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Emergence of topological 
superconductivity in doped 
topological Dirac semimetals 
under symmetry‑lowering lattice 
distortions
Sangmo Cheon1,2,3,4,9, Ki Hoon Lee1,2,5,9, Suk Bum Chung1,2,6,7* & Bohm‑Jung Yang1,2,8*

Recently, unconventional superconductivity having a zero-bias conductance peak is reported in 
doped topological Dirac semimetal (DSM) with lattice distortion. Motivated by the experiments, 
we theoretically study the possible symmetry-lowering lattice distortions and their effects on 
the emergence of unconventional superconductivity in doped topological DSM. We find four 
types of symmetry-lowering lattice distortions that reproduce the crystal symmetries relevant to 
experiments from the group-theoretical analysis. Considering inter-orbital and intra-orbital electron 
density-density interactions, we calculate superconducting phase diagrams. We find that the lattice 
distortions can induce unconventional superconductivity hosting gapless surface Andreev bound 
states (SABS). Depending on the lattice distortions and superconducting pairing interactions, 
the unconventional inversion-odd-parity superconductivity can be either topological nodal 
superconductivity hosting a flat SABS or topological crystalline superconductivity hosting a gapless 
SABS. Remarkably, the lattice distortions increase the superconducting critical temperature, which is 
consistent with the experiments. Our work opens a pathway to explore and control pressure-induced 
topological superconductivity in doped topological semimetals.

Topological insulator, Dirac semimetal (DSM), Weyl semimetal, and topological superconductor are newly 
established quantum states of matter which are expected to have applications for dissipationless devices and 
quantum information technologies1–7. Among them, topological Weyl and Dirac semimetals are characterized by 
relativistic quasi-particles and gapless nodes in bulk spectra3,6,8–11. Because of their anomalous electromagnetic 
responses and topologically-protected surface Fermi arcs on the boundaries, such topological semimetals have 
been attracted much attention6,8,12–26. Moreover, due to the unique properties of Dirac and Weyl semimetals, 
extensive theoretical and experimental studies of their superconducting instabilities have been conducted to 
observe possible topological superconductivity5,7.

Recently, the lattice-distortion induced superconductivity in DSMs of Cd3As227–29 and Au2Pb30–34 is reported. 
For Cd3As2 , it does not show any superconductivity at the ambient pressure until 1.8 K27–29. The structural phase 
transition occurs near 2.6 GPa from a tetragonal lattice with D4h point group symmetry ( I41/acd ) to a monoclinic 
lattice with C2h point group symmetry ( P21/c ). Then, superconductivity emerges at Tc ≈ 1.8 K under pressure 
higher than 8.5 GPa. When the pressure increases further, Tc keeps increasing from 1.8 K to 4.0 K in the hydro-
static pressure experiment28. Similarly, Au2 Pb shows superconductivity at Tc ≈ 1.2 K after a structural phase 
transition from the cubic with Oh symmetry (Fd3m) to the orthorhombic lattice with D2h symmetry (Pbnc)30,32,34. 
Tc increases up to 4 K at 5 GPa, then decreases with further compression34. For both materials, the point-contact 
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measurements reported that measured Tc using a hard contact tip is much higher than the measured Tc using 
a soft tip27,29,32. The point-contact measurements for Cd3As2 showed the zero-bias conductance peak (ZBCP) 
and double conductance peaks symmetric around zero bias, which was interpreted as a signal of a topological 
Majorana surface state27,29. Moreover, the transport data under magnetic fields reported anomalous behaviors 
that the conventional BCS theory cannot explain27,29,32. At ambient pressure, the proximity-induced supercon-
ductivity in Cd3As2 is also reported35.

In parallel to the experimental exploration of the superconductivity in doped DSM, several theoretical studies 
were conducted36,37. In the absence of lattice distortion, the possible superconducting states in doped DSM are 
suggested as either fully-gapped superconductor (FGSC) or topological nodal superconductor (TNSC) hosting 
a flat surface Andreev bound state (SABS) on the boundary37. In experiments, however, superconductivity was 
observed only in the presence of lattice distortion. Considering a lattice distortion (in our work, n1 type lattice 
distortion), the topological crystalline superconductor (TCSC) hosting surface Majorana states was proposed36. 
However, because such lattice distortion results in the orthorhombic lattice, it cannot be applied to the observed 
superconductivity in the monoclinic crystal structure of Cd3As228. It is, therefore, necessary to study the effect of 
symmetry-lowering lattice distortions on the emergence of unconventional superconductivity in doped DSM.

In this work, we systematically study possible symmetry-lowering lattice distortions and their effects on 
the emergence of unconventional superconductivity in doped topological DSM. As a representative model, we 
consider a topological DSM described by the four-band Hamiltonian having D4h point group symmetry in the 
absence of lattice distortions. While keeping time-reversal symmetry (TRS) and inversion symmetry (IS), we 
find four types of symmetry-lowering lattice distortions from the group-theoretical analysis, which are denoted 
as ni type lattice distortions ( i = 1, . . . , 4 ). Two of them ( n1 and n2 type) reduce D4h of the tetragonal lattice to D2h 
orthorhombic lattice, while the others ( n3 and n4 type) transform the tetragonal lattice to C2h of the monoclinic 
lattice. They explain the structural phase transition in Cd3As2 and Au2 Pb under pressure. The symmetry-lowering 
lattice distortions are summarized in Table 3.

To understand the emergence of superconductivity under lattice distortions, we adopt the Bogoliubov-de 
Gennes (BdG) formalism and linearized gap equation, and we assume intra-orbital (U) and inter-orbital (V) 
electron density-density interactions which induce superconducting instabilities. From the Fermi-Dirac statistics, 
six possible momentum-independent superconducting pairing potentials are found37. Under lattice distortions, 
six pairings potentials are classified according to the irreducible representation of the remaining point symmetry 
group. Using these pairing potentials, possible superconducting gap structures and superconducting critical 
temperatures ( Tc ) are calculated. By comparing critical temperatures, we obtain the superconducting phase dia-
gram, and the dominant superconducting phases are discovered, such as fully-gapped superconductor (FGSC), 
topological nodal superconductor (TNSC), and topological crystalline superconductor (TCSC) depending on 
the lattice distortions and the ratio of U/V. Among them, FGSC is conventional superconductor, while TNSC 
and TCSC are unconventional.

Interestingly, the unconventional superconductors of TNSC and TCSC emerge when inter-orbital interaction 
V and the strength of lattice distortion are large enough while FGSC emerges in the opposite limit. Therefore, 
the lattice distortion and inter-orbital interaction act as physical parameters that control the phase transition 
between conventional and unconventional superconductivity of a topological DSM. We find that both V and lat-
tice distortions enhance the unconventional superconducting pairings via a unique spin-orbit locking. Moreover, 
Tc increases under the lattice distortions due to the enhancement of DOS at the Fermi surface, which is consistent 
with the experimentally measured Tc enhancement under pressure. The unconventional superconductors host 
gapless SABS in mirror plane even under the lattice distortions: Under the n1 or n2 type lattice distortion, the 
superconductivity in the orthorhombic lattice with D2h point group symmetry hosts a gapless SABS protected 
by the mirror Chern number. Under the n3 or n4 type lattice distortion, the superconductivity in the monoclinic 
lattice with C2h point group symmetry hosts a gapless SABS protected by the unbroken mirror symmetry and 
a flat SABS protected by the mirror chiral winding number in specific conditions. Because there exist gapless 
Majorana surface states under the lattice distortions, we suggest that these states can be observed in scanning 
tunneling microscope (STM) or point contact Andreev reflection spectroscopy experiments.

Consequently, our theoretical work is consistent with the discovered structural phase transition and the 
enhancement of superconductivity in Cd3As2 and Au2 Pb under lattice distortions. Moreover, we suggest that the 
emergence of conventional and unconventional superconductivity in doped topological DSM can be controlled 
by the pressure and strength of the superconducting pairing interaction. Therefore, our woks opens a pathway 
to explore and control the topological superconductors in doped topological semimetals, which may have future 
applications in dissipationless and quantum information devices.

Results
Undistorted Dirac semimetal.  Dirac semimetal (DSM) has the low energy excitations near the Fermi-
level described by a massless Dirac equation. Because all bands are doubly degenerate due to the TRS and IS, a 
DSM is minimally described by a four-band Hamiltonian6,10,38–40. However, TRS and IS are not enough to protect 
a fourfold degeneracy, so the symmetry-protected DSM is suggested, where the Dirac points are protected by 
TRS, IS and crystalline symmetries6,10,38–40. DSMs are reported in many materials such as β-cristobalite BiO2
10, distorted spinels41, Na3Bi42,43, Cd3As242,44–49, Au2Pb30,50, and ZrTe551,52. Among them, superconductivity is 
reported in Cd3As227–29 and Au2Pb30–34. Both materials have Dirac points protected by TRS, IS, and C4 rotational 
symmetry and share the tetragonal crystal system with D4h point group symmetry. For this reason, we consider 
the undistorted topological DSM having a D4h point group symmetry as a representative model system.

Model and symmetry.  The general 4× 4 Hamiltonian representation is
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The coefficient function ai(k) are real functions and Ŵi = sjσk are 4× 4 gamma matrices where sj and σk are 
Pauli matrices for spin and orbital degrees of freedom in the spin (↑,↓) and the orbital (1, 2) spaces, respectively.

The symmetry constraints can simplify the Hamiltonian’s form in Eq. (1). Due to TRS and IS, the Hamiltonian 
satisfies the following equations:

where T = isyK̂  is the time-reversal operator ( K̂  is the complex conjugation operator) and P is the inversion 
operator. Because the inversion does not flip the spin, the inversion operator has orbital dependency only, and it 
can be chosen as P = −σz for topological DSM without loss of generality39,45. Then, due to TRS and IS, among 
sixteen Ŵi matrices, only six Ŵi matrices are allowed. They are Ŵ0 = 14×4 , Ŵ1 = σxsz , Ŵ2 = σys0 , Ŵ3 = σxsx , 
Ŵ4 = σxsy , and Ŵ5 = σzs0 . We set a0(k) = 0 since it does not contribute to the formation of Dirac points39,45.

The D4h point group symmetry imposes more constraints on the Hamiltonian’s form in Eq. (1). The genera-
tors of D4h point group can be chosen as inversion P, fourfold rotation about the z axis C4z , and twofold rotation 
about the x axis C2x . Their matrix representations are chosen as

where we adopt the following basis set known to describe the low-energy effective Hamiltonian of Cd2As345.

where J is the total angular momentum. Other rotation and mirror symmetries are given by C2z = iσzsz , 
Mxy = −isz , Myz = −isx , Mzx = −iσzsy , M(110) = i(σzsx − sy)/

√
2 , and M(11̄0) = i(σzsx + sy)/

√
2 . The sub-

script in each mirror operator represents the corresponding mirror plane by using either Cartesian coordinates 
or Miller indices. The group elements are derived in Sec. S1 in Supplementary Information. Due to this D4h 
symmetry, the Hamiltonian in Eq. (1) satisfy

where U and S are transformation matrices for an element of D4h group in the spin-orbital and momentum 
spaces, respectively. For the group generators, the Hamiltonian in Eq. (1) satisfies

where R4zk = (−ky , kx , kz) and R2xk = (kx ,−ky ,−kz) . Because the transformation properties of gamma matri-
ces are given by Table 1, Eq. (5) imposes constraints to each coefficient functions ai(k) , which is summarized in 
Table 2. Therefore, the general form of the Hamiltonian of DSM having D4h point group symmetry is obtained.

(1)H(k) =
16
∑

i=1

ai(k)Ŵi .

(2)TH(k)T−1 = H(−k), PH(k)P−1 = H(−k),

(3)P = −σz , C4z = exp(−i
π

2
sz − i

π

4
σzsz), C2x = iσzsx ,

(4)|1,↑� =
∣

∣

∣
PJ= 3

2
, 3/2

〉

, |1,↓� =
∣

∣

∣
PJ= 3

2
,−3/2

〉

, |2,↑� =
∣

∣

∣
SJ= 1

2
, 1/2

〉

, |2,↓� =
∣

∣

∣
SJ= 1

2
,−1/2

〉

,

(5)UH(k)U−1 = H(Sk),

(6)PH(k)P−1 = H(−k), C4zH(k)C−1
4z = H(R4zk), C2xH(k)C−1

2x = H(R2xk),

Table 1.   Transformation properties of gamma matrices under symmetry operations. Under an operation 
O, each gamma matrices satisfies the relation of OŴiO

−1 = ±Ŵj . In each entry, if i = j , the overall sign is 
written, otherwise the explicit form is given. The gamma matrices are classified according to the irreducible 
representation (IR) of D4h point group. Ŵ0 , Ŵ5 , Ŵ4 , and Ŵ3 belong to the A1g , A1g , B1u , and B2u irreducible 
representations, respectively. Ŵ1 and Ŵ2 belong to the two-dimensional Eu irreducible representation.

IR T P C4z Mxy Myz Mxz M(110) M(11̄0)

Ŵ0,Ŵ5 A1g + + + + + + + +
Ŵ4 B1u – – – – – – + +
Ŵ3 B2u – – – – + + – –

(Ŵ1,Ŵ2) Eu (−,−) (−,−) (Ŵ2,−Ŵ1) (+,+) (−,+) (+,−) (−Ŵ2,−Ŵ1) (Ŵ2,Ŵ1)

Table 2.   Symmetry constraints on ai(k). They are determined by Eq. (5). If the coefficient function is 
proportional to itself, ai(Sk) = ±ai(k) , the overall sign is denoted. If not, the explicit form is denoted.

T P C4z Mxy Myz Mxz M(110) M(11̄0)

a0(Sk), a5(Sk) + + + + + + + +
(a1(Sk), a2(Sk)) (−,−) (−,−) (−a2(k), a1(k)) (+,+) (−,+) (+,−) (−a2(k),−a1(k)) (a2(k), a1(k))

a3(Sk) – – – – + + – –

a4(Sk) – – – – – – + +
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Lattice model.  For concreteness, we construct an explicit lattice model that describes a class of Dirac semimet-
als such as Cd3As2 and Au2Pb. The coefficient functions of Hamiltonian in Eq. (1) are given by39,45

where M ′ , txy , tz , v, β , and γ are material-dependent parameters. The energy eigenvalues are given by

If tz > (M ′ − 2txy) > 0 , the Hamiltonian hosts a pair of Dirac points at (0, 0,±k0) as shown in Fig. 1a. Here, k0 is 
determined by M ′ − 2txy − tz cos k0 = 0 . These Dirac points are protected by the C4z symmetry39. Due to the C4z , 
the four bands on the kz axis can have different C4z eigenvalues, which lead to fourfold degenerate Dirac points.

Low‑energy effective Hamiltonian.  Near the Dirac points (0, 0,±k0) , the low-energy effective Hamiltonian 
takes the form of Dirac Hamiltonian, which is given by

where vz = tzk0 . The energy spectrum shows anisotropic energy-momentum dispersion, which is given by

(7)a1(k) = v sin kx ,

(8)a2(k) = v sin ky ,

(9)a3(k) = (β + γ ) sin kz(cos ky − cos kx),

(10)a4(k) = −(β − γ )(sin kz sin kx sin ky),

(11)a5(k) = M ′ − txy(cos kx + cos ky)− tz cos kz ,

(12)E = ±|a(k)| = ±
(

5
∑

i=1

a2i (k)

)1/2

.

(13)H
(±)
Dirac = vkxŴ1 + vkyŴ2 ± vz(kz ∓ k0)Ŵ5.
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Figure 1.   Crystal systems, band structures, and Fermi surfaces of Dirac semimetal (DSM) under various lattice 
distortions. (a) Undistorted DSM for comparison. It has a tetragonal lattice. (b–e) Distorted crystal systems 
under (b) n1 , (c) n2 , (d) n3 , and (e) n4 type lattice distortions. In (b) and (c), n1 and n2 type lattice distortions 
changes inplane lattice constants, which results in orthorhombic lattices. In (d) and (e), n3 and n4 type lattice 
distortions change the α and β angles, which results in monoclinic lattices. (f–j) The corresponding 3D band 
structures. In (f–i) [(j)], the band structures are plotted for the ky-kz ( kx-kz ) plane and the orange planes are 
ky = 0 ( kx = 0 ) plane. (k–o) The corresponding Fermi surfaces. In (l–o), all Fermi surfaces are distorted 
according to types of lattice distortions. In (n) and (o), the Fermi surfaces are shifted as indicated by the black 
arrows. Each vertical orange line indicates the kz axis.
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Distorted Dirac semimetal.  Symmetry‑lowering distortions.  In the absence of lattice distortions, Cd3As227–29  
and Au2Pb32–34 share the same D4h point group symmetry and show no superconductivity. However, both ma-
terials showed superconductivity after the structural phase transition under pressure or cooling, and the su-
perconducting critical temperature increases with the pressure28,34. At the high pressure, Cd3As2 becomes a 
monoclinic lattice having C2h point group symmetry28 and Au2 Pb becomes an orthorhombic lattice having D2h 
point group symmetry32. Thus, IS is preserved even under lattice distortions. In addition, the superconductivity 
appears under the small lattice distortions in the hydrostatic experiments28,34. Therefore, we assume that both 
TRS and IS are preserved under lattice distortions and the effect of the lattice distortion can be implemented as 
a perturbation53.

We now classify the possible symmetry-lowering lattice distortions. The form of the perturbation Hamiltonian 
for the lattice distortions is given by

where di(k) is a real-valued function of momentum and Ŵi is the gamma matrix. Because Ŵ1 , Ŵ2 , Ŵ3 , and Ŵ4 are 
odd under T and P, the coefficient functions d1(k) , d2(k) , d3(k) , and d4(k) are odd functions with respect to k . 
Similarly, the coefficient functions d0(k) and d5(k) are even functions with respect to k . Thus, the allowed lattice 
distortion terms can be either kodd Ŵ1,2,3,4 or keven Ŵ0,5 types.

Because we assume TRS and IS to remain under lattice distortions, the Hamiltonians for distorted and undis-
torted DSM have the same form of H =

∑

i ai(k)Ŵi . The only difference between the two Hamiltonians is the 
transformation properties of the coefficient function ai(k) . In the absence of lattice distortions, ai(k) needs to 
satisfy all transformation properties under all symmetry operations of D4h point group in Table 2. However, in 
the presence of lattice distortion, ai(k) only needs to satisfy the transformation properties under the remaining 
symmetry operations, so ai(k) is less constrained.

Lattice Hamiltonian with lattice distortions.  To discuss the effect of lattice distortions explicitly, we introduce 
the possible symmetry-lowering lattice distortions in the lattice model in Eqs. (7-11). For weak lattice distor-
tions, the lattice distortions are approximately proportional to sin ki and cos ki as only nearest neighbor hoppings 
are relevant. Because we are interested in the Dirac physics near the Dirac points (0, 0,±k0) , we assume that 
kx/kz ≪ 0 and ky/kz ≪ 0 , which implies that sin kx and sin ky are smaller than sin kz and cos ki . Hence, sin kz 
and cos ki are dominant momentum dependent terms in the leading order, and the allowed lattice distortions are 
either sin kz Ŵ1,2,3,4 or cos ki Ŵ0,5 types. Because cos ki Ŵ0,5 types are included in the trivial A1g class of D4h point 
group, they do no break any symmetry. On the other hand, sin kz Ŵ1,2,3,4 types are included in B1g , B2g , and Eg , 
and they break the crystal symmetry properly, which are summarized in Table 3. Therefore, in the leading order, 
there are four types of symmetry-lowering lattice distortion, which are given by

where ni is the strength of each lattice distortion. For convenience, each lattice distortion is denoted as ni type 
lattice distortions in this work. From now on, we will consider these four types of symmetry-lowering lattice 
distortions, and the possible higher-order terms are discussed in Sec. S2 in Supplementary Information.

Therefore, the coefficient functions in Eq. (1) are given by

(14)E = ±
√

v2(k2x + ky)2 + v2z (kz ∓ k0)2.

(15)Hpert =
5

∑

i=0

di(k)Ŵi ,

(16)Hpert = sin kz(n1Ŵ3 + n2Ŵ4 + n3Ŵ2 + n4Ŵ1),

Table 3.   Four types of symmetry-lowering lattice distortions are classified according to the irreducible 
representation of D4h point group. n1 and n2 belong to the B1g and B2g irreducible representations of D4h , 
respectively, while n3 and n4 belong to the two-dimensional Eg irreducible representation. For each lattice 
distortion, the matrix form, remaining essential group elements, and related material are listed.

Type Form Remaining subgroup Essential elements Material

n1 sin kzŴ3 D2h C2z ,Mxy ,Mxz ,Myz Au2Pb

n2 sin kzŴ4 D′
2h C2z ,Mxy ,M(110) ,M(11̄0) Au2Pb

n3 sin kzŴ2 C2h(x) C2x ,Myz Cd3As2

n4 sin kzŴ1 C2h(y) C2y ,Mxz Cd3As2
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Under lattice distortion, the fourfold rotation symmetry is broken. Thus, the Dirac point is gapped, which can 
be seen from the energy eigenvalues on the kz axis, E = ±

√

(n21 + n22 + n23 + n24) sin
2 kz + a5(0, 0, kz)2 . Thus, 

the Dirac point is gapped unless n21 + n22 + n23 + n24 = 0 . As a result of the gap-opening, the DSM becomes a 3D 
topological insulator because of the band inversion at the Ŵ point36,39. Counting all the parity eigenvalues for the 
time-reversal-invariant momenta (TRIM) points of the bulk Brillouin zone (BZ)1,54 gives a nontrivial Z2 
invariant.

The effect of lattice distortions.  The four types of symmetry-lowering lattice distortions in Eq. (16) are classified 
according to the irreducible representation of D4h group. The symmetry-lowering lattice distortions break D4h 
point group symmetry into its subgroup symmetry, which is summarized in Table 3. The n1 and n2 type lattice 
distortions are included in the one-dimensional class B1g and B2g , and break D4h point group symmetry into 
D2h and D′

2h , respectively. The n3 and n4 type lattice distortions are included in the two-dimensional class Eu and 
break D4h point group symmetry into C2h . Note that n2 type lattice distortion is related to the n1 type lattice dis-
tortion via π/4 rotation, while n4 type lattice distortion is related to the n3 type lattice distortion via π/2 rotation.

We investigate the explicit effects of the lattice distortions on the crystal systems and the Fermi surfaces using 
the lattice model in Eq. (17). Figure 1 shows the crystal structures, the 3D band structures, and Fermi surfaces 
under various lattice distortions. Under n1 type lattice distortion, the crystal system and Fermi surface are elon-
gated along x or y direction, C4z symmetry is broken, the Dirac point is gapped, and the crystal system becomes 
orthorhombic (Fig. 1b, g). Similarly, under the n2 type lattice distortion, the crystal system and Fermi surface 
are elongated along diagonal lines either x = y or x = −y , C4z symmetry is broken, the Dirac point is gapped, 
and the crystal system becomes orthorhombic (Fig. 1c, h). We denote the symmetry point group of this right 
rhombic prism as D′

2h . Under n3 type lattice distortion, the crystal structure undergoes structural phase transition 
from tetragonal to monoclinic (Fig. 1d). Two Dirac points in the band structure are shifted oppositely along ky 
direction and the centers of each Fermi surfaces are also oppositely shifted along the same ky direction (Fig. 1h). 
Similar effects occur under n4 type lattice distortion (Fig. 1e, j) because n4 type lattice distortion are related with 
the n3 type lattice distortion via π/2 rotation. The point groups of these distorted systems under n3 and n4 type 
lattice distortions are denoted as C2h(x) and C2h(y) , respectively. Therefore, the four types of symmetry-lowering 
lattice distortions explain the lattice distortions of Cd3As2 and Au2 Pb under pressure.

Low‑energy effective Dirac Hamiltonian under lattice distortions.  Near the Dirac points (0, 0,±k0) , the coef-
ficient functions of the low-energy effective Hamiltonian can be approximated as

With this low-energy effective Hamiltonian, we show that the lattice distortion acts as a Dirac mass term and 
increases DOS at Fermi surface. We assume that the Fermi level is slightly above the Dirac points in undistorted 
lattice, or near the bottom of the conduction band minima after gap-opening at the Dirac points.

For n1 and n2 type lattice distortions, the low-energy effective Hamiltonian is given by

So, n1 and n2 type lattice distortion terms act as Dirac mass terms. The energy eigenvalue is given by

where |n| =
√

n21 + n22 . By the assumption of the total electron number conservation under a weak lattice distor-
tion, the lattice distortion dependent DOS at the Fermi surface is given by

which indicates that DOS at the Fermi level is enhanced under the lattice distortion. Here, µ0 indicates the chemi-
cal potential of the undistorted lattice. See the detailed derivations in Sec. S2.4 in Supplementary Information.

(17)

a1(k) = v sin kx + n4 sin kz ,

a2(k) = v sin ky + n3 sin kz ,

a3(k) = (β + γ )(cos ky − cos kx) sin kz + n1 sin kz ,

a4(k) = −(β − γ )(sin kx sin ky sin kz)+ n2 sin kz ,

a5(k) = M ′ − txy(cos kx + cos ky)− tz cos kz .

a1(k) = vkx + n4 sin k0,

a2(k) = vky + n3 sin k0,

a3(k) = (β + γ )

(

k2x − k2y

2

)

sin k0 + n1 sin k0,

a4(k) = −(β − γ )kxky sin k0 + n2 sin k0,

a5(k) = ±vz(kz ∓ k0)σz .

(18)H
(±)
Dirac = vkxŴ1 + vkyŴ2 ± vz(kz ∓ k0)Ŵ5 ± n1 sin k0Ŵ3 ± n2 sin k0Ŵ4.

(19)E = ±
√

v2(k2x + k2y)+ v2z (kz ∓ k0)2 + |n|2 sin2 k0,

(20)DOS(|n|) = 1

πv2vz
µ0

√

µ2
0 + |n|2 sin2 k0,
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Next, we consider the n3 type lattice distortion. The n3 type lattice distortion shifts the gap minima along the ky 
direction from (0, 0,±k0) to (0,±k

(0)
y ,±k0) with k(0)y = −n3 sin k0/v . Then, the low-energy effective Hamiltonian 

near the gap minima points (0,±k
(0)
y ,±k0) is given by

where m = −(β + γ )
n23 sin

3 k0
2v2

 is the Dirac mass term. The energy eigenvalue is given by

Similar to n1 and n2 type lattice distortions, DOS at the Fermi surface are given by

which means that the DOS at the Fermi level is enhanced under n3 type lattice distortion. Similarly, for n4 type 
lattice distortion, the low-energy effective Hamiltonian and DOS are easily calculated because n3 and n4 type 
lattice distortions are related via π/2 rotation.

Multiple symmetry‑lowering lattice distortions.  So far, we have considered only one type of lattice distortions. 
However, more than two types of lattice distortions can be turned on simultaneously. In this case, the final sub-
group symmetry determines the crystal system and its physical properties. When both n1 and n3 types lattice 
distortions are turned on, the remaining subgroup has P, C2x , Myz symmetries. This subgroup is the same point 
group of the distorted Dirac semimetal under single n3 type lattice distortion. In other words, under n3 type lat-
tice distortion, the addition of n1 type lattice distortion is also allowed. A similar argument can be applied to n2 
and n4 types lattice distortions. When both n1 and n2 type lattice distortions are turned on, the remaining sym-
metries are P, C2z , Mxy symmetries. We denote this point subgroup as C2h(z) , and we will not consider this case 
seriously because there is no real material that corresponds to this case. Similarly, the other combinations such 
as (n2, n3) , (n1, n4) , (n3, n4) , (n1, n2, n3) , (n1, n2, n4) break all crystal symmetries except the inversion, and hence 
these cases are not interested in this work.

Superconductivity.  BdG Hamiltonian.  To discuss the effects of lattice distortions on the superconductiv-
ity in doped DSM, we construct the Bogoliubov-de Gennes (BdG) Hamiltonian within mean-field approxima-
tion while keeping TRS and the crystal symmetry55,56. The BdG Hamiltonian is given by

where τi is the Pauli matrices in the Nambu space. �(k) and µ are a pairing potential and a chemical potential, 
respectively. H(k) is the normal state Hamiltonian in Eq. (1). The basis is taken as

While the pairing mechanism of doped DSM is not known yet, we assume the following onsite density-density 
interaction as a superconducting pairing interaction36,37,57,58:

where ni(x) is the electron density operators for ith orbital ( i = 1, 2 ). U and V are intra-orbital and inter-orbital 
interaction strengths, respectively, and we assume that at least one of them is attractive and responsible for 
superconductivity. Because the pairing interaction depends on the orbital and is local in x , the mean-field pair-
ing potential is orbital dependent but momentum independent: �(k) = �.

Symmetry of BdG Hamiltonian.  The BdG Hamiltonian in Eq. (23) has time-reversal symmetry T, particle-hole 
symmetry C, and chiral symmetry Ŵ:

where T = isyσ0τ0K̂ and C = isyσ0τyK̂ are time-reversal and particle-hole symmetry operators, respectively, and 
Ŵ = TC = s0σ0τy is the chiral operator. K̂ is the complex conjugation operator. Therefore, the BdG Hamiltonian 
belongs to in DIII class according to the classification table of topological insulator and superconductor59.

If the pairing potential satisfies P�(k)P−1 = ηP�(−k) , the BdG Hamiltonian has the inversion symmetry:

H
(±)
Dirac = vkxŴ1 + v(ky ∓ k(0)y )Ŵ2 ± vz(kz ∓ k0)Ŵ5 ±mŴ3,

(21)E = ±
√

v2k2x + v2(ky ∓ k
(0)
y )2 + v2z (kz ∓ k0)2 +m2.

(22)DOS(n3) =
1

πv2vz
µ0

√

µ2
0 +m2,

(23)HBdG =
∫

dk�†
k
H(k)�k ,

(24)H(k) = [H(k)− µ]τz +�(k)τx ,

(25)�
†
k
= (c†1k↑, c

†
2k↑, c

†
1k↓, c

†
2k↓, c1−k↓, c2−k↓,−c1−k↑,−c2−k↑).

(26)Hint(x) = −U[n11(x)+ n22(x)] − 2Vn1(x)n2(x),

(27)TH(k)T−1 = H(−k),

(28)CH(k)C−1 = −H(−k),

(29)ŴH(k)Ŵ−1 = H(k),
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where P and P̃ are the inversion operators for the DSM and BdG Hamiltonians, respectively, and ηP is the inver-
sion parity. If ηP = 1 ( ηP = −1 ), the superconducting phase is an inversion-even-parity (inversion-odd-parity) 
superconductor. For a single-orbital superconductor, P̃ is the identity operator, and an inversion-odd-parity 
(inversion-even-parity) pairing is equivalent to the spin-triplet (spin-singlet) pairing. However, because of the 
spin-orbit coupling and multi-orbital band structure, the pairings are more complex in our case.

From now on, we consider momentum independent pairing potentials, �(k) = � , because we assume onsite 
pairing interaction as discussed in Eq. (26). In the absence of lattice distortions, the BdG Hamiltonian has D4h 
point group symmetry37. If a pairing potential satisfies the transformation property of U�syU

Tsy = ηU� under a 
symmetry operation of D4h point symmetry group, the BdG Hamiltonian satisfies the corresponding symmetry:

where U is the symmetry operator in spin and orbital spaces, ηU is a phase factor, and Ũ = diag(U , ηUsyU
∗sy) 

is the extended symmetry operator in the Nambu space.
For the generators of D4h point group, if the pairing potential satisfies C4z�syC

T
4zsy = ηC4z� with ηC4z = eiπr/2 

( r = 0, . . . , 3 ) and C2x�syC
T
2xsy = ηC2x� with ηC2x = ±1 , then the BdG Hamiltonian satisfies the corresponding 

rotation symmetry:

where  the  extended symmetr y  operators  are  g iven by C̃4z = diag(C4z , ηC4z syC
∗
4zsy) and 

C̃2x = diag(C2x , ηC2x syC
∗
2xsy) . If the pairing potential satisfies M�syM

Tsy = ηM� under a mirror operator M, 
the BdG Hamiltonian satisfies the corresponding mirror symmetry:

where M̃ = diag (M, ηMsyM
∗sy) is a mirror operator for BdG Hamiltonian and k‖ ( k⊥ ) is the momentum vec-

tor parallel (perpendicular) to the mirror plane. The ηM is the mirror parity of the pairing potential under the 
mirror operation M.

In Table 4, the transformation properties of all possible pairing potentials under the rotation and mirror 
operators are summarized. The details of each pairing potential will be discussed below.

Pairing potentials.  We now investigate the possible superconducting pairing potentials in the presence of lattice 
distortions. Since we are considering multi-orbital superconductivity in the basis of two spins and two orbitals, 
pairing potentials can be represented as a product of spin Pauli matrices and orbital Pauli matrices, which leads 
to sixteen matrices. Among them, only six matrices are allowed because of the fermion statistics ( �sy = sy�

T ). 
We denote them as �1 , �′

1 , �2 , �3 , �41 , and �42 , whose forms and properties are listed in Table 4. Due to Pauli’s 
exclusion principle, the fermion bilinear form of each pairing potential shows antisymmetric property under the 
particle exchange. Because the pairing potential is momentum independent, the spatial part is symmetric, while 
the spin-orbital part is antisymmetric under the particle exchange. Thus, if the spin part is singlet, the orbital part 
is triplet, and vice versa. Therefore, �1 ’s and �41 are the spin-singlet orbital-triplet pairings and �2 , �3 , and �42 
are the spin-triplet orbital-singlet pairings as shown in the bilinear form in Table 4.

Six pairing potentials can be classified according to the irreducible representations of the unbroken point 
group, and the superconducting critical temperatures for the pairing potentials in the different classes are 
independent36,37,56–58. In the absence of lattice distortions, the pairing potentials are classified according to the 

(30)P̃H(k)P̃−1 = H(−k), with P̃ = diag(P, ηPP),

(31)ŨH(k)Ũ−1 = H(Sk),

(32)C̃4zH(k)C̃−1
4z = H(R4zk),

(33)C̃2xH(k)C̃−1
2x = H(R2xk),

(34)M̃H(k�, k⊥)M̃
−1 = H(k�,−k⊥),

Table 4.   The pairing potentials are classified according to the irreducible representation of D4h point group. 
�1 , �′

1
 , Ŵ2 , and Ŵ3 belong to the A1g , A1g , B1u , and B2u irreducible representations, respectively. �41 and Ŵ42 

belong to the two-dimensional Eu irreducible representation. The transformation properties of the pairing 
potentials are represented by +1 and −1 for even and odd parities. For two-dimensional representation Eu , the 
explicit forms are listed.

Pairing D4h E P C4z C2x Mxy Myz Mzx M110 M
11̄0

Fermion bilinear Matrix form

�1 A1g 1 1 1 1 1 1 1 1 1 c†
1↑c

†

1↓ + c†
2↑c

†

2↓ + h.c. Î

�′
1

A1g 1 1 1 1 1 1 1 1 1 c†
1↑c

†

1↓ − c†
2↑c

†

2↓ + h.c. σz

�2 B1u 1 − 1 − 1 1 − 1 − 1 − 1 1 1 c†
1↑c

†

2↑ + c†
1↓c

†

2↓ + h.c. σysy

�3 B2u 1 − 1 − 1 − 1 − 1 1 1 − 1 − 1 i(c†
1↑c

†

2↑ − c†
1↓c

†

2↓)+ h.c. σysx

�41 Eu 1 − 1 �42 − 1 1 1 − 1 �42 -�42 c†
1↑c

†

2↓ − c†
1↓c

†

2↑ + h.c. σx

�42 Eu 1 − 1 -�41 1 1 − 1 1 �41 -�41 i(c†
1↑c

†

2↓ + c†
1↓c

†

2↑)+ h.c. σysz
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D4h group: �1’s, �2 , �3 and �4 ’s belong to A1g , B1u , B2u and Eu irreducible representations, respectively, which 
are summarized in Table 4.

The pairing potential belonging to a specific irreducible representation of the D4h group can be decomposed 
into a combination of different irreducible representations depending on the symmetry of the distorted lattice. 
Some pairing potentials in the D4h group’s individual representations can be included in the same representation 
and vice versa. As an example, in the D2h case, (�41,�42) belong to in the two-dimensional representation Eu 
are separated into one-dimensional representations B2u and B3u , respectively. Similarly, for D′

2h case, the linear 
combination of �41 and �42 potential belongs to in one-dimensional representations B2u and B3u . Because D′

2h 
case is the π/4-rotated version of D2h case, �41 +�42 ( �42 −�41 ) is included in B3u ( B2u ) class when �41 = �42 
( �41 = −�42 ). The reclassification of pairing potentials under various lattice distortions is summarized in 
Table 5.

Superconducting nodal structure.  In this subsection, we classify the superconducting nodal structures 
under lattice distortions and study the symmetry and topology that guarantee the classified nodal structures.

Figure 2 shows the typical nodal structures of superconducting phases of the doped DSM under lattice dis-
tortions. There are three types of nodal structures: Full gap, point nodal, and line nodal structures, which are 
summarized in Table 6. For �1 and �′

1 superconducting phases, �1 phase is fully gapped and �′
1 phase has two 

nodal rings regardless of lattice distortions (Fig. 2a–e). For �2 and �3 phases, nodal points exist at the intersec-
tions between the kz axis and the Fermi surfaces in the absence of lattice distortions (Fig. 2a). These points are 
known to be protected by C4z symmetry36,37. Even under lattice distortions, if there is an unbroken mirror sym-
metry, the topologically protected nodal points can exist and they are protected by the corresponding mirror 
symmetry (Fig. 2b–e). For �41 and �42 phases, there are accidental nodal points at the intersections between the 
kz axis and the Fermi surfaces in the absence of lattice distortions (Fig. 2a). However, in the presence of lattice 
distortions, if there is an unbroken mirror symmetry, there can exist the topologically protected nodal points 
in the corresponding mirror plane (Fig. 2b–e). Note that all nodal points under lattice distortions in Fig. 2(b–e) 
are protected by the topological mirror winding numbers, as discussed later.

We now analytically investigate the condition of nodal points in each superconducting phase. Usually, nodal 
points can exist where the quasi-particle energy spectrum vanishes E (k) = 0 , which gives a set of equations 
for the momentum variables ( kx , ky , kz ). If the number of variables NV is greater than or equal to the number of 
independent equations NE , then nodal structures can exist. That is, NE ≤ NV = 3 is the necessary condition for 
the existence of the nodes. Moreover, if there is mirror symmetry, the necessary condition changes because the 
number of independent variables is reduced in the corresponding mirror plane. That is, the necessary condition 
becomes NE ≤ NV = 2 . If there is additional mirror symmetry, the necessary condition can be further reduced 
to NE ≤ NV = 1 on the intersection of two mirror planes.

First, we consider �1 and �′
1 superconducting phases. The full gap structure of �1 phase is directly seen from 

the energy eigenvalues of

where |a| =
√

∑5
i=1 ai(k)

2 . Unless ��1� = 0 , �1 phase is fully gapped. For �′
1 phase, the energy eigenvalues 

are given by

From E (k) = 0 , one can obtain the following equations:

Because the number of variable ( NV = 3 ) is larger than the number of equation ( NE = 2 ), a one-dimensional 
solution can exist, which leads to the nodal lines. Because this argument works regardless of the lattice distortions, 
the nodal rings can exist for all cases in Fig. 2. On the other hand, under some lattice distortions, a mixture of 
�1 and �′

1 phases is allowed when �1 and �′
1 are in the same representation as shown in Table 5. In such case, 

(35)E (k) = ±
√

(|a| ± |µ|)2 + ��1�2,

(36)E (k) = ±
√

|a|2 + µ2 +
〈

�′
1

〉2 ± 2

√

µ2|a|2 +
〈

�′
1

〉2(|a|2 − a5(k)2
)

.

(37)|a|2 = µ2 +
〈

�′
1

〉2
, a5(k) = 0.

Table 5.   Pairing potentials classified according to the D4h point group are reclassified according to the 
irreducible representation of unbroken subgroup under the lattice distortions. For D′

2h group, �42 +�41 and 
�42 −�41 pairing potentials belong to in B3u and B2u representations, respectively.

Pairing D4h D2h D′

2h C2h(z) C2h(x) C2h(y)

�1 A1g Ag Ag Ag Ag Ag

�′
1

A1g Ag Ag Ag Ag Ag

�2 B1u Au B1u Au Au Au

�3 B2u B1u Au Au Bu Bu

�41 Eu B2u B3u − B2u Bu Bu Au

�42 Eu B3u B3u + B2u Bu Au Bu
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the gap structures have full gap (nodal lines) when |��1�| >
∣

∣

〈

�′
1

〉
∣

∣ ( |��1�| <
∣

∣

〈

�′
1

〉
∣

∣ ) (Fig. S2). See the detailed 
calculation in Sec. S3 in Supplementary Information.

Next, consider the �2 and �3 superconducting phases. In the absence of lattice distortions, the nodal points in 
�2 and �3 phases are protected by C4z symmetry36,37. On the other hand, under lattice distortions, a mirror sym-
metry can protect the nodal points that appear in Fig. 2b, c, e. For �3 phase, the energy eigenvalues are given by

From E (k) = 0 , we get the following equations:

(38)E (k) = ±
√

|a|2 + µ2 + ��3�2 ± 2

√

µ2|a|2 + (a3(k)2 + a5(k)2)��3�2.

(39)|a|2 = µ2 + ��3�2, a1(k) = a2(k) = a4(k) = 0.

kz

kx
ky

�

���-
�-

��� ���-
���

(a)

(b)

(d)

(c)

D4h

(e)

D2h

C2h(z)

C2h(x)

�'1 ��2 ��3��1 ��41 ��42

�'1 ��2 ��3��1 ��41 ��42

�'1 ��2 ��3��1 ��41 ��41��42 ��42== -

�'1 ��2 ��3��1 ��41 ��42

�'1 ��2 ��3��1 ��41 ��42

D'2h

n1

n2

n3

n2n1=

Figure 2.   Superconducting nodal structures for pairing potentials under lattice distortions. Nodal structures 
for (a) D4h , (b) D2h , (c) D′

2h , (d) C2h(z) , and (e) C2h(x) cases. The orange point, line, and plane indicate nodal 
point and nodal line, and mirror plane ( Mxz , Myz , M110 , and M11̄0 ), respectively. In (a–e), the �1 phases are 
fully gapped and the �′

1 phases have two nodal rings. In (a–c, e), nodal points are located in the corresponding 
mirror planes. In (c), �42 +�41 and �42 −�41 phases are considered instead of �41 and �41 phases. In (d), the 
system has no mirror symmetries and hence no nodal points. These nodal structures are summarized in Table 6.
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Because NE = 4 is larger than NV = 3 , there seems to be no allowed nodal point. However, mirror symmetries 
can allow nodal points. For example, consider D2h point group with Myz and Mxz mirror symmetries. Under 
the Myz mirror operation, a1(k) and a4(k) are odd according to Table 2, which gives a1(k) = a4(k) = 0 at the 
mirror plane (0, ky , kz) . Similarly, Mxz mirror symmetry gives a2(k) = a4(k) = 0 at the mirror plane (kx , 0, kz) . 
Thus, along the kz axis, a1(k) = a2(k) = a4(k) = 0 and Eq. (39) is reduced to

Because NE = 1 is equal to NV = 1 , nodal points can exist as shown in Fig. 2b. However, when Myz and Mxz 
mirror symmetries are broken, the nodal points for the �3 phase are not protected as shown in Fig. 2c, d.

Similarly, the nodal points in �2 phase can be understood using M110 and M11̄0 mirror symmetries. These 
mirror symmetries allow nodal points on the kz axis in Fig. 2c. On the other hand, when M110 and M11̄0 mirror 
symmetries are broken, the nodal points disappear as shown in Fig. 2b, d. For the C2h(z) case, a mixture of �2 
and �3 phases is possible because �2 and �3 are included in the same Au representation. However, there is no 
allowed nodal point as shown in Fig. 2d because there is no helpful mirror symmetry. See the details in Sec. S3 
in Supplementary Information.

Finally, consider �41 and �42 phases. Without lattice distortions, there are accidental nodal points on the kz 
axis (Fig. 2a). The existence of such nodal point is easily seen using four mirror symmetries Mxz ,Myz ,M110 , and 
M11̄0 . These mirror symmetries force ai(k) = 0 for i = 1, · · · , 4 on the kz axis according to Table 2. Then, the 
equations for nodal points are given by

Because NE = NV = 1 , the nodal points exist. Because the �41 and �42 pairing potentials included in Eu rep-
resentation of D4h point symmetry group, they break the D4h symmetry spontaneously to D2h . Hence, some of 
non-zero ai(k) ( i = 1 · · · 4 ) are spontaneously generated and the corresponding conditions are introduced, which 
makes the nodal points vanish. Thus, these nodal points are accidental. However, under lattice distortions, the 
nodal points can be protected by the unbroken mirror symmetry. For example, when the point group is D2h under 
the n1 type lattice distortion, �41 and �42 are included in the different representations and thus we can consider 
each phase separately. For �41 phase, a1(k) = a4(k) = 0 on the mirror plane (0, ky , kz) due to Myz symmetry. 
Then, the equations for nodes are given by

Because NE = NV = 2 , there can exist nodal points (Fig. 2b). For �42 phase, nodal points also can exist due to 
Mxz mirror symmetry (Fig. 2b). When the point group is D2h′ under the n2 type lattice distortion, nodal points 
can exist due to M110 or M11̄0 mirror symmetries (Fig. 2c). For C2h(z) , a mixture of �41 and �42 phases is possible. 
However, there is no allowed nodal point due to the lack of mirror symmetry (Fig. 2d). When the point group is 
C2h(x) under the n3 type lattice distortion, nodal points can exist due to Myz mirror symmetry (Fig. 2e). See the 
detailed calculations in Sec. S3 in Supplementary Information.

Stability of nodal structures.  There are two types of nodes in Table 6, which are symmetry-protected 
node and topologically-protected node. In this subsection, we investigate the stability of them.

Chiral winding number.  Because of the chiral symmetry of the BdG Hamiltonian, the nodal lines can be pro-
tected by a chiral winding number4,59,60. The chiral winding number is defined along a path C enclosing a singu-
lar point in the Brillouin zone as shown in Fig. 3a:

(40)a23(kz)+ a25(kz) = µ2 + ��3�2.

(41)|a5(kz)|2 = µ2 + ��41�2 + ��42�2.

(42)a22(0, ky , kz)+ a25(0, ky , kz) = µ2 + ��41�2, a3(0, ky , kz) = 0.

(43)W = 1

4π i

∮

C

Tr
[

ŴH−1(k)dH(k)
]

,

Table 6.   Nodal structures of superconducting phases under lattice distortions. FG, LN, and PN denote full 
gap, line node, and point node, respectively. a Topological line node protected by the chiral winding number 
( W = ±2 for each line node). b Node protected by C4z symmetry. c Topological point node protected by the 
mirror chiral winding number ( WM = ±2 for each point node). d The nodal point is located on the kz axis. e 
The nodal point is off the kz axis. f  Accidental point node.

�1 �′

1
�2 �3 �41 �42

D4h FG LN a PN b,c,d PN b,c,d Acc. f Acc. f

D2h FG LN a FG PN c,d PN c,e PN c,e

D′
2h FG LN a PN c,d FG PN c,e PN c,e

C2h(z) FG LN a FG FG FG FG

C2h(x) FG LN a FG PN c,e PN c,e FG
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where Ŵ is the chiral operator. As shown in Sec. S4 in Supplementary Information, the transformation property 
of the winding number under PT symmetry is given by

where the parity ηA,B = ±1 is determined by the relation AB = ηA,BBA . For the inversion-even-parity (inversion-
odd-parity) pairing potential, ηŴ,P̃T is −1 ( +1 ). Thus, the chiral winding number is zero for the inversion-odd-
parity superconductor and only the inversion-even-parity superconducting phases having �1 and �′

1 pairing 
potentials can have a nontrivial chiral winding number.

�1 and �′
1
 phases.  Because �1 phase is fully gapped, the chiral winding number is zero. On the other hand, two 

nodal rings in �′
1 phase are topologically protected by the chiral winding numbers. The calculated chiral winding 

numbers around the nodal rings are W = ±2 (Fig. 3). These chiral winding numbers do not change even under 
the lattice distortions because chiral winding number depends only on T, C, P, and Ŵ symmetries. Thus, the 
topologically-protected nodal rings in �′

1 phase exist regardless of the lattice distortion (Fig. 2).

Mirror chiral winding number.  If there is mirror symmetry, the BdG Hamiltonian commutes with the mirror 
symmetry operator in the mirror plane:

where M̃ is a mirror operator and kM is the momentum vector located in the mirror plane. Then, the BdG Ham-
iltonian can be block-diagonalized according to the mirror eigenvalues � = ±i . Besides, if the mirror operator 
commutes with the chiral operator,

the chiral operator also can be block diagonalized according to the same mirror eigenvalue. Then, the winding 
number W� in each mirror eigenvalue sector can be defined. The condition in Eq. (46) is satisfied only when 
the pairing potential is mirror even. The reason is as follows: In our convention, the mirror operator for BdG 
Hamiltonian is defined as M̃ = diag[M, ηMsyM

∗sy] where M and syM∗sy are mirror operators for electron part 
and hole part, respectively. ηM = ±1 is the mirror parity of a pairing potential, which is given in Table 4. Because 
the mirror operator commutes with the time-reversal operator [T ,M] = 0 , all the mirror operator satisfies 
syM

∗sy = M . Then, M̃ = Mτ0 ( M̃ = Mτz ) for the mirror-even-parity (mirror-odd-parity) pairing potential. 
Thus, only the mirror-even-parity superconducting phase satisfies the condition of Eq. (46).

(44)W = −ηŴ,P̃TW ,

(45)[M̃,H(kM)] = 0.

(46)[Ŵ, M̃] = 0,
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Figure 3.   Topologically protected nodal structures and chiral winding numbers. The orange ring, point, plane, 
and vertical line indicate nodal ring, nodal point, mirror plane, and kz axis, respectively. Each winding number 
is defined along each blue loop. (a) The chiral winding numbers ( W = ±2 ) protect nodal rings. (b, c) The 
mirror chiral winding numbers ( WM = ±2 ) protect nodal points on the mirror planes. (d) Evolution of nodal 
points in �42 phases and the corresponding mirror chiral winding number under the n1 type lattice distortion. 
For clarity, the blue winding loops are omitted. For n1 = 0 , nodal points with WM = 0 are located on kz axis. 
These are fine-tuned accidental nodal points because D4h is spontaneously broken into D2h due to �42 pairing 
[see the main text below Eq.  (41)]. As n1 increases, the nodal points split into two nodal points with WM = ±2 . 
The bottom plot shows the evolution of the energy dispersion along kx axis. As n1 increases, the blue (orange) 
band moves downward (upward), which results in two Dirac points.
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Furthermore, the mirror chiral winding number can be defined as WM = Wi −W−i , where W� is the chiral 
winding number for each block having a mirror eigenvalue � . The mirror chiral winding number WM can also 
be defined for a path C that encloses the Dirac point in the mirror plane as shown in Fig. 3b. When the path C 
is parametrized by θ ∈ [0, 2π) , the mirror chiral winding number is given by37,61

�2 and �3 phases.  In the absence of lattice distortions, the C4z symmetry protects the nodal points by assign-
ing different eigenvalues36,37. The same nodal points are also topologically protected by the mirror chiral winding 
number in Eq.(47) because the �2 and �3 pairing potentials are mirror-even. For �3 pairing potential, which is 
mirror-even under Mxz and Myz , the calculated mirror chiral winding numbers around the nodal points are ±2 
(Fig. 3c). Similarly, the nodal points in the �2 phase are topologically protected by M110 and M11̄0 mirror chiral 
winding numbers.

Even though C4z symmetry is broken under lattice distortions, the mirror chiral winding number topologi-
cally protects the nodal points if the corresponding mirror symmetry is unbroken. For example, consider D2h 
point group which has Mxz and Myz mirror symmetries. Among �2 and �3 pairings, �3 pairing is mirror even 
under Mxz and Myz . Thus, the nodal points in the �3 phase are topologically protected by the corresponding 
mirror chiral winding numbers (Fig. 3c).

Furthermore, the nodal points are positioned on the kz axis because C2z symmetry gives an additional con-
straint as follows: Let WM(k) denote a mirror chiral winding number at k . Then, the mirror chiral winding 
number at C2zk is related with that at k by

where ηC2z is the parity of the pairing potential under C2z transformation. The detail derivation is in Sec. S4 in 
Supplementary Information. Since ηC2z = 1 for �2 and �3 , WM(k) = WM(C2zk) , which means that the mirror 
chiral winding numbers are the same for the two nodal points that are related by C2z rotation. Now, let us assume 
that a nodal point on the kz axis in the absence of lattice distortions deviates from the kz axis under the n2 type 
lattice distortion. Due to the C2z symmetry, there exists another nodal point having the same mirror chiral wind-
ing number. Thus, the total mirror winding number under lattice distortion becomes twice the original winding 
number, which is a contraction with the topological charge conservation. Therefore, the nodal points should be 
located on the kz axis under the n2 type lattice distortion.

A similar argument can be applied to the D′
2h case having M110 and M11̄0 mirror symmetries. The nodal points 

in the �2 phase is topologically protected by the M110 and M11̄0 mirror chiral winding numbers and the nodal 
points are located on the kz axis due to the C2z symmetry (Figs. 2c and 3b). For C2h(x) case, Myz is unbroken 
while C2z is broken. Thus, nodal points on Myz plane in �3 phase are protected by the Myz mirror chiral winding 
number and can be deviated from kz axis due to the C2z symmetry breaking (Fig. 2e).

�41 and �42 phases.  In the absence of lattice distortions, the nodal points in each �41 and �42 phases (Fig. 2a) 
are accidental nodal points because a single phase, either �41 or �42 phase, would break the D4h point group 
symmetry spontaneously. Only if we neglect such lattice symmetry breaking, the accidental nodal points can 
be understood to be protected by the different eigenvalues of C2z and sz symmetry operators (see the details in 
Sec. S3 in Supplementary Information). Note that the existence of the accidental point nodes also can be verified 
via C4z symmetry36,37. In the viewpoint of topological winding numbers, the mirror chiral winding numbers are 
zero in the absence of lattice distortions (Fig. 3d) . Due to the C2z symmetry, Eq. (48) gives

which implies that WM = 0 on the kz axis. Here, ηC2z = −1 is used for �41 and �42 . Thus, the nodal points are 
not topologically protected for D4h case.

However, under lattice distortions, nodal points can be topologically protected by the mirror chiral winding 
number. Let us consider the D2h point group under the n1 type lattice distortion. Since �41 and �42 pairings are 
mirror-even under Myz and Mxz operations, the corresponding mirror chiral winding number protects nodal 
points in each mirror plane (Fig. 2b). The calculated mirror chiral winding numbers are WM = ±2 (Fig. 3d). 
Note that the nodal points are off the kz axis and the calculated mirror chiral winding numbers satisfy Eq. (49). 
For the D′

2h case, M110 and M11̄0 mirror chiral winding numbers ( WM = ±2 ) protect nodal points in corre-
sponding mirror planes for the superconducting phases having �41 ±�42 pairing potentials (Fig. 2c). For the 
C2h(z) case, all the relevant mirror symmetries are broken and hence there are no topologically-protected nodal 
points (Fig. 2d). For the C2h(x) case, there are unbroken Myz and C2x . Thus, Myz mirror chiral winding numbers 
( WM = ±2 ) protect the nodal points but the nodal points need not to be located symmetrically with respect to 
the kz axis (Fig. 2e). These nodal points in the C2h(x) case can be understood from the nodal points in the D2h 
case: Among four nodal points in the D2h case, two nodal points are pair-annihilated, and only two nodal points 
survive in the C2h(x) case.

Finally, we discuss a gap structure change of �42 phase under n1 type lattice distortion (Fig. 3d). When n1 = 0 , 
each nodal points has WM = 0 and a quadratic energy-momentum dispersion relation along the kx . With the 
increasing lattice distortion, nodal points with WM = ±2 are created pairwise from a nodal point with WM = 0 , 
and linear energy-momentum dispersion relation for all three momentum directions appears. Similar gap struc-
ture changes occur under the other lattice distortions.

(47)WM = −1

4π

∮

C

dθTr
[

M̃ŴH−1(k(θ))dH(k(θ))
]

.

(48)WM(C2zk) = ηC2zWM(k),

(49)WM(0, 0, kz) = −WM(0, 0, kz),
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Surface spectrum.  Surface Andreev bound state (SABS) in superconducting phases of the topological 
DSM have been studied in the absence of lattice distortion37. In this subsection, we systematically investigate 
SABS in superconducting phases under lattice distortions. There are four types of gapless surface Majorana 
states under lattice distortions. Three types are topologically protected by mirror chiral winding, mirror Chern, 
and zero-dimensional winding numbers. The fourth type is protected by mirror symmetry and corresponding 
eigenvalues.

Using the Möbius transformation based method62, we calculate the surface band structures. Figure 4 shows 
the numerically obtained surface spectra for (010) surface in various superconducting phases under lattice dis-
tortions. For �1 and �′

1 phases, there is no SABS; �1 phase is fully gapped and topologically trivial, and �′
1 phase 

has two nodal lines having opposite chiral winding numbers as shown in Fig. 3a, which does not have protected 
SABS because of the positions and shapes of two nodes in momentum space. On the other hand, �2 , �3 , �41 , 
and �42 have various types of SABS (Fig. 4), which are summarized in Table 7.
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Figure 4.   Surface band structures of superconducting phases under distortions. Surface band structures on the 
(010) surface for (a–d) D4h , (e–h) D2h , (i–l) C2h(z) and (m–p) C2h(x) . In each panel, the upper figure indicates 
the close-up view of the band structure near E = 0 corresponding to the red box in the lower figure. The red 
vertical arrows indicate the nodal points of the bulk superconducting states. In the insets of (e, h, i, l), the bulk 
states are gapped. The cyan vertical arrows indicate the gapped surface states. In (b, f, j, k), red horizontal lines 
show the surface flat bands. The nature of gapless surface state (GSS) is distinguished by the colored circle: Red 
ones in (a, b, e, f), green ones in (a, b, d–f, h, i, l), and black ones in (d, h, i, l) indicate GSS’s protected by mirror 
Chern numbers, zero-dimensional topological numbers, and mirror eigenvalues, respectively. In (j), GSS’s are 
accidental. The details are in Table 7 and in the main text. Region I, II, and III are (0, k1) − (0, k2) , (k2, 0) − (0, 0), 
(0, 0) − (π/2, 0) , respectively, where k1 and k2 ( k1 > k2 > 0 ) indicate two intersecting points between the upper 
Fermi surface and the kz axis.
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Without loss of generality, we will focus on the (010) surface and the surface Brillouin zone (kx , kz) . A simi-
lar analysis for the (010) surface can be easily applied to the other surfaces such as (100), (110) planes, because 
the results for the other plane only depend on the mirror symmetries and the transformation properties of the 
pairing potentials under the unbroken symmetries. For convenience, we consider the surface states in the three 
regions: Region I, II, and III, which are (0, k1)-(0, k2) , (k2, 0)-(0, 0), (0, 0)-(π/2, 0) , respectively. Here, k1 and k2 
( k1 > k2 > 0 ) indicate two intersecting points between the upper Fermi surface and the kz axis.

First, we consider the flat SABS in the Region I, which is topologically protected by the nontrivial mirror chiral 
winding number in Eq. (47). For example, let us consider �3 phase and Myz mirror symmetry. For D4h , D2h , and 
C2h(x) cases, Myz mirror is unbroken and �3 has odd parity under Myz , which leads to the opposite mirror chiral 
winding numbers ( WM = ±2 ) for two nodal points near the upper Fermi sphere as shown in Fig. 3c. Then, there 
exists a flat SABS on (010) surface as shown in Fig. 4b, f, j. To understand such SABS on (010) surface, the mirror 
winding number WM(kz) along the mirror invariant kz axis is defined as37

which is nontrivial between nodal points. Therefore, between the nodal points, there exists a flat SABS. Simi-
larly, for �41 phase, Myz mirror symmetry gives nontrivial mirror chiral winding numbers, which guarantees 
the existence of the zero-energy flat SABS in the Region I on (010) surface (Fig. 4k). Note that, under the n3 type 
lattice distortion, the mixture of �3 and �41 phases are allowed. But the flat SABS is still present due to the Myz 
mirror chiral winding number.

Second, we consider the gapless SABS protected by the mirror Chern number CM . The topological mirror 
superconducting phases36,63 are allowed for �2 and �3 phases because �2 and �3 pairing potentials are Mxy 
mirror-odd and the corresponding mirror Chern numbers for each mirror eigenvalue block are nontrivial. 
Under the n1 ( n2 ) type lattice distortion, �2 ( �3 ) phase is fully gapped, and the mirror Chern number defined in 
Mxy plane is nontrivial ( CM = ±2 ), which leads to a topologically-protected Majorana states on Mxy plane. For 
example, see the surface spectra in the Region III in Fig. 4e.

Third, we consider the gapless SABS protected by the zero-dimensional topological number. Since �2 and �42 
pairings are odd under Myz , a zero-dimensional topological number ρ(kx) can be defined using ŴMyz

36,37. Then, 
the zero-dimensional topological number protects the gapless state in the Region III. See the surface spectra at 
the Region III in Fig. 4d, h, i, l and Table 7. Similarly, �2 and �3 pairings are odd under Myz , a zero-dimensional 
topological number ρ(kz) is defined using CMyz

36,37, which protects the gapless states in the Region II for D4h 
and D2h cases. See the surface spectra at the Region II in Fig. 4a, b, e, f and Table 7.

Fourth, we consider the gapless SABS protected by mirror eigenvalues. If the pairing potential has an odd 
parity under the mirror operation, the mirror eigenvalues for the electron and hole bands are different, which 
protects the band crossing of surface states36,37. For example, consider �2 phase and Myz symmetry. Because 
(kx , ky , kz) → (−kx , ky , kz) under Myz , the mirror eigenvalues are properly defined on the kz axis. Moreover, �2 
pairing has odd parity under Myz symmetry. Hence, the different mirror eigenvalues protect the gapless states 
in the Region I. See Fig. 4a, e, i. Similarly, �42 phases has odd parity under Myz , which protects the gapless states 
in the Region I and II. See Fig. 4d, h, l.

In summary, we find the various types of surface states depending on the pairing potentials and lattice distor-
tions. Even under the lattice distortions, most of the inversion-odd-parity superconducting phases have gapless 
SABS, which may be observed as zero bias conductance peak (ZBCP) in experiments.

Superconducting critical temperature and phase diagram.  In this subsection, we study supercon-
ducting critical temperatures and their enhancements under lattice distortions. We also investigate the phase 
diagram for the various superconducting phases under lattice distortion.

In the weak-coupling limit, the superconducting critical temperature Tc can be calculated by solving the 
linearized gap equation and a phase diagram for various pairing potentials is obtained by comparing the critical 
temperatures37,55–58. The linearized gap equation can be expressed using the pairing susceptibility37,55–58. The 
pairing susceptibility χi for each pairing potential �i is given by

(50)WM(kz) =
−1

4π i

∫ π

−π

dkyTr
[

M̃ŴH−1dkyH
]

,

Table 7.   Gapless surface Andreev bound state (SABS) on (010) surface. The entry is either a topological 
number or a symmetry operator which protects corresponding gapless surface states. Region I, II, and III are 
defined in Fig. 4. WM is a mirror chiral winding number that protects the flat SABS between nodal points. CM 
is a mirror Chern number that protects the gapless SABS in Mxy plane. ŴMyz and CMxy indicate the symmetry 
operators which protect gapless SABS using the corresponding zero-dimensional topological number. Myz and 
Mxy indicate the symmetry operators which protect the gapless SABS protected by the corresponding mirror 
eigenvalues. Acc. indicates an accidental gapless state. n/a means that there is no gapless state.

Pairing �2 �3 �41 �42

Region I II III I II III I II III I II III

D4h Myz CMxy CM WM CMxy CM n/a n/a n/a Myz Myz ŴMyz

D2h Myz CMxy CM WM CMxy CM n/a n/a n/a Myz Myz ŴMyz

C2h(x) Myz Myz ŴMyz WM Acc. Acc. WM n/a Acc. Myz Myz ŴMyz
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Here, β = 1/(kBT) is the inverse temperature, kB is the Boltzmann constant, ωn is the Matsubara frequency, and 
�i is the matrix representation of a pairing potential listed in Table 4. G0(k) = Pk

iωn−εk
 is the single-particle Green’s 

function of the normal state and Pk ≡
∑

m=1,2

∣

∣φm,k

〉〈

φm,k

∣

∣ is the projection operator onto the two degenerate 
Bloch states in the conduction bands. Here, εk = |a(k)| − µ . Then, the superconducting susceptibility has the 
following generic form:

where fi(k) is momentum dependent form factor. The explicit expressions for form factors fi(k) are given in 
Sec. S5 in Supplementary Information.

With these susceptibilities, we now solve the linearized gap equation. The linearized gap equations are 
obtained by minimizing the mean-field free energy in the weak coupling limit. Since superconducting critical 
temperatures with pairing potentials in the same classes are not independent, the �i ’s in the same class can appear 
in the same linearized gap equation.

First, consider the gap equation in the absence of lattice distortions. According to the irreducible representa-
tion of D4h , �1’s, �2 , �3 and �4 ’s belong to A1g , B1u , B2u and Eu irreducible representations (see Table 5). Then, 
the gap equations are given by

where χi,j is the generalized superconducting susceptibility for mixed pairings �i and �j by replacing the second 
�i with �j in Eq. (51). Using the low-energy effective Hamiltonian in Eq. (13), the superconducting susceptibility 
can be further simplified and hence one can solve the gap equation analytically. Using an ellipsoidal coordinate, 
the superconducting susceptibility can be represented as a product of two independent integrals (see more details 
in Sec. S5 in Supplementary Information):

Here, the radial integral part R (βc) is given by

where E is an integration variable and ωD is the energy cutoff of the pairing potential. The angular integral part 
�i(µ) is given by

where the form factor fi(k) is represented as a function of r, θ and φ in the ellipsoidal coordinates. After the 
integration over θ and φ , the susceptibilities can be obtained as follows:

where C0 = 2
(2π)3

µ2

v2vz
 . Then, the linearized gap equations are given by

If we denote the critical temperature T(i)
c  for a pairing potential �i , then the gap equations are given by

(51)χi(T) = − 1

β

∑

ωn

∑

k

Tr[(�iτx)G0(k)(�iτx)G0(k)].

(52)χi(T) =
∫

d3k

(2π)3
fi(k)

tanh(βεk/2)

2εk
,

(53)
∣

∣

∣

∣

Uχ1(Tc)− 1 Uχ1,1′(Tc)

Uχ1,1′(Tc) Uχ1′(Tc)− 1

∣

∣

∣

∣

= 0, for�1 and�′
1 phases,

(54)Vχ2(Tc)− 1 = 0, Vχ3(Tc)− 1 = 0, for�2 and�3 phases,

(55)
∣

∣

∣

∣

Vχ41(Tc)− 1 Vχ41,42(Tc)

Vχ41,42(Tc) Vχ42(Tc)− 1

∣

∣

∣

∣

= 0, for�41 and�42 phases,

(56)χi = R (βc)�i(µ).

(57)R (βc) =
∫ ωD

−ωD

dE
tanh(βcE/2)

E
,

(58)�i(µ) =
∫ π

0

∫ 2π

0

dθdφ

(2π)3

∣

∣

∣

∣

2µ2 sin θ

v2vz

∣

∣

∣

∣

fi(r = µ, θ ,φ),

(59)
χ1 = 4πC0R (Tc), χ1′ =

4π

3
C0R (Tc), χ2 = χ3 =

8π

3
C0R (Tc), χ41 = χ42 =

4π

3
C0R (Tc), χ1,1′ = χ41,42 = 0,

(60)χ1(Tc) = χ1′(Tc) = 1/U ,

(61)χ2(Tc) = χ3(Tc) = χ41(Tc) = χ42(Tc) = 1/V .

(62)R (T(1)
c ) = 1

3
R (T(1′)

c ) = 1

4πUC0
,

(63)R (T(2)
c ) = R (T(3)

c ) = 1

2
R (T(41)

c ) = 1

2
R (T(42)

c ) = 3

8πVC0
.



17

Vol.:(0123456789)

Scientific Reports |        (2021) 11:18539  | https://doi.org/10.1038/s41598-021-97982-1

www.nature.com/scientificreports/

Because R (x) is a monotonically decreasing function with respect to x ,  T(1)
c > T

(1′)
c  and 

T
(2)
c = T

(3)
c > T

(41)
c = T

(42)
c  . Thus, the highest Tc is determined among T(1)

c ,T
(2)
c  and T(3)

c  . Because the criti-
cal temperatures are same at the phase boundary, the phase boundary in Fig. 5a is determined by the equation 
R (T

(1)
c ) = R (T

(2)
c ) = R (T

(3)
c ) , which gives the critical value of U/V = 2/3.

When the chemical doping is low, the superconducting phase diagram for undistorted Dirac semimetal is 
shown in Fig. 5a. When the intra-orbital interaction U is strong, the conventional s-wave superconductivity 
with pairing potential �1 is the dominant phase. However, with the increasing inter-orbital interaction V, the 
unconventional superconducting phase with inter-orbital pairing potential �2 or �3 can emerge. Figure 5b shows 
the numerically obtained critical value of U/V ratio using the lattice Hamiltonian. Thus, by controlling the U/V 
ratio, both conventional and unconventional superconductivity can emerge for for the large range of chemical 
doping. The calculated value of U/V ratio is similar with 2/3 using the low-energy effective Hamiltonian, which 
means that �2 or �3 phase can emerge for the large range of chemical doping.

Next, consider the effect of n1 and n2 types of lattice distortions on the superconducting temperatures and the 
phase diagrams. When n1 type lattice distortion is turned on, the point group becomes D2h . In this case, only �1 
and �′

1 belong to the same Ag class, and the others are belong to different classes (see Table 5). So the linearized 
gap equation is given by

Similar to D4h case, the susceptibility can be analytically calculated when the chemical doping level is small. The 
relevant gap equations that determine the phase map are given by

(64)
∣

∣

∣

∣

Uχ1(Tc)− 1 Uχ1,1′(Tc)

Uχ1,1′(Tc) Uχ1′(Tc)− 1

∣

∣

∣

∣

= 0, for�1 and�′
1 phases,

(65)Vχ2(Tc) = Vχ3(Tc) = Vχ41(Tc) = Vχ42(Tc) = 1, for�2,�3,�41, and�42 phases.
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4πUC0
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Figure 5.   Phase diagrams for the tetragonal and orthorhombic crystal systems. (a) Superconducting phase 
diagram in the U and V plane in the absence of lattice distortions when µ/tz = 0.1 . In the orange (blue) region, 
�2 or �3 ( �1 ) phase is dominant. The slope of the phase boundary is approximately U/V = 2/3 . The white 
region indicates a non-superconducting phase. (b) The numerically calculated critical value of U/V ratio as a 
function of the chemical potential in the absence of lattice distortions. Since µ = 0.75tz is the band inversion 
point, there is a local maximum due to Van Hove singularity near µ = 0.75tz . (c, e) Phase diagrams with respect 
to (c) n1 and (e) n2 type lattice distortions when U = 0.045tz . The corresponding point groups are (c) D2h and (e) 
D′
2h . Each black arrow indicates the possible phase transition from an inversion-even-parity to inversion-odd-

parity superconducting phases. (d, f) The normalized critical temperature Tc/T0 for various pairing potentials 
with respect to (d) n1 and (f) n2 type lattice distortions. In both figures, U/V = 0.75 and U = 0.045tz , which 
corresponds to the black arrows in (c, e). T0 is the critical temperature of the �1 phase in the absence of the 
lattice distortions.
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Thus, the phase boundary is given by

Similarly, the other cases can be calculated. See the details in Supplementary Information.
Figure 5a shows the numerically calculated phase map in the absence of lattice distortions, which is consistent 

with the previous work37. The superconducting phases are separated by the U/V = 2/3 line as shown in Fig. 5a 
and the U/V ratio of the phase boundary depends on the chemical potential as shown in Fig. 5b. However, such 
superconducting phase is not reported in the real materials of Au2 Pb and Cd2As3 in the absence of lattice dis-
tortion. Such discrepancy might happen because either Tc is very low or the interaction strength is repulsive in 
real materials at ambient pressure.

Figure 5c–f shows the numerically calculated phase maps under the n1 and n2 types of lattice distortions using 
the low-energy effective Hamiltonian. The phase diagrams are plotted in the plane of the U/V ratio versus strength 
of n1 or n2 type lattice distortion. In each diagram, the dominant phases are conventional spin-singlet �1 phase 
and unconventional spin-triplet �2 or �3 phase depending on the parameters. When U/V is small (large) enough, 
�2 or �3 ( �1 ) phase emerges. Remarkably, the unconventional superconductivity can emerge with increasing 
lattice distortions. As an example, near the phase boundary of U/V ≈ 0.7 , there is a phase transition between 
conventional superconducting �1 and unconventional superconducting �2 phases when n1 increases (see the 
black arrow in Fig. 5c). To see this phase transition more clearly, we plot the normalized superconducting criti-
cal temperatures along the black arrow (Fig. 5d). When n1 = 0 , the �1 phase is dominant. With increasing n1 , 
the superconducting critical temperatures for �2 are increasing, which leads to the �2 superconducting phase 
under enough lattice distortion. Note that Tc ’s for �1 , �2 , �41 , and �42 increase while Tc for �3 decreases with 
the increasing n1 (Fig. 5d). This can be explained by the expectation values of the Cooper pairings and spin-
orbital texture at the Fermi surface, which will be discussed later. Because n1 and n2 type lattice distortions are 
related with π/4 rotation, similar features are observed except for the exchange of �2 and �3 phases (Fig. 5e, f).

For the n3 type lattice distortion, similar features can be observed in Fig. 6. Under the n3 type lattice distor-
tion, n1 type lattice distortions also can be involved as discussed before. Thus, we plot three representative phase 
diagrams for n1 = 0.0 , 0.05, and 0.1. Surprisingly, when n1 = 0 , �2 and �3 phases are degenerate, and they are 
dominant unconventional phases as shown in Fig. 6a,d. With increasing n1 , the region of the unconventional 
phase �2 increases (Fig. 6a–c) and the degenerate �2 and �3 phases become distinguishable.

Under n1 , n2 , and n3 lattice distortions, the Tc ’s of �2 , �3 , �41 , and �42 increases much more than that of �1 
(Figs. 5d, f, 6d–f), and hence the unconventional superconducting phases emerge. The mechanism of this will 
be discussed below.

Mechanism for T
c
 enhancement of unconventional superconductivity.  The Tc enhancement of 

unconventional superconductivity under lattice distortions can be understood by the enhancement of DOS at 
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Fermi surface and the enhancement of the expectation values of unconventional pairings at Fermi surfaces due 
to the unique spin-orbital texture.

First, we consider the increment of DOS at the Fermi surface. Under the lattice distortions, the DOS’s at the 
Fermi surface increase as shown in Eqs. (20) and (22). Then, the superconducting critical temperature increases 
under lattice distortions because Tc ∝ e

− 1
gN(0) . Here, g is the strength of the pairing potential in the standard BCS 

theory and N(0) is the DOS at Fermi surface. Due to this enhancement of DOS, most of the superconducting 
temperatures increase under the lattice distortions (see Figs. 5d, f and 6d–f). However, some unconventional 
superconducting temperatures decrease while some unconventional superconducting temperatures increase 
under lattice distortions. To understand this, we investigate the pairing expectation values for each supercon-
ducting pairing potentials.

As a representative example, we calculate the normalized expectation values for the �1 , �2 , and �3 pairings 
at the Fermi surface with and without the n1 type lattice distortion (Fig. 7a, b). For a clear comparison, the differ-
ences �diff

i ≡ ��i�n1 �=0 − ��i�n1=0 are calculated (Fig. 7c). Without lattice distortions, 〈�1〉 is uniform while 〈�2〉 
and 〈�3〉 show zeros on the kz axis. With the n1 type lattice distortion, 〈�2〉 increases while 〈�3〉 decreases, which 
leads to �diff

2 > 0 and �diff
3 < 0 (Fig. 7c, d). On the other hand, �diff

1 = 0 . These behaviors of the expectation 
values of 〈�i〉 explains that the tendency of Tc under lattice distortions. Tc of �2 phase increase greater than that of 
�1 phase while Tc of �3 phase decreases under n1 type lattice distortion (Fig. 5a). Similarly, the effect of the other 
types of lattice distortions on Tc can be understood by the expectation value change of the pairing potentials.

Microscopically, we can understand the emergence of unconventional superconducting phases under lat-
tice distortions as a result of the enhancement of inter-orbital pairing at the Fermi surface. Even though our 
argument can be applied to all distortions, we discuss the effect of n1 type lattice distortion for convenience. 
We consider two Fermi surfaces encapsulating Dirac points (0, 0,±k0) which are related by time-reversal and 
inversion. On the upper Fermi surface near the Dirac point (0, 0,+k0) , the Dirac Hamiltonian in Eq.(18) in the 
kx-kz plane is given by

The spin and orbital parts can be diagonalized separately and the total wavefunction can be represented by the 
product of spin and orbital wavefunctions37:

Let us diagonalize the spin part. The spin part of Hamiltonian is given by

where h = (n1 sin k0, 0, vkx) . Since this Hamiltonian is a product of momentum and spin operators, the spin 
wavefunction can be represented in the helicity basis |��spin with � = ±1:

(68)HDirac = (n1 sin k0sx + vkxsz)σx + vz(kz − k0)σz .

(69)|�� = |φ�orbital ⊗ |ψ�spin.

(70)Hspin = (n1 sin k0sx + vkxsz) = h · s,

(71)Hspin|��spin = �|h||��spin.
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Figure 7.   Expectation values of pairing potentials at the upper Fermi surface under the n1 type lattice 
distortion. (a, b) The normalized expectation values 〈�i〉 of �1 , �2 , and �3 (a) without and (b) with 
the n1 type lattice distortion are plotted at the upper Fermi surface of DSM in the kx-kz plane. (c) The 
differences �diff

i ≡ ��i�n1 �=0 − ��i�n1=0 are plotted. In (a–c), the black arrows indicate the points having 
zero expectation values. (d) The normalized integrated expectation values of each pairing potentials, 
∫

FS d
2k�diff

i /
∫

FS d
2k��i�n1=0 , are plotted with respect to n1 . Note that the upper Fermi surfaces encloses the 

Dirac point (0, 0, k0 ) as shown in Fig. 1(k–o).
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Next, we diagonalize the remaining orbital part. Depending on the spin helicity � , the Hamiltonian in Eq. (68) 
can be written as follows:

where d� = (�|h|, 0, dz) and dz = vz(kz − k0) . The orbital wavefunction can be represented by the pseudo-spin 
along d̂� . For each spin helicity � , there are two orbital wavefunctions 

∣

∣

∣
κd̂�

〉

orbital
 with κ = ±1 that satisfy the 

following equations:

where d =
√

|h|2 + d2z  . When the chemical potential is positive, two degenerate wavefunctions located in con-
duction bands participate in the superconducting pairing. These wavefunctions are given by

which form a Kramer’s pair due to the PT symmetry regardless of lattice distortions: PT operation conserves the 
momentum while it flips helicity and the x-component of the orbital because T = isyK̂ and P = −σz.

Since we have obtained the spin and orbital texture in one Fermi surface, we can obtain the spin and orbital 
texture of the other Fermi surface by applying either time-reversal or inversion operator. Let �(k) be a wavefunc-
tion on the Fermi surface. Because there is no σy in the Hamiltonian Eq. (68), the time-reversal partner T�(k) 
has the same orbital direction and the opposite spin direction regardless of lattice distortions comparing with 
�(k) . On the other hand, since P = −σz , the inversion partner P�(k) has the opposite dx while keeping dz and 
spin direction comparing with �(k) . Figure 8 shows the numerically calculated spin and orbital textures using 
the lattice model. The P and T symmetry operators connects spin and orbital wavefunctions in Fig. 8. The red 
and green arrows indicate time-reversal and inversion pairs, respectively.

Using these spin and orbital textures, let us investigate how the lattice distortions promote the unconven-
tional pairings. The conventional �1 pairing is not affected by the lattice distortion. The expectation value 
of �1 is constant over the entire Fermi surface regardless of lattice distortion as shown in Fig. 7a, b. Because 
�1 = c†1↑c

†
1↓ + c†2↑c

†
2↓ +H .c. connects two wavefunctions that are related by time-reversal, the expectation value 

of �1 is constant due to TRS. In other words, because �1 is represented by the identity matrix 14×4 , the expecta-
tion value of the �1 over the Fermi surface is constant even under the lattice distortions.

On the other hand, n1 type lattice distortion can increase the expectation values of the inter-orbital pairing �2 . 
For example, let us consider two wavefunctions located at the south pole of the upper Fermi surface ( kz = +ks 
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with ks < k0 ) and the north pole of the lower Fermi surface ( kz = −ks ). Two wavefunctions are indicated by the 
orange and cyan arrows in Fig. 8c, d. At kz = ±ks , the Dirac Hamiltonian in Eq.(18) is given by

where H(+)
Dirac and H(−)

Dirac correspond kz = ks and kz = −ks , respectively. When n1 = 0 , wave functions on the 
conduction bands at kz = ±ks are given by

where |1�orbital and |2�orbital indicate the orbital basis for σ matrix as defined before. |↑x�spin and |↓x�spin indicate 
the spin up and down along x-direction. Thus, the expectation value of inter-orbital pairing is zero for these 
wavefunctions because the orbital states of the wavefunctions in Eqs. (76) and, (77) are same. On the other hand, 
when n1  = 0 , the x-component of the orbital pseudo-spin is generated (indicated in the large cyan arrows in 
Fig. 8d). The wave functions at kz = ±ks are given by

where d± = (±n1 sin k0, 0,−vz(k0 − ks)) . Therefore, under the lattice distortion, the expectation value of the 
inter-orbital pairing is allowed and �2 pairing is enhanced. This mechanism for the enhancement of unconven-
tional pairings can be applied to the other cases. In summary, the emergence of unconventional superconduc-
tivity under lattice distortion can be understood due to the enhancement of inter-orbital pairings and DOS at 
Fermi surfaces.

Topological superconductivity of doped Dirac semimetal. 
As summarized in Table 8, we characterize possible superconducting states in doped Dirac semimetal by the gap 
structures, topological winding numbers, and surface spectra.

First, the conventional superconducting phase having �1 pairing potential can emerge. Because Tc of the �1 
phase increases under lattice distortions as shown in Figs. 5 and 6, conventional fully-gapped s-wave supercon-
ductivity can emerge.

Second, we consider the inversion-odd-parity superconductor. The BdG Hamiltonian in Eq. (23) are included 
in the DIII class according to 10-fold Altland-Zirnbauer classes4,59 because T2 = −1,C2 = +1 , and Ŵ2 = +1 . 
With the additional inversion symmetry, the DIII class superconductor can be an inversion-odd-parity topologi-
cal superconductor57 classified by Z2 invariants (−1)wDIII , where

Here, Ŵ is the chiral operator, and Q is the so-called Q-matrix4,59 (or projection matrix). The sufficient condition 
for realizing the inversion-odd-parity topological superconductor is that it has an inversion-odd-parity pairing 
with a full gap and its Fermi surface encloses an odd number of time-reversal-invariant momenta. In the absence 
of lattice distortions, the inversion-odd-parity pairings, �2 , �3 , �41 , and �42 , are not fully gapped (Fig. 2a) and 
cannot be such a topological superconductor. However, under the lattice distortions, these inversion-odd-parity 
phases can be fully gapped, and the sufficient condition above can be satisfied for the large chemical potential 
( µ > M0 ) because the Fermi surface can enclose only (0, 0, 0) in BZ. However, when the chemical potential is 
large with a lattice distortion, the band structure near the Fermi energy is far from that of DSM. Because we are 
discussing the Dirac physics, we do not consider such a superconducting phase in this work.

Third, topological mirror superconducting phases36,63 can exist under lattice distortions. Topological DSM 
has a nontrivial mirror Chern number defined in the Mxy plane and the corresponding surface states on the 

(75)H
(±)
Dirac = ±n1 sin k0sxσx − vz(k0 − ks)σz ,

(76)|2�orbital ⊗ |↑x�spin, |2�orbital ⊗ |↓x�spin, for kz = +ks,

(77)|2�orbital ⊗ |↑x�spin, |2�orbital ⊗ |↓x�spin, for kz = −ks,
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〉
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(80)wDIII = −
∫

d
3
k

48π3
εµνρTr[Ŵ(Q∂µQ)(Q∂νQ)(Q∂ρQ)].

Table 8.   Possible topological superconductivity in doped DSM under lattice distortions. SC, FG, LN, and PN 
denote superconductor, full gap, line node, and point node, respectively. Podd and Peven represent the inversion-
odd and inversion-even parity superconductors. Modd and Meven represent the mirror-odd and mirror-even 
parity superconductors. CM is the mirror Chern number. W is chiral winding number defined by Eq. (43). 
WM is the mirror chiral winding number defined by Eq. (47). Here, the 2Z indicates the even number of the 
corresponding surface Andreev bound state (SABS).

Type Gap Class Topological invariant Classification �’s

Line nodal SC LN DIII + Peven W 2Z �1,�
′
1

Topological mirror SC FG DIII + Podd+ Modd CM 2Z �2,�3

Point nodal SC PN DIII + Podd+ Meven WM 2Z �2,�3,�41,�42
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mirror-symmetric boundary36,39. Similarly, topological mirror superconductivity for �2 and �3 phases can exist 
under lattice distortions. Under the n1 ( n2 ) type lattice distortion, �2 ( �3 ) phase is fully gapped, the �2 ( �3 ) 
pairing potential is mirror-odd under the Mxy symmetry, and the mirror Chern number defined in Mxy plane is 
nontrivial ( CM = ±2 ), which leads to topological mirror superconductivity with a topologically-protected Majo-
rana states on the mirror symmetric boundary. For example, see the gapless surface spectra of �2 and �3 phases 
in Region III in Fig. 4a, b, e, f. Due to the TRS and IS, this topological mirror superconductor is classified as 2Z.

Fourth, topological line nodal superconducting phases can exist under lattice distortions. As discussed in 
Fig. 3b, c, the inversion-even-parity �′

1 pairing allows a topologically-protected nodal lines protected by the 
chiral winding number in Eq. (43). According to this chiral winding number, in general, the topological line 
nodal superconductor in doped topological DSM is classified as 2Z . The reason is as follows. Since there are PT 
and PC, the nodal points are fourfold degenerate, which means that there are even number of winding source 
at the same points. Therefore, our generic model has a topological winding number of even integers. Note that 
the topological class of a line node in 3D DIII superconductor using Clifford algebra61 is 2Z , which is consistent 
with our result. However, there is no surface state because �′

1 phase has two nodal lines having opposite chiral 
winding numbers (Fig. 3a).

Fourth, topological point nodal superconducting phases can exist under lattice distortions. For an inversion-
odd-parity and mirror-even-parity pairing potential, we have a topological point nodal superconductor of which 
nodal points are protected by the mirror chiral winding number in Eq. (47). Because the chiral winding number 
is zero for inversion-odd-parity superconductor ( W = W�=i +W�=−i = 0 ), the mirror chiral winding number 
is given by WM = W�=i −W�=−i = 2W�=i . From this mirror chiral winding number, this topological point 
nodal superconductor is classified as 2Z . Note that the classification of a point node using Clifford algebra4,61 is 
MZ considering one mirror sector, which is consistent with our results.

Discussion
Now, we compare our results with experimental works in doped DSM of Au2Pb30–34 and Cd3As227–29. Au2 Pb 
shows superconductivity at Tc ≈ 1.2 K with D2h symmetry at the ambient pressure30,32,34. This structural transi-
tion corresponds to the n1 or n2 type lattice distortion. Tc increases to 4 K until 5 GPa under compression34. The 
point-contact measurements also reported that Tc ≈ 2.1 K using a hard contact tip is higher than the measured 
Tc ≈ 1.13 K using a soft tip. Assuming that the hard tip induces higher pressure than the soft tip, the experimental 
results are consistent with our result that Tc is enhanced with increasing n1 or n2 lattice distortion (Fig. 5). The 
experiments reported that the superconductivity is either conventional33,34 or unconventional32 depending on 
the physical situations. From our analysis, the superconducting phase of Au2 Pb is expected to be either a con-
ventional fully gapped or unconventional topological mirror superconductor with a gapless SABS depending 
on physical parameters.

Similarly, in Cd3As2 , the structural phase transition occurs near 2.6 GPa, resulting in a monoclinic lattice C2h . 
Then, a superconductivity emerges at Tc ≈ 1.8 K under pressure higher than 8.5 GPa. This structural transition 
corresponds to n3 or n4 type lattice distortion. When the pressure increases further, Tc keeps increasing from 
1.8 K (8.5 GPa) to 4.0K (21.3 GPa), which is consistent with the enhancement of Tc under lattice distortions 
(Fig. 6). In this case, n1 or n2 can also be added without breaking the symmetry further. From our analysis, the 
superconducting phases of Cd3As2 are expected to be either a conventional or topological mirror superconductor 
with a gapless SABS. We emphasize that the topological nodal superconductor having a flat SABS can appear 
only if either n3 or n4 lattice distortion is turned on. The point-contact measurements for Cd3As2 showed the 
zero-bias conductance peak (ZBCP) and double conductance peaks symmetric around zero bias, which was 
interpreted as a signal of a Majorana surface states27–29. Even though our result cannot directly explain the result 
of the point-contact measurement, the unconventional superconductivity having gapless Majorana fermion can 
emerge regardless of the lattice distortions according to the surface spectra (see Fig. 4), which seems to support 
the measured conductance peaks. Further experimental studies that reveal the nature of superconductivity are 
necessary, and our theoretical results will be a helpful guideline to interpret the experimental result and search 
for the possible topological superconductivity in DSM.

The other way to induce superconductivity in DSM is to use the proximity effect. Recently, an 1D proximity-
effect-induced superconductivity in Cd2As3 Dirac semimetal nanowire-based Josephson junctions is reported, 
where the superconductivity is induced by the proximity effect from conventional s-wave superconductor64,65. On 
the other hand, the lattice-distortion-induced superconductivity in this work is intrinsic and three-dimensional. 
Interestingly, a strain-induced topological superconductivity with Majorana bound states was also reported in 
2D Dirac semimetals66. We expect that combining these approaches would be helpful to generate and manipulate 
Majorana bound states, which is compatibly applicable to future quantum information technologies.

Summary
In this work, we have studied the possible symmetry-lowering lattice distortions and their effects on the emer-
gence of unconventional superconductivity in doped topological DSM. From the group theoretical analysis, 
four types of symmetry-lowering lattice distortions that reproduce the crystal systems present in experiments 
are identified. We investigated the possible superconductivity under such symmetry-lowering lattice distortions 
considering inter-orbital and intra-orbital electron density-density interactions. We found that both conventional 
and unconventional superconductivity can emerge depending on the lattice distortion and electron density-
density interaction. Remarkably, the unconventional inversion-odd-parity superconductivity hosts gapless sur-
face Andreev bound states (SABS) even under lattice distortions. We found that the lattice distortion enhances 
the superconducting critical temperature. Therefore, our work is consistent with the observed structural phase 
transition and the enhancement of superconductivity in Cd3As2 and Au2 Pb under pressure. We also suggest that 
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enhanced conventional and unconventional superconductivity in doped topological DSM can be controlled by 
physical parameters such as the pressure and strength of the superconducting pairing interaction. Thus, our work 
will provide a valuable tool to explore and control the superconductivity in topological materials.

Methods
To study the effects of symmetry-lowering lattice distortions, we assume a minimal 4× 4 Hamiltonian that 
describes representative topological Dirac semimetals39,45, where the lattice distortions are implemented as a 
perturbation53. To study the superconductivity, we construct the Bogoliubov-de Gennes (BdG) Hamiltonian 
within the mean-field approximation while keeping TRS and the crystal symmetry55,56. The momentum inde-
pendent pairing potentials are classified using irreducible representations of the unbroken point group36,37,56–58. 
The nodal structures, chiral winding number in Eq. (43), and chiral mirror winding number in Eq. (47) are cal-
culated using the BdG Hamiltonian. The surface Green’s functions are calculated using a Möbius transformation-
based method62. The superconducting critical temperature Tc is calculated by solving the linearized gap equation 
in the weak-coupling limit37,55–58. All the details are provided in the main text and Supplementary Information.
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