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Abstract: Epithelial cells represent the first line of host immune defense at mucosal 

surfaces. Although opioids appear to increase host susceptibility to infection, no studies 

have examined opioid effects on epithelial immune functions. We tested the hypothesis 

that morphine alters vectorial cytokine secretion from intestinal epithelial cell (IPEC-J2) 

monolayers in response to enteropathogens. Both entero-adherent Escherichia coli 

O157:H7 and entero-invasive Salmonella enterica serovar Typhimurium increased 

apically-directed IL-6 secretion and bi-directional IL-8 secretion from epithelial 

monolayers, but only IL-6 secretion evoked by E. coli was reduced by morphine acting 

through a naloxone-sensitive mechanism. Moreover, the respective type 4 and 5 Toll-like 

receptor agonists, lipopolysaccharide and flagellin, increased IL-8 secretion from 

monolayers, which was also attenuated by morphine pretreatment. These results suggest 

that morphine decreases cytokine secretion and potentially phagocyte migration and 

activation directed towards the mucosal surface; actions that could increase host 

susceptibility to some enteric infections. 
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1. Introduction 

Morphine and other opioid receptor agonists alter systemic innate and adaptive immune responses 

and increase host susceptibility to infection [1]. For example, impairments in neutrophil function, 

macrophage phagocytosis, T lymphocyte cytokine production, and B cell antigen presentation occur after 

exposure to morphine. In some cases, these effects are mediated through mu-, delta- or kappa-opioid 

receptors (MOR, DOR, and KOR, respectively), transcripts of which have been detected in human 

immune cell lines and primary cells [1,2]. Morphine treatment has been associated with increased 

translocation of bacterial commensals or their associated molecular patterns (e.g., lipopolysaccharide) 

from the gut into the systemic lymphatic and blood circulation [3–7]. Moreover, animals treated with 

morphine exhibit greater susceptibility to enteric infections, including those produced by Salmonella 

enterica serovars Enteritidis and Typhimurium, Listeria monocytogenes, Vibrio cholerae, and 

Pseudomonas aeruginosa [8–11]. 

Epithelial cells constitute the first line of innate host defense in mucosal tissues and possess 

accessory immune functions [12]. In the gastrointestinal tract, epithelial cells in the intestinal mucosa 

appear to be innervated by opioid peptide-immunoreactive submucosal nerves and can interact with 

food-derived opioids such as casomorphins that are generated in the bowel lumen [13–15]. There is 

evidence that intestinal epithelial cells from several families of animals may express specific opioid 

binding sites [16–22]. The effects of morphine or other opioids on epithelial immune responses to 

pathobionts or pathogenic microorganisms have not been hitherto investigated. IPEC-J2 cells derived 

from the neonatal swine small intestine have been used extensively to study host-pathogen interactions 

between epithelial cells and entero-invasive or entero-adherent bacterial pathogens [23]. 

In this study, we utilized confluent, polarized IPEC-J2 cell monolayers to test the hypothesis 

that morphine modifies vectorial epithelial immune responses to entero-invasive S. Typhimurium 

or entero-adherent E. coli O157:H7, and their associated molecular patterns, i.e. flagellin  

and lipopolysaccharide. 

2. Results and Discussion 

2.1. Effect of Morphine on Epithelial Immune Responses to Enteric Pathogens 

Interleukin-6 secretion was significantly increased in the apical media bathing epithelial monolayers 

exposed to E. coli or S. Typhimurium for 6 hr relative to monolayers unexposed to the bacteria (Figure 1). 

In addition, these two pathogenic bacteria evoked increases in bi-directional IL-8 secretion from the 

monolayers (Table 1). The present results with S. Typhimurium are in concordance with those reported 

previously by Skjolaas et al. [24,25], IPEC-J2 cell monolayers released the cytokine IL-6 into the 

apical (mucosal) medium and the chemokine IL-8 into both the apical and basolateral (serosal) media 

after bacterial exposure. On the other hand, the finding that strain 85-170 of Shiga toxin-negative E. coli 

O157:H7 elicits vectorial secretion of IL-6 and IL-8 from IPEC-J2 monolayers has not been 

hitherto reported. 

Morphine pretreatment significantly decreased IL-6 secretion from E. coli-treated monolayers by a 

naloxone-sensitive mechanism (Figure 1A), but did not decrease IL-6 secretion in response to  

S. Typhimurium (Figure 1B). The apparent lack of morphine effect on the relatively large cytokine 
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responses of monolayers to S. Typhimurium, an entero-invasive pathogen, suggests that either E. coli 

and Salmonella may be acting through different intracellular signaling pathways to elicit directional 

cytokine secretion or that the more robust effects of Salmonella on epithelial interleukin secretion 

could not be attenuated by morphine, at least at the concentration tested. In a separate group of six 

experiments, the anti-inflammatory steroid dexamethasone significantly blunted the increase in apical 

IL-6 secretion evoked by Salmonella exposure (118.35 ± 9.60 pg/mL IL-6 versus 69.14 ± 8.12 pg/mL 

IL-6 in monolayers untreated or pre-treated with dexamethasone respectively, N = 6 replicates, 

analyzed by Student’s t test, p < 0.01). Dexamethasone had no effect on IL-8 secretion (data not 

shown). In human corneal and bronchial epithelial cells, dexamethasone reportedly inhibits both IL-6 

and IL-8 secretion evoked by pro-inflammatory mediators [26–28]. Morphine alone or in combination 

with naloxone did not modify constitutive cytokine release from cell monolayers that were unexposed 

to bacteria and did not alter epithelial IL-8 responses to either pathogen (data not shown). 

Figure 1. Morphine attenuates apical IL-6 secretion in IPEC-J2 monolayers exposed to 

entero-adherent E. coli or entero-invasive salmonellae. IPEC-J2 cell monolayers were 

grown to confluency in Transwells. Morphine (10 μM) ± naloxone (1 μM) was added to 

the basolateral medium 30 minutes before the addition of E. coli O157:H7 or S. 

Typhimurium (107 colony-forming units (CFUs)) to the apical medium. After a 6 hr 

incubation, the apical medium was collected and analyzed by ELISA for IL-6. (A) E. coli. 

*Significantly higher than apical medium-only control by one-way ANOVA  

[F(3,32) = 4.716, p = 0.0078] and Tukey’s post-hoc test. N = 9 replicates (one 

condition/monolayer in each of nine different experiments). (B) S. Typhimurium. 

*Significantly higher than apical medium-only control by one-way ANOVA  

[F(2,21) = 15.78, p < 0.0001] and Tukey’s post-hoc test. N = 8 replicates (one 

condition/monolayer in each of eight different experiments). 
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Table 1. Effects of E. coli 0157:H7 and S. enterica Typhimurium on Polarized IL-8 

Secretion from IPEC J2 Cell Monolayers. 

 Control E. coli p value Control S. Typhimurium p value 

Apical IL-8 
concentration 

101.92 ± 
4.54 

425.60 ± 
20.12 

0.0015 
143.72 
± 16.98 

1129.74 ± 50.37 <0.001 

Basolateral IL-8 
concentration 

16.68 ± 
2.78 

1188.47 ± 
45.02 

<0.001 
48.14 ± 
14.43 

2516.64 ± 66.17 <0.001 

Values are expressed as mean ± S.E. of IL-8 concentration in pg/mL of apical or basolateral bathing medium 

(N = one condition/monolayer in each of 9 and 8 experiments with E. coli and S. Typhimurium, respectively). 

P values were determined by Student’s t test comparing IL-8 concentrations in apical or basolateral media 

bathing monolayers that were unexposed (control) or exposed to bacteria. 

2.2. Effects of Morphine on Immune Responses by Epithelial Monolayers Exposed to Pathogen-Associated 

Molecular Patterns 

The bacterial products lipopolysaccharide (LPS) and flagellin, agonists at TLR-4 and TLR-5 

respectively, stimulated bi-directional IL-8, but not IL-6 secretion from epithelial monolayers when 

administered in combination (Figure 2). Their combined effect on apical IL-8 secretion was some 10 to 

30 fold less than that evoked by exposure of monolayers to E. coli or S. Typhimurium.  

Apically-directed IL-8 secretion in response to the TLR agonists was inhibited by morphine, an effect 

that was sensitive to naloxone (Figure 2). 

Figure 2. Morphine attenuates apical IL-8 secretion in IPEC-J2 monolayers exposed to 

lipopolysaccharide (LPS) and flagellin. IPEC-J2 cell monolayers were grown to confluency 

in Transwells. Morphine (10 μM) ± naloxone (1 μM) was added to the basolateral medium 

30 minutes before the addition of LPS (1 μg/mL) to the apical medium and flagellin (100 

ng/mL) to the basolateral medium. After a 6 hr incubation, the apical medium was collected 

and analyzed by ELISA for IL-8. * Significantly different than medium-only control by  

one-way ANOVA [F(3,12) = 4.853, p = 0.0195] and Tukey’s post-hoc test. N = 4 replicates 

(one condition/monolayer in each of four different experiments). 

 

Morphine pretreatment had no effect on TLR-elicited basolateral IL-8 secretion (data not shown). The 

chemokine IL-8 plays an important role in recruiting neutrophils to the intestinal epithelial surface [29]. 
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Morphine and other opioid agonists have been reported to interact non-competitively with TLR-4 in 

glia and other immuno-competent cells at a naloxone-insensitive site of action [30,31]. In the present 

study, the naloxone-sensitive effect of morphine in decreasing LPS-induced IL-8 secretion is likely 

due to an opioid receptor-dependent mechanism and not to direct interactions with TLR-4. If morphine 

actions are extrapolated to the extensive surface area of the intestinal mucosa, we hypothesize that 

reductions in IL-8 or IL-6 concentrations at the mucosal surface might impair neutrophil chemotaxis 

and activation, leading to an increased susceptibility to mucosal infection with potential bacterial 

translocation and sepsis [32,33]. 

3. Experimental Section 

3.1. Reagents 

Porcine jejunal epithelial IPEC-J2 cells were a gift from Bruce Schultz (Department of Anatomy 

and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA). 

Cells were cultured as previously described [23]. 

A swine isolate of Salmonella enterica serovar Typhimurium DT104 was provided by Jeffrey 

Bender (Center for Animal Health and Food Safety, University of Minnesota, St. Paul, MN, USA) and 

has been previously described [34]. Strain 85–170 of Shiga toxin-negative Escherichia coli O157:H7 

was provided by Mark Stevens (Roslin Institute and Royal (Dick) School of Veterinary Studies, 

University of Edinburgh, Midlothian, EH25 9RG Scotland, UK) and has also been previously 

described [35,36]. All bacteria were grown in Luria-Bertani (LB) broth at 37 °C with 5% CO2. 

Morphine sulfate was obtained from the National Institute on Drug Abuse (Bethesda, MD, USA). 

Naloxone, dexamethasone and lipopolysaccharide (LPS, purified from S. Typhimurium) were obtained 

from Sigma-Aldrich (St. Louis, MO, USA). Flagellin was purchased from Enzo Life Sciences 

(Farmingdale, NY, USA). 

3.2. IPEC-J2 Experiments 

Cells were grown to confluency on 0.4 μm pore-size Transwell® filters (Corning, Tewksbury, MA) 

and tested for trans-epithelial electrical resistances (TEERs) >700 Ω, indicative of a confluent 

monolayer. Cell monolayers were washed and incubated in antibiotic-free medium one day prior to 

experimentation. On the day of experimentation, TEERs of >400 Ω across each monolayer were 

confirmed. Morphine (10 μM) ± naloxone (1 μM) was added to the basolateral medium for 30 minutes 

prior to the addition of bacteria (107 colony-forming units, CFUs) to the apical medium. In one set of 

experiments, LPS (1 μg/mL) was added to the apical medium instead of bacteria with the simultaneous 

addition of flagellin (100 μg/mL) to the basolateral medium. These concentrations of LPS and flagellin 

chosen were previously reported to evoke maximal chemokine release from cultured IPEC-J2 cells [37] 

and human HT29 colonic adenocarcinoma cells [38], respectively. Some experiments with 

dexamethasone (1 μM), an anti-inflammatory glucocorticoid, were also conducted; it was added to the 

basolateral medium for 30 minutes prior to the addition of bacteria (107 CFUs) to the apical medium. 

All experiments were carried out over 6 h, at which point apical and basolateral media were collected, 
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centrifuged to remove bacteria, and frozen at −20 °C until ELISA analysis. ELISA analysis of secreted 

proteins was determined using porcine Quantikine kits (R&D Systems, Minneapolis, MN). 

4. Conclusions  

In the present study, morphine decreased apical secretion of IL-6 or IL-8 from porcine intestinal 

epithelial cells in response to entero-adherent E. coli O157:H7 or bacteria-associated molecular 

patterns, respectively. To our knowledge, this is the first report of an opioid action on immune 

responses in non-transformed intestinal epithelial cells in vitro. However, investigations in vivo indicate 

that MOR agonists decrease injury and inflammatory responses in intestinal epithelial cells [39–41]. The 

effects of morphine were inhibited by the general opioid receptor antagonist naloxone, suggesting that 

they are mediated by opioid receptors. Indeed, mRNAs for MOR and DOR have been detected at low 

levels of expression in IPEC-J2 cells (A.J. Brosnahan and D.R. Brown, unpublished results). The opioid 

alkaloid preferentially interacts with MOR, but can interact with DOR at higher concentrations [42]. 

Although the opioid receptor type(s) and mechanisms underlying the action of morphine were not 

investigated here, inhibitory interactions between opioid agonists and pro-inflammatory transcription 

factors, notably nuclear factor kappaB, have been reported to occur in leukocytes [43–46]. Future studies 

should be designed to explore this and other possible mechanisms of opioid action in epithelial cells. 

Epithelial cells comprise the first line of defense against potential pathogens in the gut. They 

constitute a physical barrier against microbial penetration and detect invading microorganisms and 

communicate to neighboring innate immune cells through the production and vectorial release of 

various cytokines and chemokines. Perturbations in the process of epithelial cell to immunocyte 

communication by opiates such as morphine and perhaps other drugs used in the palliative care of 

immuno-compromised patients may further impair disease resistance and worsen the subsequent 

course of intestinal infections. 
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