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Abstract: In response to the emergent public health event of COVID-19, the efficiency of transport of
medical waste from hospitals to disposal stations is a worthwhile issue to study. In this paper, based on
the actual situation of COVID-19 and environmental impact assessment guidelines, an immune
algorithm is used to establish a location model of urban medical waste storage sites. In view of the
selection of temporary storage stations and realistic transportation demand, an efficiency-of-transport
model of medical waste between hospitals and temporary storage stations is established by using an
ant colony–tabu hybrid algorithm. In order to specify such status, Wuhan city in Hubei Province,
China—considered the first city to suffer from COVID-19—was chosen as an example of verification;
the two-level model and the immune algorithm–ant colony optimization–tabu search (IA–ACO–TS)
algorithm were used for simulation and testing, which achieved good verification. To a certain extent,
the model and the algorithm are proposed to solve the problem of medical waste disposal, based on
transit temporary storage stations, which we are convinced will have far-reaching significance for
China and other countries to dispatch medical waste in response to such public health emergencies.

Keywords: transit storage; ant colony algorithm; immune tabu search algorithm; path optimization;
medical waste

1. Introduction

Medical waste refers to wastes produced by medical and health institutions in the course of
medical treatments, preventions, health care, and other related activities, which are directly or
indirectly infectious, toxic, and have other hazardous characteristics. For large and medium-sized
cities, how to set up an effective medical waste transport system has long been the focus of the
world. The academic community has also put forward many ideas and solutions. For example,
Gerasimos Mantzaras [1] developed an optimization model to minimize the cost of a collection,
haul, transport, treatment and disposal system for infectious medical waste (IMW). Qiu Cheng [2]
believed that a BOT (build–operate–transport) model could be used to solve the problem of
medical waste treatment, and selected Kunming City as an example for the research. Liu Xiaoli [3]
analyzed the current situation of medical waste transport in primary hospitals with Wuhan as an
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example, and believed that communication and cooperation between multiple departments should be
strengthened, appropriate managing models should be explored, and we should attach more attention
to training and supervision. Oweis, R. [4] researched the medical waste transport system of King
Hussein Medical Center in Jordan and found that there were a lot of gaps that needed to be resolved in
the future, including effective isolation, use of coding and colored bags, better handling and transport
methods, better monitoring and tracking technology, and the need for training and an awareness
plan for people. Kumar, A. [5] considered the transportation of medical waste as a key step in its
management. Regular training programs for all sectors of health care workers are needed, with a special
focus on waste handlers. With the development of the information age, artificial algorithms have
been widely used to all kinds of fields, including the public opinion polarization process [6–9],
fall detection [10], analysis of user satisfaction [11], welding flame detection [12], and road
networks [13,14].

Through the previous research, it was found that one of the key directions to solving the problem
of urban medical waste transport is to establish a temporary storage station and further build an
efficient hospital–temporary storage station transport model. By doing the analysis, it is believed that
this is a typical Vehicle Routing Problem (VRP), which could be solved by studying vehicle routing
problems with load constraints (CVRPs), an important branch of VRP. As an extension of VRP, CVRP,
which is a typical Nondeterministic Polynomially(NP) Problem, has become a hotspot in the field of
operation research and combinatorial optimization.

VRP is the abbreviation of the vehicle routing problem. The problem is that there are N cars,
all starting from the origin; each car visits some points and then returns to the origin, requiring all
points to be visited, seeking the shortest driving distance or the minimum number of vehicles required
or the minimum long-driving distance. CVRP refers to VRP with capacity limitations.

The NP problem is a complex problem where it cannot be determined whether the answer is
found in polynomial time, but it can be verified if the answer is correct in polynomial time.

At present, many researchers from all over the world have adopted a large number of heuristic
solutions and have proposed a large number of models and extensions for CVRP. For example,
Lucía Cazabal-Valencia analyzed CVRP with ellipsoidal distances, which included an inventory model
with uniformly distributed demands [15]; F.E. Zulvia proposed a hybrid ant-colony optimization and
genetic algorithm for solving CVRP with a time window and fuzzy travel time and demand [16];
Osman Gokalp proposed a novel algorithm based on iterated local search and the random variable
neighborhood descent metaheuristic method for the purpose of solving CVRP [17]; Mahmuda Akhtar
presented a modified backtracking search algorithm in CVRP models, with the smart bin concept to find
the best optimized waste collection path distances [18]; Sami Faiz developed a decision support system
for solving CVRP that integrated GIS enriched by a tabu search model [19]; Chengming Qi proposed a
two-stage hybrid Ant Colony System (ACS) algorithm for CVRP that minimized the number of vehicles
used and travel cost [20]; A. Gomez presented a new artificial bee colony algorithm for solving CVRP [21];
M. Ammi and S. Chikhi proposed an island model for solving CVRP, which consists of using a paradigm,
called the island model, that rules the cooperation held by different islands [22]; S.L. Gadegaard
proposed a new polynomially sized formulation of the well-known symmetric CVRP [23]; Yiyong Xiao
presented a mathematical optimization model to formally characterized the fuel consumption rate
considered in CVRP [24]; Rodrigo Linfati proposed a heuristic algorithm for the reoptimization of
CVRP in which the number of customers increases, which uses the proposed performance to reduce
route dispersion and minimize length [25]; Jiashan Zhang presented a novel two-phase heuristic
approach for the CVRP to overcome limitation [26]; Ali Asghar Rahmani Hosseinabadi introduced
a new metaheuristic optimization algorithm to solve CVRP that is based on the law of gravity and
group interactions [27]; Asma M. Altabeeb proposed a new hybrid firefly algorithm to solve CVRP [28];
Hadi Karimi investigated various stabilization techniques for improving the column generation
algorithm and proposed a novel stabilization technique specialized for CVRP [29]; A.K.M. Foysal
Ahmed proposed an efficient algorithm, bilayer local search-based particle swarm optimization,
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along with a novel decoding method to solve CVRP [30]; Mauro Dell’Amico proposed a new iterated
local search metaheuristic method for CVRP that also includes a vital mechanism from the adaptive
large neighborhood search combined with further intensification through local search [31]; R. Baldacci
described a new integer programming formulation for CVRP based on a two-commodity network
flow approach [32]; Fernando Afonso Santos introduced a branch-and-cut-and-price algorithm for
two-echelon CVRP [33]; Jiafu Tang developed a BEAM–MMAX algorithm that combines a MAX–MIN
ant system with beam search to solve CVRP [34]; Jacek Mańdziuk proposed a solution to CVRP with
traffic jams, which relies on application of the upper confidence bounds applied to the trees method [35];
Juan Rivera presented a mixed integer linear program and a multistart iterated local search, calling a
variable neighborhood descent to solve multitrip cumulative CVRP [36]; Vincent F. Yu presented a
symbiotic organism search heuristic method for solving CVRP [37]; Ehsan Teymourian presented an
enhanced intelligent water drop and cuckoo search algorithm for solving CVRP [38].

Most of the research mentioned above only focused on the improvements of the CVRP solution
and some preliminary applications of the theoretical model without considering practical applications
such as the transport of medical waste. Considering the particularity of the transport problem of
medical waste, it is of paramount importance to establish a targeted model. In terms of the algorithm,
the specific model discussed in this paper not only simplifies CVRP, but also involves location and its
allocation; the algorithm above has its limitations, and we need to put forward a specific algorithm
to solve this model. Moreover, due to the emergency, urgency, and criticality of the pandemic,
the establishment of an efficient transport system model of medical waste has become a priority in
response to the emergent public health crash. In this paper, the immune algorithm, the q-value method,
and the improved ant colony algorithm are applied to the model to solve the path planning problem
of the transport of medical waste. Finally, the strategy under the simulation parameters is given in
the simulation experiment. The model could provide a valuable reference for emergency vehicle
scheduling and transport of medical waste before and after such unprecedented public health events.

The rest of this paper is organized as follows: In Section 2, a complete mathematical description of
the model is proposed. In Section 3, the theory of the immune algorithm and the ant colony algorithm,
which are used to lead to our improved algorithm, is explained, in addition to the initialization of
some key parameters. In Section 4, Wuhan is taken as an example to verify the algorithm and to solve
the model in the actual background. Additionally, Section 5 gives a review and conclusion of the
whole work.

2. Mathematical Model Establishment

2.1. Overview of the Problem

The studies of this paper are to establish a number of transport stations and an efficient
medical waste transport model between hospitals and transport stations and, eventually, optimize the
transportation paths. This problem is a nonconvex and nonsmooth nonlinear programming problem
with complex constraints. It is an NP-hard problem, and it is difficult to solve in a traditional way.

The problem can be divided into the following two subproblems:
The first subproblem is to establish several waste transport stations for numerous existing hospitals.

When establishing the model of the transport stations, factors including the environment and traffic
need to be considered.

The second subproblem is based on the first subproblem. After establishing the transport stations,
we need to optimize the transportation paths between each of the hospitals and the corresponding
transport stations. In path optimization, factors such as the load capacity of the transport vehicle and
the amount of generated waste are taken into account. The second subproblem is similar to CVRP.

In addition to the two problems above, considering the practical background of this problem,
to reasonably initialize the amount of medical waste and the number of transport vehicles is also
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required. However, these problems are not major. As a result, their solutions are not presented as
separate subproblems.

2.2. Mathematical Model of the First Problem

To solve the problem of finding suitable transport stations, we have established the following
mathematical description:

F = min
∑
i∈N

∑
j∈Mi

ωidi jZi j (1)

∑
j∈Mi

Zi j = 1, i ∈ N (2)

Zi j ≤ h j, i ∈ N, j ∈Mi (3)∑
j∈Mi

h j = p (4)

Zi j, h j ∈ {0, 1}, i ∈ N, j ∈Mi (5)

di j ≤ s (6)

Explanation of the variables used in the model: N = 1, 2, . . . n is the serial number set of
all hospitals;

s is the upper limit of the distance between the transport station and the hospital we set;
Mi is the set of candidate transport stations, with a distance to hospital i less than s;
ωi represents the amount of medical waste generated by hospital i every day;
di j represents the distance from hospital i to the nearest transport station j;
Zi j is a Boolean variable, indicating whether there is a transshipment relationship between hospital

i and transport station j. When Zi j is 1, it means that the waste of hospital i will be transported to the
transport station j;

h j is a Boolean variable. When h j is 1, it indicates that location j is selected as the relay station.
p is the number of transport stations we set, which is a constant.
Explanation of the formula in the model:
Formula (1) is the goal of this model, which ensures a minimum transportation cost from the

hospital to the transport station;
Formula (2) ensures that the waste of each hospital will only be transported to the only transport

station corresponding to this hospital, which is convenient for management;
Formula (3) ensures that hospital waste can only be transported to the location set as a

transport station;
Formula (4) ensures that the number of points selected as a transport station is p;
Formula (5) indicates that Z and h are Boolean variables;
Formula (6) indicates that all transport stations should be within the transportation range of

the hospital.
In addition to the establishment of these transport stations, we also need to consider their impact

on ecological and human-activity areas. Therefore, on the basis of the mathematical model, we also
used the buffer analysis technology of ArcGIS software to exclude the areas where the environmental
assessment indicators are unqualified.

This exclusion belongs to the application of the model. Thus, this exclusion is mentioned in
Section 3.4.1, later in the article.
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2.3. Mathematical Model of the Second Problem

In the first problem, we established several transport stations, and each transport station is
responsible for a certain number of hospitals. The waste of these hospitals only needs to be transported
to their corresponding transport stations.

Hence, in path optimization, considering the transportation between each transport station and
the corresponding hospital, as well as the transportation between the hospitals responsible for the
same transport station, are needed. Nothing else needs to be considered.

For example, suppose there are two transport stations, A and B. A is responsible for two hospitals,
C and D. Then, we merely need to consider the transportation between A, C, and D, not the
transportation between A and B, nor the transportation between B, C, and D.

Therefore, the problem has been simplified to a scheduling problem between one transport station
and its corresponding hospitals.

After understanding this simplification, we improved CVRP to make it suitable for our problem.
Then, we could get the following mathematical model:

J = min
m∑

k=1

n∑
i, j=0,i, j

ci jxk
i j (7)

n∑
j=1

xk
0 j =

n∑
j=1

= 1, k ∈ (1, 2, . . . , m) (8)

m∑
k=1

n∑
j=0,i, j

xk
i j = 1, i ∈ (1, 2, . . . , m) (9)

m∑
k=1

n∑
i=0,i, j

xk
i j = 1, j ∈ (1, 2, . . . , n) (10)

n∑
i=1

di

n∑
j=0,i, j

xk
i j ≤ bk, k ∈ (1, 2, . . . , m) (11)

Explanation of the variables used in the model:
For one transport station, m is the number of transport vehicles we assign to it;
di is the amount of daily waste generated by hospital i;
ci j is the distance of the transport vehicle from hospital i to hospital j;
bk is the capacity of transport vehicle k;
xk

i j is a Boolean variable used to indicate the vehicle’s path. When xk
i j is 1, it means that vehicle k

visits hospital j immediately after visiting hospital i.
Explanation of the formula in the model:
Formula (7) is the goal of the model, which ensures that the transportation path between each

transport station and its corresponding hospitals is the shortest;
Formula (8) indicates that the transport vehicles depart from the transport station and return to

the transport station after completing the transportation task. Each car’s path forms a Hamilton tour;
Formulas (9) and (10) indicate that the vehicle must serve all hospitals and they can only be

served once;
Formula (11) indicates that when each vehicle serves the hospitals, its own load cannot be lower

than the total amount of medical waste of the hospitals it passes through.

3. Description and Application of Algorithms

Evolutionary algorithms have strong robustness to solve complex optimization problems [39].
The immune algorithm (IA) is a new intelligent algorithm inspired by biological immune systems.
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It applies the diversity of the immune system to generate and maintain the diversity of the population,
which overcomes the “premature” problems that are difficult to deal with in the general optimization
process, especially in the multimodal function, and finally obtains the global optimal solution [40].
The ant colony optimization (ACO) algorithm, as one of the modern heuristic algorithms, has received
wide attention since it was proposed. It has the advantages of positive feedback, parallelism,
and robustness, which show good performance in solving task allocation and path optimization.
However, at the same time, the ant colony algorithm also has some defects, such as when solving
large-scale problems, as problems such as long operation time, slow convergence speed, and ease of
getting into the local optimal solution frequently happened. The tabu search (TS) algorithm constructs
a tabu table to avoid getting into the global optimal solution and improves the optimization ability of
the algorithm.

In this paper, a hybrid intelligent algorithm of IA–ACO–TS is proposed to solve the problem of the
model in a realistic background. As an extension of the emerging intelligent algorithm and the genetic
algorithm, the immune algorithm has good robustness and global search ability for the location of the
transport station, the coordinates of the distribution of hospitals, and the transport station are selected.

For the path optimization problem between the transport station and the hospitals, we used the
ant colony optimization algorithm and the tabu search algorithm to solve it, which is a vehicle routing
problem with load constraints (CVRP). Considering that the ant colony algorithm can easily fall into
local optimum and its stability is not good enough, we optimized the pheromone updating mechanism
using the basic idea of the tabu search algorithm and set the tabu table and aspiration criterion in order
to improve the effectiveness of the algorithm to solve the problem.

3.1. Location Using Immune Algorithm

3.1.1. Algorithm Processes

The specific process of the immune algorithm is shown in the flowchart in Figure 1. We can find
more specific information in [41].Int. J. Environ. Res. Public Health 2020, 17, x 7 of 19 
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3.1.2. Antibody Initialization

If the memory library is not empty, then the antibody population is generated from the memory
library. Otherwise, the initial population would be generated in the feasible solution space randomly.
Simple coding is used here. Each selection of the location can produce an antibody of length P (P for
the number of transport stations), while each antibody represents the sequence selected for the hospital
to which the transport station belongs.

For example, consider the problem containing 10 hospitals, with 1 to 10 being the sequence
of hospitals. Suppose you pick three of them, and antibody 1, 2, 3 represent a feasible solution,
which means 1, 2, 3 have been chosen for the transport stations.

3.1.3. Evaluation of the Diversity of Solutions

(1) Affinity between Antibody and Antigen
Antibody–antigen affinity indicates the recognition degree of antigen to antibody. According to

this model, we set up affinity function A:

A =
1∑

i∈N
∑

j∈Mi
ωidi jZi j −C

∑
i∈N min{

∑
j∈Mi

Zi j − 1, 0}
(12)

The first term of the denominator is the objective function of the model, and the second term
gives a penalty function to the solution violating the distance constraints. C is a large, positive number.
We use the affinity between the antibody and antigen as a fitness function.

(2) Affinity between Antibodies
The antibody–antibody affinity reacts to the degree of similarity between antibodies. In this paper,

we use the r-continuous bit matching rule proposed by Forrest in 1994 to calculate the affinity.

Sv,s =
kv,s

L
(13)

where kv,s is the number of the same bits between antibody v and s. L is the length of the antibody.
(3) Antibody Concentration
The concentration of the antibody is the percentage of the antibody’s population to the

whole population.
(4) Expected Reproductive Probability
In a population, the expected reproductive of each individual is determined in part by

antibody–antigen affinity A and antibody concentration.

P = α
A∑

A
+ (1− α)

Cv∑
Cv

(14)

3.1.4. Immune Operation

(1) Selection. We used the roulette selection mechanism for select operation. The individual selection
probability is expected to be the more reproductive probability.

(2) The algorithm uses a single-point crossover for crossover operation.
(3) Mutation random selection of mutation bits is used for mutation operation.

3.2. Path Optimization Using Ant Colony Optimization Algorithm and Tabu Search Algorithm

Ant colony optimization (ACO) is an optimization algorithm that simulates the foraging behaviors
of ants. It was first proposed by Italian scholar Dorigo, M. and others in 1991 and used in solving TSP
(the traveling salesman problem) for the first time. ACO uses the concept of pheromones to simulate
the communication mechanism between individuals, which endows the artificial ant with certain
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memory abilities, so the path chosen would be optimized gradually with the increase of the number of
drops. The pheromone update formula for each path is presented as follows:

τi j(t + n) = (1− ρ)τi j(t) + ∆τi j(t) (15)

The formula represents the updating of pheromone on path (i, j) at time (t + n); τi j(t) represents
the pheromone on path (i, j) at time t; ρ represents the information volatilization factor.

When the ant colony algorithm is used to solve CVRP, ants produce pheromones on each path.
The pheromones indicate the attraction degree of the next customer j to the vehicle k. When the
vehicle’s load meets the needs of customers, the vehicle will select customers according to the transport
rules we set. After all the selected customers form loops, the pheromone of each path is updated, and
then an iteration is operated. When the iteration reaches the maximum number of times, a PARETO
solution can be obtained. Compared with other heuristic algorithms, ACO has higher performance.

When ant k is at node i, solve for the probability density function to the next node according to
the following rules:

pk
i j(t) = {

ταi j(t)η
β
i j(t)∑

u∈Nk
i (t)

ταit(t)η
β
iu(t)

, (i, j) ∈ Nk
i (t) 0, (i, j) < Nk

i (t) (16)

In the expression, τi j represents the concentration of pheromone on edge (i, j), ηi j is the attraction
of transporting from one node to another, and we could let ηi j =

1
di j

, where di j is the distance between

the nodes. Nk
i (t) is the set of optional nodes. When the transport probability is worked out, a random

number table is generated to determine the next transport station. According to the above description,
ACO is applied to solve the vehicle routing problem in a specific region. The steps of the algorithm are
as follows:

(1) Parameters Initialization.
Set the maximum number of iteration Nc, the current optimal shortest path length shortestlen,

the customer demand load[J], and the current optimal path tabu table tabumin. Calculate the pheromone’s
initial value τ0, transport attractiveness ηi j(i, j = 1, 2, . . . , n). Place M vehicles in the depot and initialize
the tabu table ant[k].tabu(k = 1, 2, . . . , m), the length of the path ant[k].length(k = 1, 2 . . . , m), the load
on the vehicle ant[k].load(k = 1, 2 . . . , m), and the pheromone on the path for each vehicle.

(2) Initialize the location of the vehicle.
The vehicles are added to ant[k].tabu and the values of ant[k].length and ant[k].load are updated.
(3) Path Selection.
On the premise of satisfying the vehicle load condition, the vehicle selects the customer according

to Formula (2) If the target load is greater than the vehicle’s residual load, the vehicle returns to the
depot. Add the select customer or depot to ant[k].tabu and update ant[k].length and ant[k].load.

(4) Local updating of the pheromone.
Every time a vehicle makes a choice, it updates the path (i, j) that it has just traveled, according to

Formula (1).
(5) Global dynamic updating of pheromones.
The shortest path in the current iteration is counted, and ant[k].length is compared to the shortest.

If ant[k].length ≤ shortestlen, then we replace shortestlen with ant[k].length and replace tabumin with
ant[k].tabu and the optimal path is updated globally.

3.3. Processes of IA–ACO–TS

The specific process of the whole algorithm is shown in the flowchart in Figure 2.
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3.4. Initialization of Parameters and Environment Assessment

3.4.1. Use ArcGIS to Exclude Inappropriate Locations

According to “Technical principles for environmental impact assessment of construction projects
of hazardous waste and medical waste disposal facilities (for trial implementation)”, the location of
hazardous waste and medical waste disposal facilities must strictly abide by the relevant provisions
of national laws, regulations, and standards. Additionally, the site selection should be based
on a comprehensive analysis of the social environment, natural environment, site environment,
engineering geology, hydrogeology, climate, emergency rescue, and other factors. According to the
assessment guidelines of the actual situation in Wuhan, this paper summarizes the exclusion criteria
that are not suitable for the construction of medical waste disposal facilities in the analysis process
using ArcGIS, as shown in Table 1.

Table 1. Exclusion criteria for areas not suitable for the construction of medical waste disposal stations.

Category Exclusion Buffer

Drainage 1000 m
National Highway, Provincial HighwayUrban Express, Express 500 m

Green Space, Parks 1000 m
Towns, Schools 1000 m

Cultivated Land, Woodland, Grassland, Water Area All Exclude

3.4.2. Allocation of Carrying Capacity by Q-value Method

Under such epidemics, the distribution of limited carrying capacity is a common resource allocation
problem, which is a typical case of the application of mathematics in the political field. The goal is to
be as fair and reasonable as possible when a large group allocates certain resources to a small group.

Since carrier forces are quantized, the key to solving the problem is to propose a fairness measure
that satisfies the following five principals:
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1. An increase in population on one side would not result in the loss of a place on the other;
2. On an average basis throughout the period, each side will receive its own share;
3. Increases in the total number of places would not result in a decrease in the number of places for

one side;
4. Neither side’s places will deviate from its proportional places;
5. The absence of a place transport from one side to the other will bring both sides closed to

their share.

Since there is no absolute fair distribution, people have devoted themselves to the study of relative
fairness. The famous Q − value method was developed in 1982 by D.N. Burghes and I. Huntley,
which is a simple method that can overcome some contradictions of other methods, so it has been
widely used in the problem of fair allocation of resources.

For the specific problem in this paper, we have the following model:
Suppose that there are m vehicles participating in n distributable transport stations, where the

resources of i are pi. The total resource of m is p =
∑m

i=1 pi, and the vehicles for i are ni. How do we
find a set of integers n1 nm that make

∑m
i=1 ni = N as fair as possible?

The ideal fair distribution scheme is the distribution according to the proportion of resources;
that is, the number that the i should distribute is ni =

pi
p N, which often is not an integer, and a

“round-off” leads to unfairness, so the classical Q− value method was put forward.
The Q − value method is used to derive a standard quantity Qi for the allocation of seats,

Qi =
p2

i
ni(ni)+1 (i = 1, 2, . . . , m). According to it, we determine which side should be allocated the next

seat, as follows:
First, each side is assigned a seat based on the calculated value of Qi. The larger side has priority

to get the next seat. Then, calculate the value again, and so on, until all seats are allocated.
We applied the Q − value method to solve the problems of assigning buses to each transport

station in Wuhan. In this paper, the total quantity of waste in each transport station is taken as the
parameter p in the method, and it is known that Wuhan has 50 vehicles that can transport waste at
present. The p-value is substituted into the formula, and the total number of vehicles assigned to each
transport station is solved circularly.

The Q − value method is used to allocate the vehicles, and the carrying capacity is reasonably
distributed in each area of Wuhan so that the existing manpower and material resources can be used
more evenly and efficiently.

3.4.3. Initialization of the Amount of Medical Waste Generated by Each Hospital

Based on the data we have, we initialize the amount of medical waste generated by hospitals of
all levels. The result is shown in Table 2.

Table 2. The amount of medical waste generated by different grades of hospitals. Unit: kg/(per bed·per day).

Category Classification Standard Yield

Large Hospitals With more than 300 beds 0.74
Provincial and Key Municipal Hospitals Provincial Capital or Specifically City 0.6

City Hospitals City 0.48

For the amount of medical waste, the number is initialized by statistics. Hospitals are divided into
three levels according to the objective hospital grade, with the lowest level being 1 and the remaining
two levels being 1.25 and 1.54, respectively. In this model, we consider the temporary shelter hospitals
established during the special period of the pandemic. Considering that the shelter hospitals only
accept patients with coronavirus and their scale is limited, taking into account the fact that this part of
the patients’ household waste would be classified as medical waste, all the shelter hospitals in the
second class are clarified.
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4. Case Analysis

Since the outbreak of COVID-19 in Wuhan in December 2019, the epidemic has escalated rapidly,
with more than 400,000 confirmed cases worldwide and a total of 35 countries declaring a state of
emergency. As another significant field of epidemic prevention and control, the treatment of highly
infectious medical waste has also been attached with great importance by the Chinese government.
With the reference of the latest data from the Ministry of Ecology and Environment of the People’s
Republic of China, the average daily output of medical waste in Wuhan before the outbreak was
400,000 tons, while after the epidemic developed at an unprecedented level, the topmost output of
medical waste was 2.4 million tons, whose rate was much faster than its incineration at medical waste
disposal centers.

During the period of epidemic prevention and control, medical waste generated from the medical
treatment of confirmed and suspected patients and their close associations, as well as people isolated
at home, was highly contagious, and therefore territorial medical waste was completely cleaned every
day, which burdened the medical waste disposal units heavily. Since the disposal centers did not have
excess disposal capacity, many designated treatment hospitals also needed to concentrate on sanitizing
the excessive medical waste immediately.

Although Wuhan’s medical waste treatment capacity has greatly improved, it is still in a
“tight balance”, with a daily medical waste loading rate of 93.2 percent, as the director of the Emergency
Response Office of the Chinese Ministry of Ecology and Environment said at a press conference.
He mentioned that we are now faced with many problems, such as the relative lag of the linkage
efficiency of various positions, the inability to transport medical waste in a punctual way, and the high
pressure on communities and medical institutions (including 48 designated hospitals and 16 shelter
hospitals). The question of how to solve these problems of the existing medical waste management
system in public health emergencies is considerable, for further reducing the risk of secondary
transmission of the virus, reducing the transportation time cost of medical waste, and promoting the
progress of epidemic prevention and control.

Based on the major public health event in Wuhan, the transport efficiency of medical waste is not
enough; this paper takes Wuhan during the epidemic period as an example to verify our model. The data
of Wuhan is used for data visualization (dataset information, hospital/shelter hospital coordinates and
relay station coordinate scatter points, IA–ACO–TS parameter setting, result visualization) to verify
the applicability and validity of the model. The research also provides the perspective of medical
waste transport for the world to fight against the epidemic.

4.1. Elimination of Inappropriate Areas Using ArcGIS

The first step in setting up medical waste disposal sites is using the criteria of Table 2 to exclude
inappropriate areas based on GIS software. As shown in Figure 3, the yellow areas are unsuitable and
the pink areas are suitable for the construction of medical waste disposal facilities.

Given that most of the clinical waste is generated in urban areas, in order to minimize transportation
costs, we needed to select a location that is closer to the city center, acting as the final disposal point,
the coordinates of which are 30.491111, 114.182922.

4.2. Site Allocation Results

Using the immune algorithm to optimize our calculation, we obtained the geographical coordinates
of each relay station and then screened the stations according to the environmental evaluation criteria.
The result is shown in Figure 4 and Table 3.

As shown in Figure 5, with the increase in the number of iterations, the results gradually converged
and we obtained a relatively stable optimal solution.
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Table 3. Exclusion criteria for areas not suitable for the construction of medical waste disposal stations.

Relay Station Serial Number Transit Station Latitude Relay Accuracy

1 30.63143408 114.3805356
2 30.911936 114.367332
3 30.507047 114.178504
4 30.52111762 114.3670874
5 30.495884 114.515719
6 30.55204 114.341055
7 30.36358 114.354765
8 30.585537 114.280239
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4.3. Optimization of Vehicle Allocation

The Q − value method is used to assign the corresponding vehicles to each transport station.
The error function is defined as

εi =

∣∣∣∣∣∣pi −
ni∑

i∈I ni

∣∣∣∣∣∣ (17)

where i is the staging area, n is the number of vehicles allocated, and p is the proportion of waste to the
total. After calculation, the vehicle allocation and the resulting error are shown in Table 4.

Table 4. Exclusion criteria for areas not suitable for the construction of medical waste disposal stations.

The Serial Numbers of the Transport Stations Amount of Waste p n ε

1 10.79 0.104747 5 0.004747
2 7.25 0.070382 4 0.009618
3 8.5 0.082516 4 0.002516
4 16.12 0.15649 8 0.00351
5 6.04 0.058635 3 0.001365
6 14.95 0.145132 7 0.005132
7 4.25 0.041258 2 0.001258
8 35.11 0.340841 17 0.000841

The cumulative error is ε = 0.02897. This result is in line with the actual demand, which means the distribution
effect is good.

4.4. Results of Path Optimization

To demonstrate the effectiveness of our algorithm, we applied real data from Wuhan, including its
current capacity and the distribution of hospitals, as well as the shelter hospitals, to the model. The final
road map is shown in Figure 6.Int. J. Environ. Res. Public Health 2020, 17, x 15 of 19 
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As it can be seen, there are eight relay stations in total in the diagram, which are color-coded.
Each transport station has its corresponding hospital. The green line is the result of path optimization
by utilizing the ant colony–tabu hybrid algorithm. This result ensures the efficiency of medical waste
dispatch in the area controlled by each transport station effectively.

Focusing on each of the transport stations, we get the information shown in Figure 7.
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In Figures 6 and 7, the center point of each small area is the medical center of the area, and the
green line segment indicates that if two points belong to the same subdivision area, they are connected
by a line segment.

The distribution of cars is obviously different at disparate transport stations. In the areas where
the hospitals are more concentrated, the routes are more complex.

With the increase in the number of iterations, the convergence of the algorithm is shown in
Figure 8.
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As can be seen in Figure 8, with the increase of the number of iterations, the results gradually
converge and obtain a relatively stable optimal solution.

In view of this, we are certain that the model of this paper has a good fit and dispatching effect
even for Wuhan, which is a very complicated city. Therefore, by giving different parameters to different
cities, it is quite convenient to apply our strategy, which would provide an effective scheme to optimize
the scheduling of the whole urban transport system of medical waste.

In past studies, Balvinder Singh Gill et al. studied the transmission of COVID-19 in Malaysia [42],
and Carol I. Blvd et al. made algorithmic scheduling for the delivery of medical forces [43]. Compared to
their approach, our approach is more comprehensive, practical, and provides a better picture of what
delivery scheduling actually looks like when COVID-19 outbreaks occur in cities.

5. Conclusions

The outbreak of COVID-19 in Wuhan has exposed the inefficiency of transporting medical waste
and urges us to solve this impending problem.

Therefore, in this paper, several temporary storage points were discussed above, according to the
environmental impacts and assessment criteria, utilizing the Q − value method to allocate medical
waste transport vehicles, and applying the immune-based ant colony algorithm, together with the
tabu search algorithm, to arrange the correct pathways of waste transportation. Eventually, a complete
“build–match–transport” system model for medical waste is established during these procedures.

The application of this model to the epidemic situation of Wuhan has achieved excellent results,
which has practical significance and enlightenment to the emergency response and dispatch of Wuhan
and other major cities.
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