine

learning models become unstable in the presence of high feature

correlations (45): for linear models, multicollinearity can yield

solutions numerically unstable; for tree-based models which

are good at detecting interactions between different features,

highly correlated features can mask these interactions. Besides,

high correlation can lead to unreliable inference conclusions.

For example, the result of the study from Taiwan in 2020

(30) showed a high correlation between aging and a lower

dosage of thrombolysis. Meanwhile, the model also inferred that

patients who received a lower dosage had a higher mortality

rate in a 3-month follow-up. The inference conclusion is not

reliable due to the unclear cause of the higher mortality rate

during 3-month follow-up: given the high correlation between

two input variables: the aging and the lower dosage, we are

not certain whether the age or the lower dosage results in

the higher mortality rate. We propose that before constructing

the outcome prediction model, an inference machine learning

model to statistically test if the treatment option is correlated

with certain clinical features is necessary. If a high correlation

is found, the treatment option should be excluded from the

input variable set and the inference model could also help

to summarize the treatment option making experience from

the large dataset and infer the important clinical factors to be

considered when deciding thrombolysis eligibility and dosage.

If a high correlation is not found in the dataset, the treatment

option could be maintained as an input.

Another point to be noted is that previous studies did not

include thrombectomy following thrombolysis as a treatment

option. Since 2015, randomized clinical trials have demonstrated

that mechanical thrombectomy improves functional outcomes

in patients with stroke over intravenous thrombolysis alone

(46). The latest European thrombolysis guidelines published

in 2021 also suggested that further clinical trials are needed

to inform clinical decision-making with regard to the use of

thrombolysis before thrombectomy in patients with large vessel

occlusion (47). The emergence of mechanical thrombectomy

raises interest in thrombolytic strategies for ischemic stroke in

the thrombectomy era. To be eligible in real clinical situations

in the future, a machine learning based thrombolysis therapy

decision support tool needs to stay tuned to this thrombectomy

trend.

5. Clinical feature selection

Selecting significant input variables, in other words, feature

selection is an important prerequisite for machine learning

model construction. Feature selection is the process of choosing

an optimal subset of features that best captures the human

experience required to achieve the clinical goal of the machine

learning model, among all the available features in the patient’s

clinical profile. Feature selection serves to decrease the number

of input variables to both reduce the computational cost of

modeling and avoid overfitting. Previous studies performed

feature selection with a combination of clinical and statistical

judgment: initially selected clinical features were identified by

neurologists with clinical expertise or based on related studies,

feature engineering was then adopted by some studies to

transform raw data (we will explore feature engineering in
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details in the Section 6); stepwise model building (19, 25, 27,

29, 34, 39), univariate analysis (17, 20, 28, 30, 33, 38, 43, 48),

multivariable analysis using logistic regression (16, 21, 24, 26,

31, 32), plots displaying the pattern of predictors, and outcome

(21), and Least Absolute Shrinkage and Selection Operator

(LASSO) (25, 40), was performed to further select statistically

significant features among initially selected features and new

features generated in feature engineering.

Figure 3 summarizes the prevalence of initially selected

clinical features identified by neurologists with clinical expertise

or based on related studies, respectively, in models assessing

thrombolysis safety and thrombolysis efficiency. Age, Baseline

NIHSS, Systolic blood pressure (SBP), Diabetes, and Glucose

were the five most commonly used predictors to predict safety

while Age, Baseline NIHSS, Gender, Diabetes, and Onset time

were the five most commonly used predictors to predict

efficiency.

We noticed that only a moderate number (8 in models

assessing safety and 5 in models assessing efficiency) of studies

included radiological features [computerized tomography (CT)

scan, magnetic resonance imaging (MRI) sequences] as model

predictors. The lack of inclusion of radiological features might

lead to a risk ofmodel overfitting due to the valuable information

radiological features provide regarding thrombolysis safety and

efficiency (49, 50). For example, the research published in 2020

(30) developed a machine learning model predicting SICH

and mortality at 3 months without any medical image based

information. The cohort used to train the deep learning neural

network model consists of 331 patients, a moderate sample size

given the relatively large number of parameters in the neural

network, while the model predicts the outcomes with a high

Area under the Receiver Operating Characteristic curves (AUC)

of 0.974. Given the massive information, the medical images

contain regarding the thrombolysis outcome prediction (51),

a model without any medical image input will normally fail

to predict outcome accurately due to an incomplete patient’s

clinical profile and the high performance of the model in this

research might be due to overfitting.

6. Feature engineering

In some cases, if raw clinical features are not able to

capture the semantics that the human brain understands from

the dataset, such as some radiological features representing

penumbra and proximal/distal arterial occlusion information,

feature engineering is required to create/extract features using

domain knowledge.

Bentley et al. (24) leveraged a rather simple feature

engineering technique for example: CT scan radiological

characteristics, blood sugar, age, and baseline NIHSS are both

important factors to predict the risk of SICH after thrombolysis

(52). However, these separate input variables might not be able

to capture the way we humans understand how these factors

influence SICH. As a result, Bentley et al. (24) included a

new variable SEDAN score synthesized by all the independent

variables above. SEDAN score is a prediction rule for assessment

of the risk of SICH (53) and can be considered as a result

of feature engineering on CT scan radiological characteristics,

blood sugar, age, and baseline NIHSS.

When we reviewed past related studies, we found that most

of the previous models did not pay much attention to feature

engineering. There is either no feature engineering (16, 22, 23,

26, 29, 30, 32, 37–39, 41–43, 48), or simple feature engineering

by calculating clinical assessment scores based on past studies

(18, 24, 31, 34), creating interaction terms (21, 25, 34, 36),

creating dummy variables using different cutoff points (17, 19,

20, 33, 35), visual detection of radiological features (17–20, 24,

27, 28, 35). Tang et al. (40) performed an advanced radiological

feature engineering by first dividing the brain into six gray

matter regions plus a white matter area and then calculating

the mismatch ratio between diffusion lesion and perfusion

lesion in each of these seven brain areas. The newly generated

mismatch features based on diffusion-weighted imaging (DWI)

and perfusion-weighted imaging (PWI) represent penumbra

information. We suggest that the division of the brain, especially

the white matter area, could be more detailed given the fact that

the infarct topography in different white matter regions could

have significantly different influences on the outcome (54).

The fast progression of computer vision in recent years

allows computers to better understand medical images and

sometimes to extract radiological features that humans cannot

see. There have already been large quantities of studies

investigating the relationship between traditional clinical data

and thrombolysis outcomes. Because of computer technology

limitations, in the past, we could not extract advanced

radiological features from medical images and there are limited

studies in this field. Advanced radiological features which cannot

be easily identified by human eyes can possibly offer critical

information related to penumbra and, therefore, contribute

immensely to early thrombolytic strategies (55). Further efforts

need to be made to perform feature engineering on medical

images by applying computer vision techniques to extract

advanced radiological features.

We would like to propose a new penumbra related

radiological feature based on a modified clinical-diffusion

mismatch principle. The conventional clinical-diffusion

mismatch (CDM) has been proposed as an easier alternative

to the perfusion-diffusion mismatch (PDM) for selecting

patients with salvageable ischemic tissue (56). It is based on the

assumption that patients with severe clinical deficits, but with

relatively small lesion volumes on DWI, are likely to have an

ischemic penumbra (57). However, besides the infarct volume,

the infarct topography can also influence the initial ischemic

stroke severity dramatically. For example, according to the

research by Ona WU in 2015 (54), injury to certain important
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FIGURE 3

Prevalence of initially selected clinical features identified by neurologists with clinical expertise or based on related studies as predictors,

respectively, in models assessing thrombolysis safety and thrombolysis e�ciency. NIHSS, National Institutes of Health Stroke Scale; SBP, systolic

blood pressure; DBP, diastolic blood pressure; CT, computed tomography; LDL-c, Low-density-lipoprotein cholesterol; BMI, body mass index;

Hb A1C, hemoglobin A1c; MRI, magnetic resonance imaging; mRS, modified Rankin Scale.

functional areas, in particular motor pathways and white matter

tracts, insula and putamen are associated with more severe

initial symptoms and higher baseline NIHSS scores. If the

lesion occupies these important functional areas, the patient

can still present a rather high baseline NIHSS score without

a large infarct core or a penumbra. Therefore, we propose a

modified clinical-diffusion mismatch approach to better assess

the penumbra: our solution will first quantify the infarct core

volume in each brain functional and structural region based on

Harvard-Oxford cortical and subcortical structural atlases and

JHU DTI-based white-matter atlases from FSL software (58),

then learn the weight of DWI infarct core volume of each brain

region in the mismatch model through the machine learning

algorithm that we designed. Furthermore, we propose that

quantification of infarct core volume in each vascular territory

could also be included as a radiological feature. Previous studies
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have demonstrated that if the DWI infarct lesion is found in

a wide range in one large artery territory, it is very likely that

the thrombus evoking the stroke is located in the large artery

and endovascular treatment instead of thrombolysis is highly

recommended since rtPA can hardly resolve a large thrombus

(47). This vascular territory related radiological feature might

contain critical information for outcome prediction for patients

undergoing thrombolysis before thrombectomy.

In recent years, an increasing number of studies have

investigated the impact of clot composition on the efficiency

of thrombolysis.The clot/thrombus are highly heterogenous

and vary in composition and organization. Fibrin-rich clots

might have increased stiffness and decreased deformability

compared with red blood cell-rich clots, therefore, correlating

to less favorable clinical outcomes (59). The composition of

a clot depends on multiple factors, including but not limited

to time (60), primary sites of clot formation (61), and level

of plasma Von Willebrand factor (VWF) (62). Currently,

imaging evidence of clot characteristics was limited, including

hyperdense middle cerebral artery sign on CT and blooming

artifact on susceptibility weighted imaging (SWI) (60). The

interaction term between biomarkers, clot characteristics, and

imaging manifestation could be generated. We believe machine

learning has the potential in inferring more hidden associations

and interactions between these clot composition related

features, thus providing new insights into the management of

thrombolytic treatment.

A detailed illustration of our proposed feature engineering

can be found in Figure 4.

7. Model algorithm development

Model algorithm development is a process where we

leverage computer science and statistics to design an algorithm

that is able to achieve the predefined clinical goal using a training

dataset. Of the many algorithms used by previous thrombolysis

outcome prediction studies, some are more flexible, others are

more restrictive. The more estimated parameters the model

algorithm depends on, the more flexible the model is considered

to be. The algorithms used by previous studies, from the most

restrictive to the most flexible, were risk score (16, 17, 19–

23, 33, 35), nomogram (27, 31, 32, 37–39), logistic regression

(25, 26, 28, 29, 34, 36, 40, 43, 48), tree-based machine learning

models (18, 29, 43, 48), support-vector machine (SVM) (18, 24,

29), and deep learning neural network (29, 30, 41, 42, 48).

In fact, when developing a machine learning algorithm,

there is usually a trade-off between flexibility and interpretability

(63): Inflexible algorithms have a restrictive ability to estimate

the boundaries between different outcome classes, therefore,

producing the predicted outcome with lower accuracy. But

Inflexible algorithms are often easy to be interpreted. On the

other hand, flexible algorithms generate more accurate predicted

outcomes but suffer from low interpretability. Most of the

previous models have a preference for restrictive models (risk

score, nomogram, logistic regression, and tree-based machine

learning models) for high interpretability. Regarding the flexible

algorithms, there are two common ways to increase the

interpretability: (1) A reactive approach to calculate individual

predictor importance using the SHapley Additive exPlanations

(SHAP) framework proposed by Lundberg and Lee (64). (2)

A proactive approach to increasing model prediction accuracy

by boosting interpretability, where a very popular example is

the attention mechanism introduced in 2014 (65) to allow the

deep learning neural network decoder to leverage the most

relevant parts of the input vectors in a flexible manner. The

latter approach is recommended however requires efforts in

developing new algorithms. In order to further improve the

performance of models, future studies could stay tuned to the

new findings in the machine learning field and try to develop

new algorithms whichmaintain interpretability while improving

prediction accuracy compared with current machine learning

algorithms.

8. Processing time consideration

The processing time of a thrombolytic clinical decision

support tool covers three parts: time for automatic data

preparation, time for automatic feature engineering, and time

for machine learning algorithm running. Automatic data

preparation is quite mature nowadays in the industry with

the emergence of Data Engineering and can be easily and fast

done through well-written Structured Query Language (SQL)

script and Big Data frameworks such as MapReduce (66). A

machine learning algorithm requires a long time to be trained

in Developing Pipeline if the dataset is big. However, obtaining

an outcome using a well-trained algorithm usually requires

seconds. More attention needs to be paid to the processing time

of feature engineering to extract advanced radiological features

from medical images.

As we reviewed past studies, we found that only nine past

studies mentioned the processing time consideration, (16, 19,

20, 22, 33–37): they chose clinical input easy to obtain in the

emergency situation. However, neither of these nine studies

included advanced radiological features from medical images

due to the difficulty to calculate these features in emergencies.

We noticed that in previous studies, the radiological

features, such as penumbra and infarct core volume from DWI

and PWI (40), ASPECT scores from CT (18), and SICH-

prognostic SEDAN/HAT scores (24), were extracted manually

using traditional pipeline in open-source software. Using the

traditional pipeline to interpret medical images is accurate

but slow. Recent computer vision studies designed some deep

learning based pipelines to automatically interpret medical

images. These deep learning pipelines are able to achieve
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FIGURE 4

Schema of new model algorithm based on the improvements that we proposed summarized in Table 1. The fast pipeline to calculate advanced

radiological features in FE was published in our previous research (68). Penumbra related features are calculated based on clinical-di�usion

mismatch: P = 1(
∑

i
wivi < α)1(NIHSS > β) where i is the index of brain region a�ected by ischemic lesion; vi is the lesion volume in region i; wi

is the contribution of region i to the initial ischemic stroke severity provided by previous studies (54);
∑

i
wivi is a weighted lesion volume

corrected by anatomic correlates of admission stroke severity: in cases when lesion occupies important functional area such as Internal

Capsule, wi will increase the value of weighted lesion volume and avoid the false clinical-di�usion mismatch. NIHSS is the initial ischemic stroke

severity score; α and β need to be tuned during machine learning training process. P is the product of two indicator functions. Vascular territory

related features are lesion volume, respectively, in anterior cerebral artery (ACA) territory, middle cerebral artery (MCA) territory, posterior

cerebral artery (PCA) territory, and basilar artery (BA) territory.

an acceptable similarity with the traditional pipeline while

greatly shortening the processing time (67). Regarding the

feature engineering that we proposed in Figure 4, we have

also developed deep learning based fast-processing pipeline to

calculate the lesion volume in each brain structural region

and vascular territory (68). Our study has been published in

the Proceedings of the 2021 IEEE International Conference on

Bioinformatics and Biomedicine. Our pipeline takes diffusion

sequences of raw MRI images in Digital imaging and

communications in medicine (DICOM) format as input: DWI

and its associated apparent diffusion coefficient (ADC), and

can calculate the lesion volume in each brain structural region

and vascular territory much faster than baseline pipeline in

average 138 s on a normal PC CPU with processor 2.6

GHz Intel Core i5 and memory 8 Go 1,600 MHz DDR3. In

terms of dice score, our study is able to achieve on average

80.3% similarity with the baseline pipeline. In the future, more

efforts could be made to shorten the radiological pipeline

processing time.

9. Discussion and conclusion

Previous personalized predictive models employed in the

decision-making of thrombolysis basically stay in the research

stage and have a long way to go before being applied in

real clinical practice. In Table 1, we made a summary of

previous studies in terms of the five criteria a machine learning

model should meet in order to be accurate and feasible

in assisting thrombolysis therapy (Figure 2), as well as the

corresponding proposed improvements. In Figure 4, we also

provide a schema illustrating the new model algorithm based on

the improvements we proposed.

The accuracy of a machine learning model largely depends

on appropriate model conceptualization, requiring a reasonable

definition of the clinical goal, clinical input, and feature

engineering based on comprehensive neurological domain

knowledge summarized from past clinical trials. Efficiency and

safety assessment are both required to better select patients

who could benefit the most from thrombolysis. Poststroke
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TABLE 1 Summary of previous studies in terms of the five criteria a machine learning model should meet in order to be accurate and feasible in assisting thrombolysis therapy (Figure 2), as well as the

corresponding proposed improvements.

Reasonable clinical goal

definition

Optimal clinical input

selection

Feature engineering Model with high

interpretability

Model with short processing

time

Previous researches (1) Only 2 studies assessed both

efficiency and safety; (2) The clinical

outputs of models predicting safety are

all poststroke symptomatic intracerebral

hemorrhage while the clinical outputs of

models predicting efficiency vary; (3)

Only five of previous researches took

treatment option into consideration by

introducing the treatment option into

the input features (thrombolysis or

placebo, using standard or low dosage)

Feature selection was performed with a

combination of clinical and statistical

judgement, only a moderate number

(eight in models assessing safety and five

in models assessing efficiency) of

researches included radiological features

(CT scan, MRI sequences) as model

predictors

Most of previous models did not pay

much attention to feature engineering.

There is either no feature engineering,

or simple feature engineering by

calculating clinical assessment score,

creating interaction terms, creating

dummy variables, visual detection of

radiological features

Most of previous models have a

preference for restrictive models (risk

score, nomogram, logistic regression

and tree-based machine learning

models) for the high interpretability

Only nine past studies mentioned the

processing time consideration: they

chose clinical input easy to obtain in the

emergency situation. Neither of these

nine studies included advanced

radiological features from medical

images due to the difficulty to calculate

these features in emergency

Proposed

improvements

(1) A model assisting in thrombolysis

therapy needs to assess both efficiency

and safety; (2) To provide

comprehensive thrombolysis efficiency

assessment, both early and long-term

outcome prediction are required; (3)

Before constructing the outcome

prediction model, an inference machine

learning model to statistically test if

treatment option is correlated with

certain clinical features is necessary,

thrombectomy following thrombolysis

needs to be considered as a treatment

option as well

Inclusion of radiological features are

needed. The lack of inclusion of

radiological features might lead to a risk

of model overfitting due to the valuable

information radiological features

provide regarding to thrombolysis safety

and efficiency

Advanced radiologial features

representing penumbra and

proximal/distal arterial occlusion

information could be computed using

computer vision. Interaction term

between biomarkers, clot characteristics,

and imaging manifestation could be

generated to represent clot composition

Flexible algorithms have higher

accuracy. A proactive approach could be

adopted to increase flexible model

prediction accuracy by boosting

interpretability

Deep learning based pipelines could be

used to automatically interpret medical

images to obtain advanced radiological

features in a short time
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symptomatic intracerebral hemorrhage is an appropriate

indicator for thrombolysis safety. To provide a comprehensive

thrombolysis efficiency assessment, both early and long-term

outcome predictions are required. Given the possible high

correlation between treatment option and clinical profile, an

inferencemachine learningmodel to statistically test if treatment

option is correlated with certain clinical features is necessary

before constructing the outcome prediction model. The possible

treatment options are placebo, thrombolysis with a low dosage,

thrombolysis with standard dosage, and thrombolysis followed

by thrombectomy. The lack of advanced radiological features

representing penumbra and proximal/distal arterial occlusion

information are commonly found in previous studies. In recent

years, with an increasing number of studies investigating the

impact of clot composition on the efficiency of thrombolysis,

the interaction term between biomarkers, clot characteristics,

and imaging manifestation could be generated to represent clot

composition.

The feasibility of a machine learning model, on the other

hand, needs to be achieved by elaborate computer science

algorithms to increase the interpretability of flexible algorithms

and shorten the processing time of the pipeline interpreting

medical images. Previous models tend to adopt a passive

way in terms of feasibility: they chose restrictive models with

low accuracy for high interpretability and avoided advanced

radiological features due to the difficulty to calculate them

in an emergency. Recent advancements in computer science

would allow future models to achieve feasibility while not

compromising accuracy.

In summary, an accurate and feasible machine learning

model in assisting thrombolysis therapy should be both clinical-

evidence orientated and algorithm orientated, thus requiring

interdisciplinary collaboration between neurologists, who could

provide comprehensive domain knowledge, and computer

scientists, who could improve the performance of current

algorithms.
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